JPH032300A - Apparatus for purification of gas with iron oxide catalyst - Google Patents

Apparatus for purification of gas with iron oxide catalyst

Info

Publication number
JPH032300A
JPH032300A JP1135853A JP13585389A JPH032300A JP H032300 A JPH032300 A JP H032300A JP 1135853 A JP1135853 A JP 1135853A JP 13585389 A JP13585389 A JP 13585389A JP H032300 A JPH032300 A JP H032300A
Authority
JP
Japan
Prior art keywords
gas
iron oxide
purification
catalyst
cog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1135853A
Other languages
Japanese (ja)
Other versions
JPH0660313B2 (en
Inventor
Hiroshi Yoshida
弘 吉田
Kazutsugu Kitajima
北島 一嗣
Hideyuki Koshi
古志 秀行
Semeji Mitsunari
光成 鬩治
Hidenori Eguchi
江口 英則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuyama Gas Kk
JFE Engineering Corp
Original Assignee
Fukuyama Gas Kk
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuyama Gas Kk, NKK Corp, Nippon Kokan Ltd filed Critical Fukuyama Gas Kk
Priority to JP1135853A priority Critical patent/JPH0660313B2/en
Publication of JPH032300A publication Critical patent/JPH032300A/en
Publication of JPH0660313B2 publication Critical patent/JPH0660313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:To remove organic sulfur, NOx, dienes, etc., in high efficiency and obtain a purified gas by removing oil mist, etc., from coke oven gas, preheating the gas and reacting in contact with an iron oxide catalyst. CONSTITUTION:A coke oven gas is passed through a filter, etc., to remove dust, oil mist, etc., preheated and reacted in contact with an iron oxide catalyst (e.g. ultrafine particles of iron oxide, zinc oxide and copper oxide supported on a carrier and added with a basic compound, etc.) at 120-300 deg.C under normal pressure or relatively low temperature to decompose organic sulfur, NOx and diene compounds at the same time. The treated gas is mixed with air and cooled to obtain the objective gas.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はコークス炉ガス、石油精製ガス等に含まれて
いる有機イオウ、NOx、ジエン類等を効率よく除去す
るガス精製装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a gas purification device that efficiently removes organic sulfur, NOx, dienes, etc. contained in coke oven gas, petroleum refined gas, etc. .

〔従来の技術〕[Conventional technology]

製鉄所、精油所等より発生する副生ガスであるコークス
炉ガス、石油精製ガス等を燃料ガスとして使用する場合
や高度利用する場合には一般にタール除去、アンモニア
回収、ナフタリン回収、BTX回収、脱硫処理等による
精製がまず行われる。
When using coke oven gas, petroleum refined gas, etc., which are by-product gases generated from steel plants, oil refineries, etc., as fuel gas or for advanced utilization, tar removal, ammonia recovery, naphthalene recovery, BTX recovery, and desulfurization are generally performed. Purification through processing etc. is first performed.

それから更に窒素酸化物(NOx)とジエン類の共存の
もとで生成するガム状重合生成物の吸着除去と残留する
ナフタリンやBTXの深冷除去とが行われるが、そのガ
ス中にはまだご(微量の有機イオウ化合物、NOx、ジ
エン類等の不純物が含存されているのでそれらを更に分
離除去する必要がある。例えば、通常の精製を行ったコ
ークス炉ガス(COG)中には56〜58%のH2,2
6〜28%のCH,,5〜7%のCO23〜4%のCm
Hn等の可燃分と2〜3%のCO□および未除去のBT
X、H2S、有機イオウ化合物、重合ガム物質を生成す
るNOx、ジエン類等の不純物が微量残存している。こ
の豊富なH2やその他有効成分を含むCOGを都市ガス
用または別途に高度利用しようとするとこれら不純物が
原因となる機器・装置の詰まり、燃焼不良、制御不能、
触媒被毒等のトラブルが発生し、利用を妨げている。
Next, the gum-like polymerization products produced in the coexistence of nitrogen oxides (NOx) and dienes are adsorbed and removed, and the remaining naphthalene and BTX are removed by deep cooling. (Since trace amounts of impurities such as organic sulfur compounds, NOx, dienes, etc. are contained, it is necessary to further separate and remove them. For example, coke oven gas (COG) that has undergone ordinary purification contains 58% H2,2
6-28% CH,,5-7% CO23-4% Cm
Combustible components such as Hn, 2-3% CO□ and unremoved BT
Trace amounts of impurities such as X, H2S, organic sulfur compounds, NOx that produce polymerized gum substances, and dienes remain. If COG, which contains abundant H2 and other active ingredients, is used for city gas or for advanced use, these impurities will cause clogging of equipment and equipment, poor combustion, loss of control, etc.
Problems such as catalyst poisoning have occurred, hindering its use.

特に都市ガス用として供給する場合、ガス中に0.1〜
0.15g/Nm’のイオウ分と、0.3〜0.4pp
mのNOx、150〜250ppmのジエン類が含まれ
ていることによりNOxとジエン類は重合反応によりサ
ルファガムやNoガム等のガム状物質を生成し圧力調整
器、ガス機器等の詰まりゃ作動不良を起こしたり、燃焼
不良等のトラブルを起こす原因となっている。また有機
イオウを主とするイオウ分は燃焼時に酸化され、ガス機
器の銅、または銅合金と反応し硫酸銅を主成分とする白
い粉を発生させ燃焼不良をおこすとともに熱交換器等の
腐蝕の原因となり競合他燃料ガスに対し大きなマイナス
要因となってる。
Especially when supplying for city gas, 0.1 to
Sulfur content of 0.15g/Nm' and 0.3-0.4pp
Contains 150 to 250 ppm of NOx and 150 to 250 ppm of dienes, NOx and dienes undergo a polymerization reaction to produce gummy substances such as sulfur gum and No gum, which can clog pressure regulators, gas equipment, etc. and cause malfunctions. This can cause problems such as poor combustion. In addition, sulfur, mainly organic sulfur, is oxidized during combustion and reacts with copper or copper alloys in gas equipment, producing white powder mainly composed of copper sulfate, causing combustion defects and causing corrosion of heat exchangers, etc. This is a major negative factor compared to competing fuel gases.

最近では都市ガス業界においても供給ガスの無毒化を進
めるためにガス中のCO濃度を低減させる触媒を使った
CO変成装置が普及している。また−方大手ガス事業者
をはじめとして各地でLNG導入による都市ガスの高カ
ロリー化(13A化)が促進され、COGについても触
媒反応を利用した代替天然ガス(SNG)プラントが実
用化されている。これら触媒反応にもCOC中のイオウ
分、NOx、ジエン類は触媒性能の低下や被毒の原因物
質として作用するためこれら不純物を事前にしかも完全
に除去しておくことは重要で欠かすことのできない課題
となっている。
Recently, CO converters using catalysts that reduce the CO concentration in gas have become popular in the city gas industry in order to detoxify supplied gas. In addition, major gas companies and other regions are promoting the introduction of LNG to increase the calorie content of city gas (13A), and for COG, alternative natural gas (SNG) plants that utilize catalytic reactions are being put into practical use. . In these catalytic reactions, the sulfur content, NOx, and dienes in COC act as substances that reduce catalyst performance and cause poisoning, so it is important and essential to completely remove these impurities in advance. It has become a challenge.

現在国内で実用化されている燃料ガスの精製方法にはN
Oxの除去として硫化鉄法、活性炭法、高圧無声放電法
、加圧滞留法等が知られている。
The fuel gas refining methods currently in practical use in Japan include
Known methods for removing Ox include the iron sulfide method, activated carbon method, high-pressure silent discharge method, and pressurized residence method.

またイオウ化合物のうち通常の脱硫装置で除去困難な有
機イオウの除去方法は溶媒による吸収法、固体吸着法、
高温下の触媒水添除去法、深冷法等が知られているが、
現在のところこれらは前述の微量有害物質除去方法とし
て経済的なしかも決定的な精製方法とはなっていない。
Among sulfur compounds, organic sulfur, which is difficult to remove with ordinary desulfurization equipment, can be removed by solvent absorption method, solid adsorption method,
Catalytic hydrogenation removal methods at high temperatures, deep cooling methods, etc. are known, but
At present, these purification methods have not yet become economical and definitive for removing the above-mentioned trace amounts of harmful substances.

一方、これを解決しSNGプラントの主原料であるCO
Gの前処理精製設備として現在国内で実用化されている
ものには大阪ガス方式と東京ガス方式の2方式がある。
On the other hand, by solving this problem, CO2, which is the main raw material of SNG plants,
There are two types of G pre-treatment and purification equipment currently in practical use in Japan: the Osaka Gas method and the Tokyo Gas method.

前者の方式は、COGをまずフィルターでダスト、オイ
ルミスト等を除去し、ついで活性炭を充填した吸着塔で
、高沸点炭化水素・硫化水素を吸着除去する。次にCO
Cは、圧縮機で20kg/cm”Gまで昇圧され、熱交
換機で予熱されて水添反応塔へ導かれる。水添反応塔で
は、300”C程度でNi・Mo触媒の作用により、C
OC中のイオウ化合物が水素と反応して硫化水素に転換
する。
In the former method, COG is first filtered to remove dust, oil mist, etc., and then high-boiling hydrocarbons and hydrogen sulfide are adsorbed and removed in an adsorption tower filled with activated carbon. Then CO
C is pressurized to 20 kg/cm"G by a compressor, preheated by a heat exchanger, and led to a hydrogenation reaction tower. In the hydrogenation reaction tower, carbon is reduced by the action of a Ni/Mo catalyst at about 300"C.
Sulfur compounds in OC react with hydrogen and convert to hydrogen sulfide.

COC中の酸素やオレフィン化合物も同様に水添反応塔
で水素と反応し、水およびパラフィン化合物に変化する
Oxygen and olefin compounds in COC similarly react with hydrogen in the hydrogenation reaction tower and change into water and paraffin compounds.

水添反応塔で生成した硫化水素は、接続する吸着脱硫塔
で、塔内に充填された酸化亜鉛(ZnO)により吸着除
去される。
Hydrogen sulfide produced in the hydrogenation reaction tower is adsorbed and removed by zinc oxide (ZnO) filled in the tower in a connected adsorption desulfurization tower.

後者の方式は、COGを常圧乃至50kg/cm”Gに
昇圧し、第一分離器でオイルミストを除去し、予熱器に
入り160〜200’Cに予熱され、第二分離器・吸着
分離器の順に導かれ、生成したNoガム等のガム物質を
除去する。
In the latter method, the COG is pressurized from normal pressure to 50 kg/cm"G, oil mist is removed in the first separator, and the COG is preheated to 160-200'C in the preheater. The COG is then adsorbed and separated in the second separator. It is guided through the containers in order to remove generated gum substances such as No gum.

つづいてCOGは、次の第一水添塔に導かれ、パラジウ
ム(Pd)触媒を用いジエン類が水添飽和される。この
際触媒層の温度制御用に使用されるリサイクルガスは、
第二水添塔出口ガスの一部が供されるが、このガスは予
熱器でCOGと熱交換し、別途設けられたリサイクルガ
ス圧縮機により昇圧され、予熱器入口でCOGと合流す
る。
The COG is then led to the next first hydrogenation column, where the dienes are saturated with hydrogen using a palladium (Pd) catalyst. At this time, the recycled gas used to control the temperature of the catalyst layer is
A part of the second hydrogenation tower outlet gas is provided, and this gas exchanges heat with COG in a preheater, is pressurized by a separately provided recycle gas compressor, and merges with COG at the inlet of the preheater.

第一水添塔で含有するジエン類が飽和されたガスは、加
熱炉で350〜400°Cに加熱され、水添脱硫のため
の第二水添塔に入り、コバルト・モリブデン(Co−M
o)触媒により、ガス中のイオウ化合物(有機イオウ化
合物)が水素と反応して硫化水素(H,S)に転換され
る。
The gas saturated with dienes contained in the first hydrogenation tower is heated to 350 to 400°C in a heating furnace, and then enters the second hydrogenation tower for hydrodesulfurization, where the gas is saturated with cobalt-molybdenum (Co-M
o) Sulfur compounds (organic sulfur compounds) in the gas react with hydrogen and are converted to hydrogen sulfide (H,S) by the catalyst.

このH2Sは、吸着脱硫塔に入り、充填されている酸化
亜鉛(ZnO)に吸着除去される方式である。
This H2S enters the adsorption desulfurization tower and is adsorbed and removed by the packed zinc oxide (ZnO).

このコークス炉ガスの精製方法としてはNOの存在に基
づ(生成重合体及び芳香族化合物を除去したコークス炉
ガスを、特定条件で水添脱硫触媒と接触させてジエン類
、酸素及び硫黄化合物を除去することにより、高純度の
コークス炉ガスを得る方法が特公昭58−12318号
公報に開示されている。また、コークス炉ガスの流入口
からシリカゲル、ゼオライトの順序で充填した吸着塔に
COGを流して予備精製後、吸着精製装置に導入するこ
とにより、COO中の多種の不純物を一括除去する方法
が特開昭61−113689号公報に開示されている。
This coke oven gas purification method is based on the presence of NO (coke oven gas from which produced polymers and aromatic compounds have been removed is brought into contact with a hydrodesulfurization catalyst under specific conditions to remove dienes, oxygen, and sulfur compounds). A method of obtaining high purity coke oven gas by removing COG is disclosed in Japanese Patent Publication No. 58-12318.Also, COG is introduced into an adsorption tower filled with silica gel and zeolite in that order from the coke oven gas inlet. JP-A-61-113689 discloses a method for removing various impurities in COO at once by flowing the COO for preliminary purification and then introducing it into an adsorption purification device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の通り、現在実用化されているコークス炉ガスの精
製方法はいくつかの方法が知られているがいづれも決定
的な問題解決には至っていない。
As mentioned above, there are several known methods for refining coke oven gas that are currently in practical use, but none of them has led to a definitive solution to the problem.

最新の技術である水添法についても高価な貴金属触媒を
用い、しかも高温(300〜400°C)、高圧(20
〜35kg/cmZG )の下でジエン類等の飽和炭化
水素への水添や、有機イオウ化合物の水添吸着除去を行
うため、次のような問題点がある。すなわち、触媒反応
温度・圧力が高く、圧縮費・加熱費が嵩む、使用する触
媒がきわめて高価である、設備が複雑であり、運転・維
持管理に高度の技術をもつ運転員を必要とする、設備に
耐熱・耐圧材料の使用が必要となる、設備設置面積が広
くなり設備費が高い、高圧ガス設備となる等である。従
ってイニシャルコスト、ランニングコストトモ高<つく
ため、この精製方法の採用は経済的に難しい状況にある
The hydrogenation method, which is the latest technology, uses expensive precious metal catalysts and requires high temperatures (300-400°C) and high pressures (200°C).
Since the hydrogenation of saturated hydrocarbons such as dienes and the hydrogenation and adsorption removal of organic sulfur compounds are carried out under conditions (~35kg/cmZG), the following problems arise. In other words, the catalytic reaction temperature and pressure are high, compression and heating costs are high, the catalyst used is extremely expensive, the equipment is complex, and highly skilled operators are required for operation and maintenance. The equipment requires the use of heat-resistant and pressure-resistant materials, the equipment installation area is large and equipment costs are high, and high-pressure gas equipment is required. Therefore, the initial cost and running cost are high, making it economically difficult to employ this purification method.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの問題点を解決して有機イオウ、NOx
、ジエン類等を効率よく除去するガス精製装置を提供す
るものであり、ミストH除去装置と、酸化鉄系触媒を充
填した反応装置と、前記触媒と接触反応させる精製目的
ガスを予熱する加熱装置(加熱炉、熱交換器)と、精製
目的ガスに空気を混入する機構と、反応装置から排出さ
れた精製ガスの冷却装置を具備したことを特徴としてい
る。
The present invention solves these problems and eliminates organic sulfur and NOx.
The present invention provides a gas purification device that efficiently removes dienes, etc., and includes a mist H removal device, a reaction device filled with an iron oxide catalyst, and a heating device that preheats the purification target gas to be catalytically reacted with the catalyst. (heating furnace, heat exchanger), a mechanism for mixing air into the gas to be purified, and a cooling device for the purified gas discharged from the reaction device.

ミスト頚除去装置はダスト、タールミスト等を除去する
ものであり、濾布フィルター、充填層フィルター等のフ
ィルター、電気集塵装置等を利用できる。
The mist neck removal device removes dust, tar mist, etc., and can use filters such as filter cloth filters and packed bed filters, electrostatic precipitators, and the like.

触媒は担体に製鉄所内で発生する超微粒酸化鉄((1’
  Fezes)と酸化亜鉛(ZnO)及び酸化銅(C
ub)を担持し、これに塩基性化合物を添加したもので
ある。担体はCaO1Sin、、Aha、、MgO,T
iO2等を単独あるいは適宜混合したものである。
The catalyst is made of ultrafine iron oxide ((1'
Fezes), zinc oxide (ZnO) and copper oxide (C
ub) and to which a basic compound is added. The carrier is CaO1Sin, Aha, MgO, T
It is a mixture of iO2 and the like alone or as appropriate.

酸化鉄はα−FezO:+を主とするもので粒径60J
Im以下の超微粉が好ましい。このような酸化鉄超微粉
は鉄粉を希塩酸等に溶解した溶液を燃料とともに700
〜800°Cで噴霧して焙焼することにより得ることが
できる。酸化亜鉛(ZnO)及び酸化銅(Cub)は市
販されている工業用のものをそのまま使用することがで
きる。
Iron oxide is mainly α-FezO:+ and has a particle size of 60J.
Ultrafine powder of Im or less is preferred. This type of ultrafine iron oxide powder is produced by dissolving iron powder in dilute hydrochloric acid, etc., and adding fuel to the solution.
It can be obtained by spraying and roasting at ~800°C. Commercially available industrial zinc oxide (ZnO) and copper oxide (Cub) can be used as they are.

これに添加される塩基性化合物はアルカリ金属又はアル
カリ土類金属の酸化物及び炭酸塩が適当である。酸化物
の例としてCaOlMgO等、そして炭酸塩の例として
はNaHCO,、NazCO3、CaCO3、KZC(
h等を挙げることができる。
The basic compounds added thereto are suitably alkali metal or alkaline earth metal oxides and carbonates. Examples of oxides include CaOlMgO, etc., and examples of carbonates include NaHCO, NazCO3, CaCO3, KZC (
Examples include h.

触媒の組成としては酸化鉄30〜80重景%程置型酸化
亜鉛2〜15重量%置型、酸化銅2〜15重量%置型、
担体10〜30重量%程置型そして塩基性化合物の添加
物1〜10重量%置型が適当である。
The composition of the catalyst is iron oxide 30-80% by weight stationary type, zinc oxide 2-15% by weight stationary type, copper oxide 2-15% by weight stationary type,
A stationary type containing 10 to 30% by weight of the carrier and 1 to 10% by weight of the basic compound additive is suitable.

この触媒の製造方法としては酸化鉄、酸化亜鉛及び酸化
銅を混合後、担体、塩基性化合物の添加物と水を加えて
混合造粒し、結晶水除去のため100〜400°C程度
で軽く焙焼すればよい。担体及び塩基性化合物は酸化鉄
等と一緒に加えてもよい。
The method for producing this catalyst is to mix iron oxide, zinc oxide, and copper oxide, then add a carrier, basic compound additives, and water, mix and granulate the mixture, and gently heat the mixture at about 100 to 400°C to remove crystallization water. Just roast it. The carrier and the basic compound may be added together with iron oxide and the like.

粒径は5〜20mm程度が適当であり、7〜15mm程
度が好ましい。
The particle size is suitably about 5 to 20 mm, preferably about 7 to 15 mm.

本発明の触媒は120〜300°C1常圧以上の比較的
低圧で有機イオウ、NOx及びジエン類を同時に分解す
ることができる。精製目的ガスの流速は空間速度(SV
)で100〜1000hr−’程度の範囲で使用でき、
650hr−I以下では極めて良好な除去成績を上げる
ことができる。また、触媒の再生は少量の空気と水蒸気
を送入することによってFe25.、、FeS等の硫化
物に変化した触媒がFe、0.に再生され、長期間の継
続使用が可能である。
The catalyst of the present invention can simultaneously decompose organic sulfur, NOx, and dienes at a relatively low pressure of 120 to 300°C and above normal pressure. The flow rate of the target gas for purification is the space velocity (SV
) can be used in the range of 100 to 1000 hr-',
At 650 hr-I or less, extremely good removal results can be achieved. In addition, the catalyst can be regenerated by introducing a small amount of air and water vapor. , , the catalyst changed to sulfide such as FeS is Fe, 0. It can be regenerated and used continuously for a long period of time.

触媒を充填する反応装置の形状は通常の゛もの例えば塔
式のものでよい。
The reactor packed with the catalyst may have a conventional shape, such as a column type.

加熱装置は熱変換器であってもよく、加熱炉であっても
よい。
The heating device may be a heat converter or a heating furnace.

精製目的ガスに空気を混入する機構は空気供給ラインを
精製目的ガスラインに単に接続するだけでもよいが、空
気流量調整器も併せて設けることが好ましい。この空気
は反応装置内の触媒反応を阻害しないように予熱してお
くのがよく、この予熱空気はNoの酸化防止及びジエン
類の重合反応抑制のため反応装置の直前で混合するのが
よい。
Although the mechanism for mixing air into the purification target gas may be simply connecting the air supply line to the purification target gas line, it is preferable to also provide an air flow rate regulator. This air is preferably preheated so as not to inhibit the catalytic reaction within the reactor, and this preheated air is preferably mixed immediately before the reactor to prevent oxidation of No and suppress the polymerization reaction of dienes.

反応装置から排出された精製ガスの冷却装置は精製ガス
を次の2種あるいは貯蔵に問題のない程度まで冷却すれ
ばよい。この冷却装置は単に冷却するだけのものであっ
てもよいが、熱交換器等によって排熱を回収して有効利
用することが好ましい。
The cooling device for the purified gas discharged from the reactor may cool the purified gas to one of the following two types or to a level that poses no problem for storage. Although this cooling device may simply be used for cooling, it is preferable that the exhaust heat is recovered and used effectively by a heat exchanger or the like.

本発明の装置には必要によりそのほかの機構も適宜組込
む。例えば、前記の空気の予熱装置のほか、触媒再生反
応(発熱反応)を制御する水蒸気供給ラインを設けるこ
とができる。この水蒸気ラインはガスの精製時の反応制
御にも利用することができる。そのほか、流量計、温度
計、圧力計等の各種計測器類、各種弁等が適宜配設され
る。
Other mechanisms may also be incorporated into the apparatus of the present invention as necessary. For example, in addition to the air preheating device described above, a steam supply line for controlling the catalyst regeneration reaction (exothermic reaction) can be provided. This steam line can also be used to control reactions during gas purification. In addition, various measuring instruments such as a flow meter, thermometer, and pressure gauge, various valves, etc. are provided as appropriate.

運転条件としては、反応装置、へ導入する精製目的ガス
の温度及び空気の混入量を触媒反応条件が適当になるよ
うに制御する。すなわち、触媒層内温度が120〜30
0’C程度、好ましくは150〜250°Cで触媒層内
の圧力が1〜50kg/cmgQ程度、好ましくは1〜
10kg/cm”Gに保たれるようにし、この条件は例
えば精製目的ガスの導入温度100〜140″C程度(
立上げ時は120〜160’C程度)で空気の混合量を
0□濃度が0.5〜3%になるように調整することによ
って得られる。
As for the operating conditions, the temperature of the purification target gas introduced into the reactor and the amount of air mixed in are controlled so that the catalytic reaction conditions are appropriate. That is, the temperature inside the catalyst layer is 120 to 30
At about 0'C, preferably from 150 to 250°C, the pressure inside the catalyst layer is about 1 to 50 kg/cmgQ, preferably from 1 to
10 kg/cm"G, and this condition is, for example, the introduction temperature of the gas for purification of about 100 to 140"C (
This can be obtained by adjusting the amount of air mixed so that the 0□ concentration is 0.5 to 3% at a temperature of about 120 to 160'C at startup.

〔作用〕[Effect]

ミスト類除去装置により触媒に有害なオイルミスト等を
除去し、反応装置において酸化鉄系触媒により有機イオ
ウは触媒層内でHzや酸化反応で生成するH、0と反応
しHlSに転化し、これはFezO=等に吸着され、F
e、S、、FeSその他硫化物の形で除去される。また
NOxは硫化物と錯化合物をつくり固定されるか、ある
いはCOG中のCO・H2等の還元ガスにより、触媒表
面で接触還元をおこし、NZとなり除去される。ジエン
類もCOG中のH2・H,0により水添飽和されるか分
解するかで除去される。精製目的ガスを予熱する加熱装
置により反応装置に導入される精製目的ガスを予熱して
反応装置内の触媒反応の円滑化を図っている。精製目的
ガスに空気を混入する機構により精製目的ガスを反応装
置に導入する前に適宜量の酸素量に調整し精製目的ガス
中のH2、CO等と発熱反応させて触媒層の温度を適当
な範囲に維持させている。また、反応装置から排出され
た精製ガスを冷却装置によって冷却してその後の工程に
支障を生じないようにしている。
A mist removal device removes oil mist that is harmful to the catalyst, and an iron oxide catalyst in the reaction device reacts organic sulfur with Hz and H and 0 generated by oxidation reactions in the catalyst layer and converts it into HlS. is adsorbed by FezO= etc., and F
e, S, FeS and other sulfides are removed. In addition, NOx forms a complex compound with sulfide and is fixed, or is catalytically reduced on the catalyst surface by a reducing gas such as CO/H2 in COG to become NZ and removed. Dienes are also removed by being hydrogenated or decomposed by H2.H,0 in COG. The purification target gas introduced into the reaction apparatus is preheated by a heating device that preheats the purification target gas, thereby smoothing the catalytic reaction within the reaction apparatus. Using a mechanism that mixes air into the gas for purification, the amount of oxygen is adjusted to an appropriate amount before the gas for purification is introduced into the reaction apparatus, and the temperature of the catalyst layer is adjusted to an appropriate level by exothermic reaction with H2, CO, etc. in the gas for purification. It is kept within range. Further, the purified gas discharged from the reactor is cooled by a cooling device so as not to cause any trouble in subsequent steps.

〔実施例〕〔Example〕

本発明の一実施例である装置のプロセス図を第1図に示
す。
FIG. 1 shows a process diagram of an apparatus that is an embodiment of the present invention.

この装置はCOG精製用のものでありCOG供給ライン
1はミスト類を除去するフィルター2に接続され、フィ
ルター2の出口側は分岐していずれも弁を介してCOG
を予熱する装置である加熱炉3とG/G熱交換器6に接
続されている。GZG熱交換器6の出口側は前記加熱炉
3の入口側に接続されている。加熱炉3の出口側は混合
器を介して酸化鉄系触媒を充填した反応塔5に接続され
ている。一方、COGに混合される空気の供給ライン1
0は熱交換器7に接続され、その出口側は流量調整弁を
介して前記の混合器に接続されている。
This device is for COG purification, and the COG supply line 1 is connected to a filter 2 that removes mist, and the outlet side of the filter 2 is branched and both are connected to the COG through a valve.
It is connected to a heating furnace 3 and a G/G heat exchanger 6, which are devices for preheating the gas. The outlet side of the GZG heat exchanger 6 is connected to the inlet side of the heating furnace 3. The outlet side of the heating furnace 3 is connected via a mixer to a reaction tower 5 filled with an iron oxide catalyst. On the other hand, air supply line 1 to be mixed with COG
0 is connected to the heat exchanger 7, and its outlet side is connected to the mixer via a flow rate regulating valve.

この流量調整弁はコントローラー4によって制御され、
反応塔内の触媒層の温度を適当な範囲に保つよう空気の
混合量を増減しうるようになっている。反応塔5の出口
側はCOGを予熱する熱交換器6、空気を予熱する熱交
換器7、水冷式の冷却器8が直列に接続され、冷却器8
の出口側は精製ガス排出ライン9に接続されている。本
装置にはさらにスチーム供給ライン11が流量調整弁を
介して前記の混合器に接続されている。この流量調整弁
も前記のコントローラー4によって制御されている。
This flow rate regulating valve is controlled by a controller 4,
The amount of air mixed can be increased or decreased to maintain the temperature of the catalyst layer within the reaction tower within an appropriate range. On the outlet side of the reaction tower 5, a heat exchanger 6 for preheating COG, a heat exchanger 7 for preheating air, and a water-cooled cooler 8 are connected in series.
The outlet side of is connected to a purified gas discharge line 9. The apparatus further includes a steam supply line 11 connected to the mixer via a flow rate regulating valve. This flow rate regulating valve is also controlled by the controller 4 described above.

この装置を用いてCOGの精製テストを行った。A COG purification test was conducted using this device.

反応塔5に充填した触媒は次のようにして作製した。す
なわち、製鉄業において鋼板を塩酸で酸洗するときに発
生する廃酸(FeC1z 20〜30%)を700〜8
00°Cで噴霧焙焼して粒径60μm以下のαFe、0
.粉を得た。これにZnO1CuOをそれぞれ7.5重
量%を加えて均一に混合し、セメント(Ca064%、
5iOt22%、AhOz 5%等)30!量%とCa
O7,5重量%および水20重量%を加えて均一にねっ
た後7〜15mm粒径程度に造粒した。この造粒物を1
00〜400°C程度で1時間焙焼して有機イオウ分、
NOx、ジエン類の分解用触媒を得た。
The catalyst packed in the reaction tower 5 was prepared as follows. In other words, the waste acid (FeC1z 20-30%) generated when steel plates are pickled with hydrochloric acid in the steel industry is
αFe with a particle size of 60 μm or less by spray roasting at 00°C, 0
.. Got the powder. Add 7.5% by weight of each of ZnO and CuO to this and mix uniformly to prepare cement (Ca064%,
5iOt22%, AhOz 5%, etc.) 30! Amount% and Ca
After adding 7.5% by weight of O and 20% by weight of water and kneading the mixture uniformly, it was granulated to a particle size of approximately 7 to 15 mm. This granulate is 1
Roast at 00 to 400°C for 1 hour to remove organic sulfur content,
A catalyst for decomposing NOx and dienes was obtained.

この触媒40kgを反応塔5に充填して精製テストを開
始した。被精製COGをフィルター2に通してオイルミ
スト等を除去した後2.5kg/cm”Gに昇圧し、立
上げ時は加熱炉3に直接送入して加熱炉出口ガス温度1
60″Cに昇温した。混合器部で空気を02濃度2.0
%になるように混合して反応塔5に送入した。混合ガス
の流量は18Nm’/hr(SV600h−’)に調整
した。反応塔内の昇温に伴ってラインを切換え、被精製
COGを熱交換器6を経由して加熱炉3に送入するよう
にし、加熱炉出口ガス温度を140℃に設定した。定常
状態の触媒層内温度は上段140°C1中段200°C
5下段300°Cであった。反応塔5から排出される精
製COG中の0□はトレースであり、添加された02は
ほぼ全量が消費されたことを示している。反応塔5を出
た300°Cの精製CoGは熱交換器6で被精製COG
を約140°Cまで昇温し、加熱炉3による加熱は不要
になった。熱交換器6を出た精製COGは次の熱交換器
7で空気を予熱し、冷却器8でほぼ常温まで冷却された
Reaction tower 5 was filled with 40 kg of this catalyst, and a purification test was started. The COG to be purified is passed through a filter 2 to remove oil mist, etc., and then the pressure is increased to 2.5 kg/cm"G. At startup, the COG is directly fed into the heating furnace 3 and the temperature of the gas at the exit of the heating furnace 1 is increased.
The temperature was raised to 60″C.The air was heated to 02 concentration 2.0 in the mixer section.
% and sent to the reaction tower 5. The flow rate of the mixed gas was adjusted to 18 Nm'/hr (SV600h-'). As the temperature inside the reaction tower rose, the line was switched so that the COG to be purified was fed into the heating furnace 3 via the heat exchanger 6, and the heating furnace outlet gas temperature was set at 140°C. The temperature inside the catalyst layer in steady state is 140°C in the upper stage and 200°C in the middle stage.
5 lower stage was 300°C. 0□ in the purified COG discharged from the reaction tower 5 is a trace, indicating that almost all of the added 02 has been consumed. The purified CoG at 300°C that exits the reaction tower 5 is converted into COG to be purified in the heat exchanger 6.
The temperature was raised to about 140°C, and heating by the heating furnace 3 became unnecessary. The purified COG that came out of the heat exchanger 6 was preheated with air in the next heat exchanger 7, and cooled to approximately room temperature in the cooler 8.

運転結果を表1に示す。The operation results are shown in Table 1.

表1 反応前後のガス組成変化と不純物の除去表1に示
すように、COG中のcos、 cs、はいずれも0.
0O1ppe以下、N01NO,も0.0O1ppa+
以下、そしてジエン類も1 ppm以下になり、非常に
高い除去率が得られた。
Table 1 Changes in gas composition before and after reaction and removal of impurities As shown in Table 1, cos and cs in COG are both 0.
0O1ppe or less, N01NO, also 0.0O1ppa+
The following and dienes were also reduced to 1 ppm or less, and a very high removal rate was obtained.

次に、空気を混入させないで加熱炉で140〜250℃
に昇温して運転した結果を表2に示す。
Next, heat it in a heating furnace at 140-250℃ without mixing air.
Table 2 shows the results of operation at elevated temperatures.

表2反応前後のガス組成変化と不純物の除去表2の結果
は空気混入した表1の結果には劣るが、COGの用途に
よっては前述の問題を充分に回避できる除去率が得られ
た。
Table 2 Changes in gas composition before and after reaction and removal of impurities Although the results in Table 2 are inferior to the results in Table 1 in which air is mixed, a removal rate that can sufficiently avoid the above-mentioned problems was obtained depending on the use of COG.

反応塔入口の温度を100〜140°C10□濃度を0
.5〜3%、反応塔内の圧力を1〜6kg/ca”、空
間速度600hr−’で種々のCOGの精製効果を測定
し、表3の結果を得た。
The temperature at the inlet of the reaction tower is 100-140°C10□The concentration is 0
.. The purification effects of various COGs were measured at a pressure of 5 to 3%, a pressure in the reaction column of 1 to 6 kg/ca'', and a space velocity of 600 hr-', and the results shown in Table 3 were obtained.

表3不純物の含有と除去効果 〔発明の効果〕 本発明のガス精製装置によりCOG中に残留していた有
機イオウを主とするイオウ分、NOx。
Table 3 Containment of impurities and removal effects [Effects of the invention] Sulfur content, mainly organic sulfur, remaining in COG by the gas purification apparatus of the present invention, NOx.

ジエン類を90%以上の効率で除去し得ることが判明し
た。さらに設備の耐圧、耐熱性の低グレード化が達成で
きたこと、装置構成の簡略化、触媒のコスト低減と加熱
費の節減が図られたこと等でイニシャル、ランニングコ
ストが低減され、しかも簡便で操作性に優れた装置を開
発することができた。またこの開発により、燃料ガス(
コークス炉ガス、石油精製ガス等)の安価な高度化利用
も実現が可能となった。
It has been found that dienes can be removed with an efficiency of 90% or more. In addition, initial and running costs have been reduced by lowering the pressure and heat resistance of the equipment, simplifying the equipment configuration, and reducing catalyst costs and heating costs. We were able to develop a device with excellent operability. This development also allows for fuel gas (
It has also become possible to realize inexpensive and sophisticated use of coke oven gas, refined petroleum gas, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である装置のプロセス図であ
る。 1・・・CoG供給ライン、 2・・・フィルター(ミスト類除去装置)、3・・・加
熱炉(加熱装置)、 4・・・コントローラー、5・・・反応塔(反応装置)
、6・・・熱交換器(加熱装置)、7・・・熱交換器、
8・・・冷却器、9・・・精製ガス排出ライン、10・
・・空気供給ライン、 11・・・スチーム供給ライン 第1図 手続補正書(自発) 補正の内容 平成元年8月15日
FIG. 1 is a process diagram of an apparatus that is an embodiment of the present invention. 1... CoG supply line, 2... Filter (mist removal device), 3... Heating furnace (heating device), 4... Controller, 5... Reaction tower (reaction device)
, 6... Heat exchanger (heating device), 7... Heat exchanger,
8...Cooler, 9...Refined gas discharge line, 10.
...Air supply line, 11...Steam supply line Figure 1 procedural amendment (voluntary) Contents of amendment August 15, 1989

Claims (1)

【特許請求の範囲】[Claims] ミスト類除去装置と、酸化鉄系触媒を充填した反応装置
と、前記触媒と接触反応させる精製目的ガスを予熱する
加熱装置と、精製目的ガスに空気を混入する機構と、反
応装置から排出された精製ガスの冷却装置を具備した酸
化鉄系触媒によるガス精製装置
A mist removal device, a reaction device filled with an iron oxide catalyst, a heating device for preheating the purification target gas to be brought into contact with the catalyst, a mechanism for mixing air into the purification gas, and a reaction device filled with an iron oxide catalyst. Gas purification equipment using iron oxide catalyst equipped with cooling device for purified gas
JP1135853A 1989-05-31 1989-05-31 Gas purification method using iron oxide catalyst Expired - Fee Related JPH0660313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1135853A JPH0660313B2 (en) 1989-05-31 1989-05-31 Gas purification method using iron oxide catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1135853A JPH0660313B2 (en) 1989-05-31 1989-05-31 Gas purification method using iron oxide catalyst

Publications (2)

Publication Number Publication Date
JPH032300A true JPH032300A (en) 1991-01-08
JPH0660313B2 JPH0660313B2 (en) 1994-08-10

Family

ID=15161301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1135853A Expired - Fee Related JPH0660313B2 (en) 1989-05-31 1989-05-31 Gas purification method using iron oxide catalyst

Country Status (1)

Country Link
JP (1) JPH0660313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248493B1 (en) 1998-09-25 2001-06-19 Dainippon Ink And Chemicals, Inc. Toner for non-magnetic single component development

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395505B1 (en) * 2014-02-07 2014-05-14 주식회사 나오텍크 An oil-elimination apparatus of compressor air

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845720A (en) * 1981-09-16 1983-03-17 Sumitomo Heavy Ind Ltd Dry desulfurization of h2s-containing gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845720A (en) * 1981-09-16 1983-03-17 Sumitomo Heavy Ind Ltd Dry desulfurization of h2s-containing gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248493B1 (en) 1998-09-25 2001-06-19 Dainippon Ink And Chemicals, Inc. Toner for non-magnetic single component development

Also Published As

Publication number Publication date
JPH0660313B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
KR100316563B1 (en) Partial Oxidation Method to Produce High Temperature Clean Gases
US9981253B2 (en) Catalyst for a sulphur recovery process with concurrent hydrogen production, method of making thereof and the sulphur recovery process with concurrent hydrogen production using the catalyst
US10046967B2 (en) Process for sulphur recovery with concurrent hydrogen production from NH3 containing feed
JPH0710502A (en) Method for partial oxidation of high-temperature refining gas stream
CA2835148C (en) Zero emissions sulphur recovery process with concurrent hydrogen production
US2910343A (en) Process for catalytically reducing nitrogen oxides in industrial stack gases
JPS5827837B2 (en) Processing method for sulfur-containing heavy oil
CN118022775A (en) Catalyst for catalytic oxidative cracking of hydrogen sulfide and simultaneous production of hydrogen
RU2726175C1 (en) Methods and systems for increasing carbon content in cancellous iron in reducing furnace
JPS5845101A (en) Method of reducing total sulfur content of charge gas having high carbon dioxide content
US4062529A (en) Apparatus for the direct reduction of iron ore to sponge iron
TWI436944B (en) Method for producing sulphuric acid and installation for carrying out the method
JPH032300A (en) Apparatus for purification of gas with iron oxide catalyst
CN103952184A (en) Method and system for preparing reducing gas used for shaft furnace through catalytic coal gasification
CA1047224A (en) Hydrogen cyanide destruction
JPH034937A (en) Catalyst for decomposing organosulfur component, nox and dienes
JPH0472573B2 (en)
CN113264508A (en) Sulfur recovery method and device
CN213772105U (en) Shaft furnace reducing gas preparation and dry desulphurization system
CN113877405B (en) Waste lubricating oil hydrogenation gas treatment and discharge process
JPS61251502A (en) Treatment of waste sulfuric acid
KR20170001642A (en) A method and plant for operating a corex or finex plant
RU2817955C1 (en) Method for catalytic oxidation of hydrogen sulphide and installation for its implementation
CN108970353B (en) Comprehensive desulfurization and denitrification method for catalytic flue gas and ammonia-containing acid gas
JP2916885B2 (en) Hydrogen recovery method during regeneration of gas purification catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees