JPH03229646A - Preparation of catalyst - Google Patents

Preparation of catalyst

Info

Publication number
JPH03229646A
JPH03229646A JP2022520A JP2252090A JPH03229646A JP H03229646 A JPH03229646 A JP H03229646A JP 2022520 A JP2022520 A JP 2022520A JP 2252090 A JP2252090 A JP 2252090A JP H03229646 A JPH03229646 A JP H03229646A
Authority
JP
Japan
Prior art keywords
carrier
catalyst
metal species
supported
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022520A
Other languages
Japanese (ja)
Inventor
Ippei Ogata
逸平 緒方
Shuichi Nakano
秀一 中野
Yasuyuki Sato
靖之 佐藤
Akira Takagi
明 高木
Tomio Sugiyama
富夫 杉山
Tomoji Fukaya
深谷 友次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2022520A priority Critical patent/JPH03229646A/en
Publication of JPH03229646A publication Critical patent/JPH03229646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain a catalyst wherein fine particulate catalytic metal species are uniformly dispersed by mixing a carrier with a dispersing medium containing a reducing agent and a reacting agent and cooling the obtained carrier dispersion to add and mix a metal species solution in this state. CONSTITUTION:A carrier such as carbon or activated carbon is mixed with a dispersing medium containing a reducing agent such as formalin or methanol and a reacting agent such as sodium hydroxide or potassium hydroxide in a ratio of 3-12wt.%. Next, this carrier dispersion is cooled to temp. of -5 deg.C or lower. A metal species solution of platinum or ruthenium having concn. of 2060% is added to and mixed with the carrier dispersion in this state to support a metal species on the carrier. Finally, the metal species is heated and reduced. The growth of a nucleus is suppressed by increasing the nucleus forming speed of the catalytic metal species and the metal species can be supported on the carrier in a uniformly dispersed state.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は触媒調製法にかかり、とくに燃料電池、二次電
池、電気化学センサ等に用いられる高活性触媒の調製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for preparing a catalyst, and particularly to a method for preparing a highly active catalyst used in fuel cells, secondary batteries, electrochemical sensors, and the like.

[従来の技術] 従来より、高活性で微粒な金属触媒を得るために、種々
の調製法か検討されており、一般にコロイド法が行なわ
れている(特公昭63−46958号公報、特公昭63
−47115号公報)。特公昭63−47115号公報
に開示されているコロイド法は、貴金属イオン、又はそ
の錯イオン、保護コロイド及び炭素粉体を含有する水溶
液に、還元剤を作用させて、該炭素粉体上に貴金属微粒
子を担持させるものである。
[Prior Art] In order to obtain highly active and fine-grained metal catalysts, various preparation methods have been studied, and the colloid method is generally used (Japanese Patent Publication No. 63-46958, Japanese Patent Publication No. 63-1983).
-47115). In the colloid method disclosed in Japanese Patent Publication No. 63-47115, a reducing agent is applied to an aqueous solution containing noble metal ions or their complex ions, protective colloids, and carbon powder, and the noble metal is deposited on the carbon powder. It supports fine particles.

しかしこのコロイド法においては、担体上に担持される
負金属微粒子の凝集を防ぎ、分散状態を良くするために
、親水性高分子化合物よりなる保護コロイドとしての分
散剤、例えばPVA (ポリビニルアルコール)等が用
いられているので、還元が十分に行えず結晶性が悪い。
However, in this colloid method, in order to prevent the agglomeration of the negative metal fine particles supported on the carrier and improve the dispersion state, a dispersant is used as a protective colloid made of a hydrophilic polymer compound, such as PVA (polyvinyl alcohol), etc. is used, the reduction cannot be carried out sufficiently and the crystallinity is poor.

また、調製後もこれら分散剤が触媒表面に被膜として残
留する。
Further, even after preparation, these dispersants remain as a film on the catalyst surface.

このため、担持された触媒の活性が十分に発揮できない
For this reason, the activity of the supported catalyst cannot be fully exhibited.

また、これら分散剤を熱処理することによって除去する
ことも行なわれているが、触媒微粒子の粒成長により活
性の低下が生じることや、分散剤の分解により生じる生
成物か触媒の被毒物質となるという問題点があった。
In addition, these dispersants can be removed by heat treatment, but this may result in a decrease in activity due to the growth of the catalyst fine particles, or the products generated by the decomposition of the dispersant may become substances that poison the catalyst. There was a problem.

[発明か解決しようとする課題1 本発明は、これらの問題点に鑑みてなされたものでおり
、分散剤のようなコロイド安定剤を用いずに、微粒な金
属触媒を担体に担持させ得る触媒調製法を提供すること
を目的とする。
[Problem to be Solved by the Invention 1] The present invention has been made in view of these problems, and provides a catalyst capable of supporting fine metal catalyst particles on a carrier without using a colloidal stabilizer such as a dispersant. The purpose is to provide a preparation method.

[課題を解決するための手段] 本発明の触媒調製法は、還元剤及び反応剤含有の分散媒
に担体を混合して、該分散媒及び該担体に対する該担体
の割合(以下、担体濃度と称する)か3〜12重最%(
以下、%は重量%を示す)である担体分散液を得る第1
工程と、該担体分散液を一5℃以下の温度に冷却する第
2工程と、該担体分散液を一5℃以下に維持した状態で
該担体分散液に20〜60%の濃度を有する金属種溶液
を添加、混合して該金属種を該担体上に担持させる第3
工程と、該金属種を加熱還元する第4工程とからなるこ
とを特徴とする。
[Means for Solving the Problems] The catalyst preparation method of the present invention involves mixing a carrier into a dispersion medium containing a reducing agent and a reactant, and determining the ratio of the carrier to the dispersion medium and the carrier (hereinafter referred to as carrier concentration). ) or 3 to 12 times maximum% (
The first step to obtain a carrier dispersion liquid (hereinafter, % indicates weight %)
a second step of cooling the carrier dispersion to a temperature of -5°C or lower; and adding a metal having a concentration of 20 to 60% to the carrier dispersion while maintaining the carrier dispersion at a temperature of -5°C or lower. A third step of adding and mixing a seed solution to support the metal species on the carrier.
and a fourth step of heating and reducing the metal species.

前記還元剤としては、アルデヒド、アルコール、有機酸
等、具体的にはホルマリン、メタノール、ギ酸等を使用
することができる。
As the reducing agent, aldehydes, alcohols, organic acids, etc. can be used, specifically formalin, methanol, formic acid, etc.

前記反応剤は、例えば水酸化ナトリウム、水酸化カリウ
ム、水酸化リチウムを使用することができる。
As the reactant, for example, sodium hydroxide, potassium hydroxide, and lithium hydroxide can be used.

前記担体としては、カーボン、活性炭、カーボンブラッ
ク等の炭素粉体を使用することができる。
As the carrier, carbon powder such as carbon, activated carbon, carbon black, etc. can be used.

また、場合によっては炭素繊維を使用することもできる
Moreover, carbon fiber can also be used depending on the case.

前記担体濃度は、より好ましくは5〜10%である。こ
の担体濃度が12%を越えると、分散液中に担体を均一
に分散させることが困難となり、触媒金属種を担体に均
一に担持させることができない。また、担体濃度が3%
より低いと、担持される触媒金属種の粒径が大きくなる
The carrier concentration is more preferably 5 to 10%. If the carrier concentration exceeds 12%, it becomes difficult to uniformly disperse the carrier in the dispersion liquid, and the catalytic metal species cannot be uniformly supported on the carrier. In addition, the carrier concentration is 3%
The lower the value, the larger the particle size of the supported catalytic metal species.

前記第2工程における冷却温度は一10’C以下がより
好ましい。この温度が一5℃より高いと担持される触媒
金属種の粒径か大きくなる。
The cooling temperature in the second step is more preferably -10'C or less. If this temperature is higher than 15° C., the particle size of the supported catalyst metal species increases.

前記金属種としては、白金、ルテニウム、ロジウム、パ
ラジウム等の白金族金属の一種又は複数種を使用するこ
とかできる。
As the metal species, one or more platinum group metals such as platinum, ruthenium, rhodium, and palladium can be used.

前記金属種溶液の濃度は、より好ましくは30〜50%
である。この濃度が20%より低いと担持される触媒金
属種の粒径が大きくなる。また、該濃度が60%より高
いと担持される触媒金属種の分散状態が悪くなる。
The concentration of the metal species solution is more preferably 30 to 50%.
It is. When this concentration is lower than 20%, the particle size of the supported catalyst metal species becomes large. Moreover, if the concentration is higher than 60%, the state of dispersion of the supported catalyst metal species becomes poor.

前記加熱還元は、40’C以上の温度で、より好ましく
は60〜80’Cの温度で1〜3時間加熱することによ
り行うことかできる。
The thermal reduction can be carried out by heating at a temperature of 40'C or higher, more preferably at a temperature of 60 to 80'C for 1 to 3 hours.

[作用] 本発明の触媒調製法は、所定の担体濃度を有する担体分
散液に、所定の温度以下に冷却した状態で、所定の濃度
を有する金属種溶液を添加混合することにより、触媒金
属種を担体に対して微粒な状態で均一分散させるもので
ある。
[Function] In the catalyst preparation method of the present invention, a metal species solution having a predetermined concentration is added to and mixed with a carrier dispersion having a predetermined carrier concentration in a state cooled to a predetermined temperature or lower. is uniformly dispersed in fine particles in a carrier.

すなわち、担体濃度及び金属種溶液の濃度を所定の濃度
以上とし、かつ担持時の温度を一5℃以下とすることに
より、金属種の溶解度を小さくし、いわゆる過飽和状態
にする。これにより、金属種の核生成速度が高くなり核
成長か抑制される。このため、金属種の核は微粒化した
状態で担体に担持される。
That is, the solubility of the metal species is reduced by setting the carrier concentration and the concentration of the metal species solution to a predetermined concentration or higher and the temperature at the time of supporting to be 15° C. or lower, thereby bringing the solubility of the metal species into a so-called supersaturated state. This increases the nucleation rate of metal species and suppresses nuclear growth. Therefore, the core of the metal species is supported on the carrier in a finely divided state.

また、担体濃度及び金属種溶液の濃度を所定の濃度以下
とすることにより、担体は均一に分散し、かつ該担体に
担持される金属種も均一に分散した状態で担持される。
Further, by controlling the carrier concentration and the concentration of the metal species solution to a predetermined concentration or lower, the carrier is uniformly dispersed, and the metal species supported on the carrier is also supported in a uniformly dispersed state.

[実施例] 以下、実施例により具体的に説明する。[Example] Hereinafter, this will be explained in detail using examples.

(実施例1) 金属種として白金(原料は塩化白金酸)、担体としてカ
ーボンブラック(以下、担体カーボンと称する)を用い
た触媒調整法について説明する。
(Example 1) A catalyst preparation method using platinum (the raw material is chloroplatinic acid) as the metal species and carbon black (hereinafter referred to as carrier carbon) as the carrier will be described.

なお、本触媒調製法の全体フロー図を第5図に示す。Incidentally, an overall flowchart of the present catalyst preparation method is shown in FIG.

導電性カーボンブラック(三菱化成■製、#3750)
1kqに10体積%のエタノール溶液2Q、Ilを添加
し、撹拌、混合を行いながら90℃で2時間親水処理を
行った。これを洗浄、濾過して触媒調整用担体カーホン
を得た。
Conductive carbon black (manufactured by Mitsubishi Kasei ■, #3750)
A 10 volume % ethanol solution 2Q, Il was added to 1 kq, and hydrophilic treatment was performed at 90° C. for 2 hours while stirring and mixing. This was washed and filtered to obtain a carrier carphone for catalyst preparation.

5g反応槽に還元剤であるホルムアルデヒド溶液(HC
H037%含有)0.!Mを投入し、撹拌しなから反応
槽の外部から冷却槽及び冷却装置を用いて10’Cに冷
却、保持した。液温か安定した後、反応剤である50%
の水酸化カリウム溶液0.51を徐々に添加した。この
ときの反応は発熱を伴うので、液温か40℃以下になる
ように注意して添加する。添加修了後、さらに30分間
撹拌、混合を行い分散媒を得た。このときの液温は10
’C(±5℃)に保持する。
Formaldehyde solution (HC), which is a reducing agent, is placed in a 5g reaction tank.
H037% content) 0. ! M was added, and while stirring, the reaction vessel was cooled to and maintained at 10'C using a cooling tank and a cooling device from the outside. After the liquid temperature stabilizes, 50% of the reactant
of potassium hydroxide solution was slowly added. Since the reaction at this time is accompanied by heat generation, the solution is added with care so that the liquid temperature is 40° C. or lower. After the addition was completed, stirring and mixing were further performed for 30 minutes to obtain a dispersion medium. The liquid temperature at this time is 10
'C (±5°C).

次に、親水処理を行った担体カーボンを90g精秤し、
反応槽へ徐々に添加した。この状態で担体カーホンか分
散媒の中で十分均一に分散するまで1時間撹拌、混合を
行い担体分散液を得た。なお、この担体分散液における
担体濃度は5%だった。
Next, 90g of carrier carbon that had been subjected to hydrophilic treatment was accurately weighed,
Added slowly to the reaction vessel. In this state, the carrier carphone was stirred and mixed for 1 hour until it was sufficiently uniformly dispersed in the dispersion medium to obtain a carrier dispersion. Note that the carrier concentration in this carrier dispersion was 5%.

この後、反応槽の温度を一10’C以下まで冷却した。Thereafter, the temperature of the reactor was cooled to below -10'C.

担体分散液の液温が十分安定した後、金属種溶液として
白金を10Q含む40%塩化白金酸溶液を反応槽中へ添
加した。添加時は若干の発熱を伴うので、常時−10’
C以下になるように冷却する(冷却装置は一15℃(±
5℃)に制御していた)。添加修了後、30分間撹拌、
混合を続けた。
After the temperature of the carrier dispersion became sufficiently stable, a 40% chloroplatinic acid solution containing 10Q of platinum was added to the reaction tank as a metal species solution. Since some heat is generated during addition, always add -10'
Cool to below 15°C (cooling equipment should be kept at -15°C (±
The temperature was controlled at 5°C). After addition, stir for 30 minutes,
Continued mixing.

次に昇温して75℃12時間の加熱操作を行って金属種
を還元した。加熱還元の1麦、反応槽内へ0.5gのイ
オン交換水を加え、撹拌を続けて液温を室温に戻した。
Next, the temperature was raised and a heating operation was performed at 75° C. for 12 hours to reduce the metal species. After heating and reducing the wheat, 0.5 g of ion-exchanged water was added to the reaction tank, and stirring was continued to return the liquid temperature to room temperature.

担持金属触媒を含む混合溶液はデカンテーションの後、
濾過、洗浄を行った。
After the mixed solution containing the supported metal catalyst is decanted,
Filtered and washed.

洗浄はイオン交換水を用いて、濾液中に塩素イオンが検
出されなくなるまで十分に行った。その後、乾燥して担
持金属触媒を得た。
Washing was carried out sufficiently using ion-exchanged water until no chloride ions were detected in the filtrate. Thereafter, it was dried to obtain a supported metal catalyst.

(評価) この担持金属触媒を分析した結果、担持率は10%、収
率はほぼ100%であった。はぼ全量の金属種が金属に
還元されて、担体に担持されたことかわかった。なお、
担持率とは、担持された金属及び担体の総重量に対する
担持された金属の割合である。
(Evaluation) As a result of analyzing this supported metal catalyst, the supporting rate was 10% and the yield was approximately 100%. It was found that almost all of the metal species were reduced to metals and supported on the carrier. In addition,
The supporting ratio is the ratio of the supported metal to the total weight of the supported metal and the carrier.

X線回折法により平均粒径を測定したところ23六であ
った(回折面は白金(111)面を用いた)。また、透
過型電子顕微鏡(TEM>で観察した結果、白金微粒子
が担体に対してほぼ均一に分散しており、平均粒径もX
線回折による結果と一致していた。
The average particle size was measured by X-ray diffraction and was found to be 236 (platinum (111) plane was used as the diffraction surface). Furthermore, as a result of observation using a transmission electron microscope (TEM), it was found that the platinum fine particles were almost uniformly dispersed in the carrier, and the average particle size was
This was consistent with the results obtained by line diffraction.

さらに、触媒の分散性を評価するために、触媒を酸化雰
囲気中300℃、2時間処理し、上記と同様の方法によ
り平均粒径及び分散状態を確認した。その結果、白金の
シンタリングか生じておらず、平均粒径、分散状態に変
化かなかった。これにより、白金は担体に対して微粒な
状態で均一に分散し、強固に固着していることがわかっ
た。
Further, in order to evaluate the dispersibility of the catalyst, the catalyst was treated in an oxidizing atmosphere at 300° C. for 2 hours, and the average particle size and dispersion state were confirmed by the same method as above. As a result, no sintering of platinum occurred, and there was no change in the average particle size or dispersion state. As a result, it was found that platinum was uniformly dispersed in a fine particle state and firmly fixed to the carrier.

(担体濃度と触媒平均粒径との関係) 上記実施例1において、担体分散液における担体濃度を
種々変更して、担体濃度と触媒平均粒径との関係を調べ
た。その結果を第1図に示す。
(Relationship between carrier concentration and catalyst average particle diameter) In the above Example 1, the carrier concentration in the carrier dispersion was variously changed, and the relationship between the carrier concentration and the catalyst average particle diameter was investigated. The results are shown in FIG.

第1図からも明らかなように、担体濃度が12%を越え
ると担体の均一分散が困難であり、担体濃度か5〜10
%のとき触媒平均粒径か25六以下となりとくに好まし
かった。
As is clear from Figure 1, when the carrier concentration exceeds 12%, it is difficult to uniformly disperse the carrier;
%, the average particle diameter of the catalyst was 256 or less, which was particularly preferable.

(金属種溶液の8度と触媒平均粒径との関係〉上記実施
例1において、金属種溶液の濃度を種々変更して、金属
種溶液の濃度と触媒平均粒径との関係を調べた。その結
果を第2図に示す。
(Relationship between 8 degrees of metal seed solution and catalyst average particle size) In Example 1, the concentration of the metal seed solution was variously changed and the relationship between the concentration of the metal seed solution and the catalyst average particle size was investigated. The results are shown in FIG.

第2図からも明らかなように、金属種溶液の濃度が20
〜60%のとき触媒平均粒径か25六以下となりとくに
好ましかった。
As is clear from Figure 2, the concentration of the metal species solution is 20
When it was 60%, the average particle diameter of the catalyst was 256 or less, which was particularly preferable.

(金属種溶液添加時の温度と触媒平均粒径との関係〉 上記実施例1において、金属種溶液添加時の温度を種々
変更して、金属種溶液添加時の温度と触媒平均粒径との
関係を調べた。その結果を第3図に示す。
(Relationship between the temperature at the time of adding the metal seed solution and the catalyst average particle size) In the above Example 1, the temperature at the time of adding the metal seed solution was variously changed, and the temperature at the time of adding the metal seed solution and the catalyst average particle size were The relationship was investigated and the results are shown in Figure 3.

第3図からも明らかなように、金属種溶液添加時の温度
か一5℃以下のとき触媒平均粒径が30六以下となり好
ましかった。
As is clear from FIG. 3, when the temperature at the time of addition of the metal seed solution was 15° C. or lower, the catalyst average particle size was 30° C. or lower, which was preferable.

(担持率と触媒平均粒径との関係) 上記実施例1において、担持率を種々変更して、担持率
と触媒平均粒径との関係を調べた。その結果を後述する
比較例1の従来法における結果とともに第4図に示す。
(Relationship between Support Rate and Catalyst Average Particle Size) In Example 1, the support rate was variously changed and the relationship between the support rate and catalyst average particle size was investigated. The results are shown in FIG. 4 together with the results of the conventional method of Comparative Example 1, which will be described later.

第4図からも明らかなように、本実施例にかかる触媒調
製法では、例えば40%の高担持率においても触媒平均
粒径は30六以下となり、触媒粒子の微粒化が可能であ
る。
As is clear from FIG. 4, in the catalyst preparation method according to the present example, even at a high loading rate of 40%, for example, the average particle diameter of the catalyst is 306 or less, and it is possible to make the catalyst particles fine.

(実施例2) 前述した実施例1の触媒調整法において、金属種溶液と
して白金を40CI含む40%塩化白金酸溶液を用いて
、担持金属触媒を調整した。他の条件は実施例1と同じ
である。
(Example 2) In the catalyst preparation method of Example 1 described above, a supported metal catalyst was prepared using a 40% chloroplatinic acid solution containing 40 CI of platinum as the metal species solution. Other conditions are the same as in Example 1.

調整した担持金属触媒を分析した結果、担持率30%、
収率はほぼ100%であった。この触媒の平均粒径をX
線回折法により測定した結果、26六であった。また、
TEMで観察した結果、白金微粒子か担体に対してほぼ
均一に分散しており、平均粒径もX線回折法による結果
と一致していた。
As a result of analyzing the prepared supported metal catalyst, the supporting rate was 30%,
The yield was almost 100%. The average particle size of this catalyst is
As a result of measurement by line diffraction method, it was 266. Also,
As a result of observation using a TEM, the platinum fine particles were almost uniformly dispersed in the carrier, and the average particle size was also consistent with the results obtained by the X-ray diffraction method.

(実施例3) 金属種として塩化ルテニウム(RuCf13・3H20
)を用い、担体カーホンにルテニウム(RU)を担持し
た例を示す。
(Example 3) Ruthenium chloride (RuCf13.3H20
) is used to support ruthenium (RU) on the carrier carphone.

金属種溶液として、塩化ルテニウムを5%塩酸溶液に溶
かし、濃度を40%としたものを使用する。この金属種
溶液を、還元剤としてのホルムアルデヒド溶液及び反応
剤としての水酸化カリウム溶液よりなる分散媒中に担体
カーホンを分散混合して得られた担体分散液中に徐々に
添加した。なお、このときの担体分散液は一10℃だっ
た。また金属種溶液は担体にルテニウムが10%担持す
るように所定量添加した。
As the metal seed solution, ruthenium chloride is dissolved in a 5% hydrochloric acid solution to give a concentration of 40%. This metal species solution was gradually added to a carrier dispersion obtained by dispersing and mixing a carrier carphone in a dispersion medium consisting of a formaldehyde solution as a reducing agent and a potassium hydroxide solution as a reactant. The temperature of the carrier dispersion at this time was -10°C. Further, a predetermined amount of the metal seed solution was added so that 10% of ruthenium was supported on the carrier.

添加後、30分間十分に撹拌混合した。さらに、55℃
で2時間加熱還元した。還元終了後、実施例1と同様に
濾過、洗浄を行い、乾燥後担持金属触媒を得た。
After the addition, the mixture was sufficiently stirred and mixed for 30 minutes. Furthermore, 55℃
The mixture was heated and reduced for 2 hours. After completion of the reduction, filtration and washing were performed in the same manner as in Example 1, and a supported metal catalyst was obtained after drying.

得られた担持金属触媒を実施例1と同様にX線回折及び
TEM観察により分析した結果、ルテニウム微粒子が担
体に均一に担持されてあり、平均粒径は22ムだった。
The obtained supported metal catalyst was analyzed by X-ray diffraction and TEM observation in the same manner as in Example 1, and it was found that ruthenium fine particles were uniformly supported on the carrier, and the average particle size was 22 μm.

(実施例4〉 金属種として塩化パラジウム(PdCβ2)を用い、担
体カーボンにパラジウム(Pd)を担持した例を示す。
(Example 4) An example is shown in which palladium chloride (PdCβ2) is used as the metal species and palladium (Pd) is supported on carrier carbon.

金属種溶液として、塩化パラジウムを10%塩酸溶液に
溶かして濃度を40%としたものを使用し、かつ加熱還
元温度を70’Cとすること以外は上記実施例3と同様
の方法により担持金属触媒を得た。
The supported metal was prepared in the same manner as in Example 3 above, except that palladium chloride was dissolved in a 10% hydrochloric acid solution to give a concentration of 40% as the metal seed solution, and the heating reduction temperature was 70'C. I got a catalyst.

得られた担持金属触媒をX線回折及びTEM観察により
分析した結果、パラジウム微粒子が担体に均一に担持さ
れており、平均粒径は2OAだった。
As a result of analyzing the obtained supported metal catalyst by X-ray diffraction and TEM observation, it was found that palladium fine particles were uniformly supported on the carrier, and the average particle size was 2OA.

(実施例5) 金属種として塩化ロジウム(RhCf13・3H20)
を用い、担体カーホンにロジウム(Ril)を担持した
例を示す。
(Example 5) Rhodium chloride (RhCf13.3H20) as the metal species
An example is shown in which rhodium (Ril) is supported on the carrier carphone using the following.

金属種溶液として、塩化ロジウムを10%塩酸溶液に溶
かして濃度を40%としたものを使用し、かつ加熱還元
温度をso’cとすること以外は上記実施例3と同様の
方法により担持金属触媒を得た。
The supported metal was prepared in the same manner as in Example 3 above, except that rhodium chloride was dissolved in a 10% hydrochloric acid solution to give a concentration of 40% as the metal seed solution, and the heating reduction temperature was set to SO'C. I got a catalyst.

得られた担持金属触媒を実施例1と同様にX線回折及び
TEM観察により分析した結果、ロジウム微粒子が担体
に均一に担持されており、平均粒径は20六だった。
The obtained supported metal catalyst was analyzed by X-ray diffraction and TEM observation in the same manner as in Example 1, and it was found that rhodium fine particles were uniformly supported on the carrier, and the average particle size was 206.

(実施例6) 金属種として塩化白金酸(H2PtC,l! 6・6H
20)及び塩化ルテニウム(RuC,ll 3 ・3H
20)を用い、担体カーボンに白金−ルテニウム(Pt
−Ru)二元触媒を担持した例を示す。
(Example 6) Chloroplatinic acid (H2PtC, l!6.6H) was used as the metal species.
20) and ruthenium chloride (RuC, ll 3 ・3H
20), platinum-ruthenium (Pt
-Ru) An example in which a binary catalyst is supported is shown.

金属種溶液として、塩化白金酸の白金と塩化ルテニウム
のルテニウムの組成比(原子モル)がPt:Ru=6:
4となるように5%塩酸溶液に溶かして、塩化白金酸と
塩化ルテニウムとを合せた濃度を40%としたものを使
用し、加熱還元温度を60’Cとし、かつ白金とルテニ
ウムとを合せて20%担体に担持するようにすること以
外は上記実施例3と同様の方法により担持金属触媒を得
た。
As a metal seed solution, the composition ratio (atomic moles) of platinum in chloroplatinic acid and ruthenium in ruthenium chloride is Pt:Ru=6:
4, dissolved in a 5% hydrochloric acid solution so that the combined concentration of chloroplatinic acid and ruthenium chloride was 40%, the thermal reduction temperature was set to 60'C, and the combined platinum and ruthenium were used. A supported metal catalyst was obtained in the same manner as in Example 3 above, except that 20% of the catalyst was supported on the carrier.

得られた担持金属触媒をX線回折及びTEM観察により
分析した結果、白金−ルテニウム微粒子が担体に均一に
担持されており、平均粒径は22六だった。
Analysis of the obtained supported metal catalyst by X-ray diffraction and TEM observation revealed that platinum-ruthenium fine particles were uniformly supported on the carrier, and the average particle size was 226.

(実施例7) 金属種として塩化白金酸(H2P tC,Q (、・6
H20)及び塩化パラジウム(PdC,ll 2 >を
用い、担体カーホンに白金−パラジウム(Pt−Pd)
二元触媒を担持した例を示す。
(Example 7) Chloroplatinic acid (H2P tC,Q (, 6
H20) and palladium chloride (PdC, ll2>) and platinum-palladium (Pt-Pd) on a carrier carphone.
An example in which a two-way catalyst is supported is shown.

金属種溶液として、塩化白金酸の白金と塩化パラジウム
のパラジウムの組成比(原子モル)がPt:pd=5:
5となるように10%塩酸溶液に溶かして、塩化白金酸
と塩化パラジウムとを合せた濃度を40%としたものを
使用し、加熱還元温度を70’Cとし、かつ白金とパラ
ジウムとを合せて20%担体に担持するようにすること
以外は上記実施例3と同様の方法により担持金属触媒を
得た。
As a metal species solution, the composition ratio (atomic moles) of platinum in chloroplatinic acid and palladium in palladium chloride is Pt:pd=5:
5, dissolved in a 10% hydrochloric acid solution so that the combined concentration of chloroplatinic acid and palladium chloride was 40%, the heating reduction temperature was set to 70'C, and the combined platinum and palladium were used. A supported metal catalyst was obtained in the same manner as in Example 3 above, except that 20% of the catalyst was supported on the carrier.

得られた担持金属触媒を実施例1と同様にX線回折及び
王EM観察により分析した結果、白金パラジウム微粒子
か担体に均一に担持されており、平均粒径は20六だっ
た。
The obtained supported metal catalyst was analyzed by X-ray diffraction and EM observation in the same manner as in Example 1, and it was found that platinum-palladium fine particles were uniformly supported on the carrier, and the average particle size was 206.

(比較例1) 比較のために、PVA (ポリヒニルアルコール)を用
いたコロイド法により白金をカーボンブラックに担持し
た触媒を調整した。
(Comparative Example 1) For comparison, a catalyst in which platinum was supported on carbon black was prepared by a colloid method using PVA (polyhinyl alcohol).

イオン交換水0.59にメタノール0.5.lJを混合
した溶液にPVA (和光紬薬製、重合度500)を2
.0CI溶解させた。これに白金を1g含む5%の塩化
白金酸溶液を添加し、撹拌、混合した。この中に実施例
1で使用した親水処理を行った担体カーホン9gを徐々
に添加し、混合、分散した。これを還流下、撹拌、混合
を行いながら70′C14時間加熱還元を行った。得ら
れた担持金属触媒を含む混合液をデカンテーションの後
、イオン交換水を用いて濾過、洗浄を行った。
Deionized water 0.59 to methanol 0.5. PVA (manufactured by Wako Tsumugi Pharmaceutical Co., Ltd., polymerization degree 500) was added to the solution containing 1J.
.. Dissolved with 0CI. A 5% chloroplatinic acid solution containing 1 g of platinum was added to this, and the mixture was stirred and mixed. 9 g of the hydrophilically treated carrier carphone used in Example 1 was gradually added to the mixture, mixed and dispersed. This was heated and reduced at 70'C for 14 hours while stirring and mixing under reflux. The resulting mixed solution containing the supported metal catalyst was decanted, then filtered and washed using ion-exchanged water.

この担持金属触媒を乾燥後、分析した結果、担持率は1
0%、収率はほぼ100%でめった。X線回折法により
平均粒径を測定した結果、37^であった(回折面は白
金(111)面を用いた〉。
After drying this supported metal catalyst, analysis revealed that the supporting ratio was 1.
0%, and the yield was almost 100%. The average particle size was measured by X-ray diffraction and was 37^ (platinum (111) plane was used as the diffraction surface).

また、分散状態を確認するためにTEMで観察した結、
果、白金微粒子(−次粒子)が10数個で集団(二次粒
子群)を形成しており、前記実施例に比へて分散性が悪
かった。
In addition, in order to confirm the dispersion state, the results were observed using a TEM.
As a result, more than 10 platinum fine particles (secondary particles) formed a group (secondary particle group), and the dispersibility was poorer than in the previous example.

さらに、分散性を評価するために、触媒を酸化雰囲気中
300’C12時間処理し、前述の分析法により平均粒
径及び分散状態を確認した。その結果、シンタリングに
よる粒成長が生じていたために平均粒径か64六に増大
した。TEMの観察結果、二次粒子群がさらに成長し、
分散性は著しく悪化していることがわかった。
Furthermore, in order to evaluate the dispersibility, the catalyst was treated in an oxidizing atmosphere at 300'C for 12 hours, and the average particle size and dispersion state were confirmed by the above-mentioned analysis method. As a result, the average grain size increased to 646 because grain growth occurred due to sintering. As a result of TEM observation, the secondary particle group further grows,
It was found that the dispersibility deteriorated significantly.

(比較例2〉 PVAの添加量を8gとし、かつ白金を5g含む5%塩
化白金酸溶液を使用すること以外は上記比較例1と同様
の方法により触媒を調製した。
(Comparative Example 2) A catalyst was prepared in the same manner as in Comparative Example 1, except that the amount of PVA added was 8 g and a 5% chloroplatinic acid solution containing 5 g of platinum was used.

調製した触媒を分析した結果、担持率は約30%、収率
はほぼ100%であった。X線回折法により平均粒径を
測定した結果、60Aであった(回折面は白金(111
)面を用いた)。また、分散状態を確認するために丁E
Mで観察した結果、白金微粒子(−次粒子)が20〜3
0個で集団(二次粒子群)を形成しており、前記実施例
に比べて分散性が悪かった。
As a result of analyzing the prepared catalyst, the supporting ratio was about 30% and the yield was almost 100%. As a result of measuring the average particle size by X-ray diffraction method, it was 60A (the diffraction surface was platinum (111
) surface). Also, to check the dispersion state,
As a result of observation with M, platinum fine particles (-order particles) were found to be 20 to 3
0 particles formed a group (secondary particle group), and the dispersibility was poorer than in the above example.

さらに、分散性を評価するために、触媒を酸化雰囲気中
300 ’C12時間処理し、前述の分析法により平均
粒径及び分散状態を確認した。その結果、シンタリング
による粒成長か生じていたために平均粒径が1082に
増大した。TEMの観察結果、二次粒子群がさらに成長
し、分散性は著しく悪化していることがわかった。
Further, in order to evaluate the dispersibility, the catalyst was treated in an oxidizing atmosphere at 300'C for 12 hours, and the average particle size and dispersion state were confirmed by the above-mentioned analytical method. As a result, the average grain size increased to 1082 due to grain growth due to sintering. As a result of TEM observation, it was found that the secondary particle group further grew and the dispersibility deteriorated significantly.

[発明の効果] 以上詳)ホしたように本発明の触媒調製法は、触媒金属
種の核生成速度を高くして核成長を抑えることにより触
媒金属種を微粒化した状態で担体に担持させ、かつ該触
媒金属種を均一に分散した状態で該担体に担持させるこ
とができる。
[Effects of the Invention] As described above, the catalyst preparation method of the present invention increases the nucleation rate of the catalytic metal species and suppresses the growth of nuclei, thereby allowing the catalytic metal species to be supported on the carrier in an atomized state. , and the catalyst metal species can be supported on the carrier in a uniformly dispersed state.

したがって、本発明によりjqられた触媒は高活性で高
分散なものとなる。
Therefore, the catalyst prepared according to the present invention has high activity and high dispersion.

また、本発明の触媒調製法は、分散剤等のコロイド安定
剤を用いずに触媒の微粒化が可能であるので、調製後の
特別な雰囲気処理による分散剤等の除去工程を省くこと
ができる。
In addition, the catalyst preparation method of the present invention allows the catalyst to be atomized without using a colloidal stabilizer such as a dispersant, so the step of removing the dispersant, etc. by special atmosphere treatment after preparation can be omitted. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は担体濃度と触媒平均粒径との関係を示すグラフ
、第2図は金属種溶液の濃度と触媒平均粒径との関係を
示すグラフ、第3図は金属種溶液添加時の温度と触媒平
均粒径との関係を示すグラフ、第4図は担持率と触媒平
均粒径との関係を示すグラフ、第5図は実施例にかかる
触媒調製法の全体フロー図である。
Figure 1 is a graph showing the relationship between carrier concentration and catalyst average particle size, Figure 2 is a graph showing the relationship between metal seed solution concentration and catalyst average particle size, and Figure 3 is the temperature at the time of addition of metal seed solution. FIG. 4 is a graph showing the relationship between the loading ratio and the catalyst average particle size, and FIG. 5 is an overall flowchart of the catalyst preparation method according to the example.

Claims (1)

【特許請求の範囲】[Claims] (1)還元剤及び反応剤含有の分散媒に担体を混合して
、該分散媒及び該担体に対する該担体の割合が3〜12
重量%である担体分散液を得る第1工程と、 該担体分散液を−5℃以下の温度に冷却する第2工程と
、 該担体分散液を−5℃以下に維持した状態で該担体分散
液に20〜60重量%の濃度を有する金属種溶液を添加
、混合して該金属種を該担体上に担持させる第3工程と
、 該金属種を加熱還元する第4工程とからなることを特徴
とする触媒調製法。
(1) A carrier is mixed with a dispersion medium containing a reducing agent and a reactant, and the ratio of the carrier to the dispersion medium and the carrier is 3 to 12.
% by weight, a second step of cooling the carrier dispersion to a temperature of -5°C or lower, and cooling the carrier dispersion while maintaining the carrier dispersion at -5°C or lower. A third step of adding and mixing a metal species solution having a concentration of 20 to 60% by weight to the liquid to support the metal species on the carrier, and a fourth step of heating and reducing the metal species. Characteristic catalyst preparation method.
JP2022520A 1990-02-01 1990-02-01 Preparation of catalyst Pending JPH03229646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022520A JPH03229646A (en) 1990-02-01 1990-02-01 Preparation of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022520A JPH03229646A (en) 1990-02-01 1990-02-01 Preparation of catalyst

Publications (1)

Publication Number Publication Date
JPH03229646A true JPH03229646A (en) 1991-10-11

Family

ID=12085050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022520A Pending JPH03229646A (en) 1990-02-01 1990-02-01 Preparation of catalyst

Country Status (1)

Country Link
JP (1) JPH03229646A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114217A (en) * 2006-10-12 2008-05-22 Sharp Corp Catalyst containing noble metal particle carried on carbon substrate, and its manufacturing method
JP2009164142A (en) * 2006-10-12 2009-07-23 Sharp Corp Manufacturing method of catalyst for fuel cell containing noble metal particles carried on carbon substrate
JP2021155784A (en) * 2020-03-26 2021-10-07 トヨタ紡織株式会社 Method for producing metal nanoparticles, method for producing membrane electrode assembly, and method for producing solid polymer electrolyte fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008114217A (en) * 2006-10-12 2008-05-22 Sharp Corp Catalyst containing noble metal particle carried on carbon substrate, and its manufacturing method
JP2009164142A (en) * 2006-10-12 2009-07-23 Sharp Corp Manufacturing method of catalyst for fuel cell containing noble metal particles carried on carbon substrate
JP2021155784A (en) * 2020-03-26 2021-10-07 トヨタ紡織株式会社 Method for producing metal nanoparticles, method for producing membrane electrode assembly, and method for producing solid polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
CN100488633C (en) Carbon-carried platinum-based catalyst for fuel cell and its preparation method
US7381682B1 (en) Method for producing heterogeneous catalysts containing metal nanoparticles
DE60205061T2 (en) Noble metal-supported supported catalyst and process for its preparation
US7229942B2 (en) Supported catalyst and method for preparing the same
CN1964782B (en) Platinum catalysts obtained by reducing in-situ formed platinum dioxide
JP2000123843A (en) Platinum alloy catalyst and manufacture thereof
DE112006002287T5 (en) Electrocatalyst carrier for fuel cells
CN1994563A (en) Carbon supported noble metal catalyst and method for preparing same
CN105431230A (en) Method for forming noble metal nanoparticles on a support
EP0557674B1 (en) Platinum alloy catalyst and process of preparing same
CN113522279A (en) Gold palladium catalyst for hydrogen desorption of dodecahydroethylcarbazole and preparation method thereof
CN109841856A (en) A kind of preparation method of fuel cell monodisperse core-shell nano catalyst
CN113707897A (en) Anti-reversal catalyst for fuel cell and preparation method thereof
CN100525904C (en) Metal alloy for electrochemical oxidation reactions and method of production thereof
CN110380069A (en) A kind of noble metal catalyst of active carbon confinement and preparation method thereof and application
JPH03229646A (en) Preparation of catalyst
Armenta-González et al. Comparative study of carbon-supported Pd and PdAg catalysts synthesised by the polyol process and reverse micelles methods
Abo Zeid et al. Temperature dependence of morphology and oxygen reduction reaction activity for carbon-supported Pd–Co electrocatalysts
CN110252290A (en) High dispersive Pt/C catalyst and the preparation method and application thereof
CN111509240B (en) Carbon-supported platinum catalyst powder and preparation method and application thereof
CN104362353B (en) Preparation method and application of direct methanol fuel cell active material
JP4082800B2 (en) Catalyst production method
CN114497587A (en) Catalyst in proton exchange membrane fuel cell and preparation method thereof
CN100506386C (en) Method for preparing fuel cell catalyst using sulfide precipitation process
JPH0884930A (en) Preparation of platinum-supported catalyst