JPH03226909A - High dielectric porcelain composition - Google Patents

High dielectric porcelain composition

Info

Publication number
JPH03226909A
JPH03226909A JP2022985A JP2298590A JPH03226909A JP H03226909 A JPH03226909 A JP H03226909A JP 2022985 A JP2022985 A JP 2022985A JP 2298590 A JP2298590 A JP 2298590A JP H03226909 A JPH03226909 A JP H03226909A
Authority
JP
Japan
Prior art keywords
dielectric constant
weight
high dielectric
ceramic composition
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022985A
Other languages
Japanese (ja)
Inventor
Seiichi Koizumi
成一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2022985A priority Critical patent/JPH03226909A/en
Publication of JPH03226909A publication Critical patent/JPH03226909A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain a high dielectric porcelain composition having a dielectric constant of 10,000 or more and other excellent characteristics by impregnating a specific compound oxide with a specific quantity of neodymium compound, zinc oxide and the like. CONSTITUTION:In compound oxide expressed by a compound oxide expressed by (Ba1-XCaX) (Ti1-YZrY)O3, molar fractions X, Y are determined so as to be 0<=X<0.1 and 0.1<Y<0.16. The above composite including neodymium compound of 0.8-1.8wt.% in terms of Nd2O3, zinc oxide of 0.8-2.0wt.% in terms of ZnO and manganese compound of 0.1-0.5wt.% in terms of MnO2 is prepared. Accordingly, high relative dielectric constant of 10,000 or more is realized and a high dielectric porcelain composite excellent in characteristics such as dielectric loss, density and insulation resistance is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、チタンジルコン酸バリウムBa(Tit−v
zr y )03もしくはチタンジルコン酸バリウムカ
ルシウム(Bal−x Ca x ) (Tt+ −v
 ’lrv )03を主成分とし、ネオジウム化合物、
酸化亜鉛、マンガン化合物を添加して得られる高誘電率
系磁器組成物に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention provides barium titanium zirconate (Tit-v
zry ) 03 or barium calcium titanium zirconate (Bal-x Ca x ) (Tt+ -v
'lrv)03 as the main component, neodymium compound,
This invention relates to a high dielectric constant ceramic composition obtained by adding zinc oxide and a manganese compound.

C従来の技術〕 高誘電率系磁器組成物は、積層セラミックコンデンサ等
の材料として使用される。積層セラミックコンデンサは
、対向内部電極が形成された高誘電率系磁器組成物の生
シートを所定容量になるように複数枚積層した後、一体
的に焼成して構成されている。
C. Prior Art] High dielectric constant ceramic compositions are used as materials for laminated ceramic capacitors and the like. A multilayer ceramic capacitor is constructed by laminating a plurality of raw sheets of a high dielectric constant ceramic composition on which opposing internal electrodes are formed so as to have a predetermined capacity, and then firing them integrally.

このような積層セラミックコンデンサに使用される高誘
電率系磁器組成物は、比誘電率が10000以上と高い
こと及び焼成温度が、例えば1200″C以下であるこ
とが重要と成ってくる。即ち、25℃における比誘電率
が10000以上にすることにより、対向内部電極間の
高誘電率系磁器組成物生シートの厚みや対向面積の極小
化が可能となり、積層セラミックコンデンサの小型化が
達成できる。
It is important for the high dielectric constant ceramic composition used in such multilayer ceramic capacitors to have a high dielectric constant of 10,000 or more and a firing temperature of, for example, 1,200"C or less. That is, By setting the dielectric constant at 25° C. to 10,000 or more, it is possible to minimize the thickness and opposing area of the raw high-permittivity ceramic composition sheet between opposing internal electrodes, and it is possible to achieve miniaturization of the multilayer ceramic capacitor.

また、焼成温度が1200℃以下にすることより、対向
内部電極の材料の選択幅が増え、例えば高価なPdlO
O%の材料から安価なPd−Agの使用が可能となる。
In addition, by setting the firing temperature to 1200°C or lower, the range of materials for the opposing internal electrode can be increased, such as expensive PdlO.
It becomes possible to use inexpensive Pd-Ag from the material of 0%.

尚、上述していないが、高誘電率系磁器組成物としての
緒特性、誘電損失tanδ(1,0%以下)、密度、絶
縁抵抗(IX105MΩ以下)を充分に考慮しなくては
ならない。
Although not mentioned above, sufficient consideration must be given to the characteristics of a high dielectric constant ceramic composition, dielectric loss tan δ (1.0% or less), density, and insulation resistance (IX105 MΩ or less).

従来、チタン酸バリウムカルシウム(Ba、−XCax
 )(Tit−y Zrv )0:lを主成分とした高
誘電率系磁器組成物に、所定量のチタン酸鉛(PbTi
O:+)、ゲルマン酸鉛(PbsGeaO+ +)及び
チタン酸ビスマス(BiTiz07)を添加した高誘電
率系磁器組成物が知られていた(特開昭59−2510
4号公報)。
Conventionally, barium calcium titanate (Ba, -XCax
)(Tit-yZrv)0:1 A predetermined amount of lead titanate (PbTi
A high dielectric constant ceramic composition containing lead germanate (PbsGeaO+), bismuth titanate (BiTiz07) was known (Japanese Patent Laid-Open No. 59-2510).
Publication No. 4).

この高誘電率系磁器組成物によれば、焼成温度が120
0℃以下とすることができる。
According to this high dielectric constant ceramic composition, the firing temperature is 120
The temperature can be lower than 0°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上述のチタン酸バリウムカルシウム(Bar−
x Ca x )(Tit−v Zrv )03に所定
量のチタン酸鉛、ゲルマン酸鉛及びチタン酸ビスマスを
添加した高誘電率系磁器組成物は、焼成温度が1200
℃以下とすることができるため、例えば、対向内部電極
に安価な銀−パラジウム(Ag−Pd:Ag/Pd=7
0/30〜60/40)を使用することができるももの
、比誘電率が10000未満となるため、小型・大容量
の積層セラミックコンデンサの達成が困難であった。
However, the above-mentioned barium calcium titanate (Bar-
A high dielectric constant ceramic composition obtained by adding predetermined amounts of lead titanate, lead germanate, and bismuth titanate to x Ca x ) (Tit-v Zrv ) 03 has a firing temperature of 1200
℃ or less, for example, using inexpensive silver-palladium (Ag-Pd: Ag/Pd=7
0/30 to 60/40), the dielectric constant is less than 10,000, making it difficult to achieve a small-sized, large-capacity multilayer ceramic capacitor.

本発明は上述の問題点に鑑みて案出されたものであり、
具体的には、高い比誘電率が得られ、且つ焼成温度が比
較的低く、さらには誘電損失、密度、絶縁抵抗などの特
性にも優れた高誘電率系磁器組成物を提供することにあ
る。
The present invention has been devised in view of the above-mentioned problems,
Specifically, the purpose is to provide a high dielectric constant ceramic composition that has a high dielectric constant, a relatively low firing temperature, and excellent properties such as dielectric loss, density, and insulation resistance. .

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するために行った具体的な手段は、複
合酸化物(Bat−x CaX)(Tit−y Zrv
 )03と表した時、モル分率X、Yがそれぞれ、0≦
X〈0.1.0.1<Y<0.16であり、さらに、(
Bar−x Cax ) (Tll−Y Zry )0
3の100重量部に対して、ネオジウム化合物をNdz
O:+換算で0.8〜1.8重量%、酸化亜鉛をZnO
換算で0.8〜2.0重量%、マンガン化合物をMnO
□換算で0.1〜0.5重量%の範囲で含有して成る高
誘電率系磁器組成物である。
The specific means taken to achieve the above-mentioned purpose is to use composite oxide (Bat-x CaX) (Tit-y Zrv
)03, the mole fractions X and Y are each 0≦
X<0.1.0.1<Y<0.16, and (
Bar-x Cax ) (Tll-Y Zry )0
3, add neodymium compound to 100 parts by weight of Ndz
O: 0.8 to 1.8% by weight in terms of +, zinc oxide to ZnO
0.8 to 2.0% by weight in terms of manganese compound as MnO
It is a high dielectric constant ceramic composition containing 0.1 to 0.5% by weight in terms of □.

さらに好ましくは、複合酸化物(Bat−x Cax 
)(TilイZry )03の平均粒径が1μm未満と
した高誘電率系磁器組成物である。
More preferably, composite oxide (Bat-x Cax
This is a high dielectric constant ceramic composition in which the average particle size of )(Til-Zry)03 is less than 1 μm.

〔作用〕[Effect]

以上のように本発明によれば、複合酸化物チタンジルコ
ン酸バリウムカルシウム(Bar−x Cax )(T
it−v Zrv )03と表した時、モル分率が0≦
X〈0、 1.0.1<Y<0.16となるように設定
される。これにより、25℃における比誘電率εが10
000以上となり、小型・大容量の積層セラミックコン
デンサが可能となる。
As described above, according to the present invention, the complex oxide barium calcium titanium zirconate (Bar-x Cax) (T
When expressed as it-v Zrv )03, the mole fraction is 0≦
It is set so that X<0, 1.0.1<Y<0.16. As a result, the dielectric constant ε at 25°C is 10
000 or more, making it possible to produce small-sized, large-capacity multilayer ceramic capacitors.

モル分率XがX≧0. 1となると、比誘電率εが10
000よりも小さくなる。
The mole fraction X is X≧0. 1, the relative permittivity ε is 10
It will be smaller than 000.

モル分率YがY≦0. 1となると、比誘電率εが10
000よりも小さくなる。
The mole fraction Y is Y≦0. 1, the relative permittivity ε is 10
It will be smaller than 000.

モル分率YがY≧1.6となると、比誘電率εが100
00よりも小さくなる。
When the mole fraction Y is Y≧1.6, the dielectric constant ε is 100
It becomes smaller than 00.

添加するネオジウム化合物、例えばNd2O3は、高誘
電率系磁器組成物の絶縁抵抗を向上させ、比誘電率を上
げるものであり、添加量が0. 8重量%(Nd203
に換算して)未満では比誘電率が低下してしまい、また
、1.8重量%(NdzO+に換算して)を越えると、
1200℃以下で焼成しなくなり、比誘電率・絶縁抵抗
特性が低下してしまう。
The neodymium compound to be added, for example, Nd2O3, improves the insulation resistance of the high dielectric constant ceramic composition and increases the relative permittivity, and the amount added is 0. 8% by weight (Nd203
If it is less than 1.8% by weight (in terms of NdzO+), the relative dielectric constant will decrease, and if it exceeds 1.8% by weight (in terms of NdzO+),
Sintering will not occur at temperatures below 1200°C, and the relative dielectric constant and insulation resistance properties will deteriorate.

添加する酸化亜鉛(Znのは、高誘電率系磁器組成物の
焼成温度を調整するものであり、ZnOが0.8〜2.
0重量%の範囲外では、焼成温度が1200℃を越え、
焼成後の磁器密度が5.6g/cm3以下となってしま
う。
The added zinc oxide (Zn) is used to adjust the firing temperature of the high dielectric constant ceramic composition, and the ZnO content is 0.8 to 2.
Outside the range of 0% by weight, the firing temperature exceeds 1200°C,
The porcelain density after firing becomes 5.6 g/cm3 or less.

添加するマンガン化合物、例えばMnO2は高誘電率系
磁器組成物の誘電損失tanδを改善するものであり、
その添加量が0.1重量%(MnO□に換算して)未満
では誘電損失tanδが2%以上となり、また0、  
5重量%(MnOzに換算して)を越えると、絶縁抵抗
が大きく低下してしまう。
The added manganese compound, for example MnO2, improves the dielectric loss tan δ of the high dielectric constant ceramic composition,
If the amount added is less than 0.1% by weight (converted to MnO□), the dielectric loss tanδ will be 2% or more, and 0,
If it exceeds 5% by weight (in terms of MnOz), the insulation resistance will drop significantly.

これらの相互作用により、高比誘電率ε1O000以上
の高誘電率系磁器組成物が得られるとともに、また焼成
温度が1200℃以下と工業的にも製造しやすく、且つ
対向内部電極に安価な銀パラジウム(Ag−Pd :A
g/Pd=70/30〜60/40)が使用できる積層
セラミックコンデンサなどに使用できる高誘電率系磁器
組成物が達成される。
Through these interactions, a high dielectric constant ceramic composition with a high dielectric constant of ε1O000 or more can be obtained, and the firing temperature is 1200°C or less, making it easy to manufacture industrially, and using inexpensive silver-palladium as the opposing internal electrode. (Ag-Pd:A
A high dielectric constant ceramic composition that can be used for multilayer ceramic capacitors and the like can be achieved, which can be used for multilayer ceramic capacitors and the like.

なお、複合酸化物チタンジルコン酸バリウムカルシウム
(Bat−X CaX )(Tit−YZrv )03
の平均粒径は1μm未満が好ましい。即ち、焼成温度が
1200℃以下では焼結しない。
In addition, composite oxide barium calcium titanium zirconate (Bat-X CaX) (Tit-YZrv) 03
The average particle size of is preferably less than 1 μm. That is, sintering does not occur when the firing temperature is 1200° C. or lower.

さらに高誘電率系磁器組成物として基本的な特性である
誘電損失tanδが1. 0%以下、絶縁抵抗(IR)
がlX10″MΩ以上と充分に満足できる高誘電率系磁
器組成物が達成される。
Furthermore, the dielectric loss tan δ, which is a basic characteristic of a high dielectric constant ceramic composition, is 1. 0% or less, insulation resistance (IR)
A fully satisfactory high dielectric constant ceramic composition having a value of 1×10″MΩ or more can be achieved.

〔実施例〕〔Example〕

以下、本発明の実施例を詳細に説明する。 Examples of the present invention will be described in detail below.

チタンジルコン酸バリウムカルシウム(Ba + −X
Ca x )(Tit−y Zrv )03  (0≦
X<’0. 1.0. 1<y<0.16)で表される
複合酸化物を主成分として、この複合酸化物100重量
部に対して、ネオジウム化合物としてNd2O3、Zn
O及びマンガン化合物としてMnO7の各粉末を表1に
示す分率となるように秤量し、ボールミルにて20時時
間式粉砕した後、有機系粘結剤を添加し、しかる後攪拌
、ドクターブレード法で厚さ30μmのテープ状に成型
した。このテープを130mmX 100mmに裁断し
、40枚重ね、80℃でホットプレスで積層体を作成す
る。
Barium calcium titanium zirconate (Ba + -X
Ca x )(Tit-y Zrv )03 (0≦
X<'0. 1.0. 1<y<0.16) as a main component, and Nd2O3, Zn as neodymium compounds to 100 parts by weight of this complex oxide.
Each powder of O and MnO7 as a manganese compound was weighed so as to have the fraction shown in Table 1, and after pulverizing in a ball mill for 20 hours, an organic binder was added, and then stirred, followed by doctor blade method. It was molded into a tape with a thickness of 30 μm. This tape was cut to 130 mm x 100 mm, 40 pieces were stacked, and a laminate was created by hot pressing at 80°C.

さらに、この積層体の厚さ1mmの板状試料を直径20
mmの円板状に打ち抜き、酸素雰囲気にて1050〜1
200″Cで2時間焼成した。さらに両端面に銀ペース
トによる電極を焼きつけ試料とした。
Furthermore, a plate-like sample of this laminate with a thickness of 1 mm was
Punched into a disc shape of 1050 to 1 mm in an oxygen atmosphere.
It was baked at 200''C for 2 hours. Furthermore, electrodes made of silver paste were baked on both end faces to prepare a sample.

このように形成された試料について、比誘電率ε及び誘
電損失tanδを基準温度25℃、周波数1.0kHz
、測定電圧1.OVrmsで測定した。また、直流電圧
50Vを1分間印加した時の絶縁抵抗(IR)を測定し
た。
For the sample formed in this way, the relative dielectric constant ε and dielectric loss tan δ were determined at a reference temperature of 25°C and a frequency of 1.0kHz.
, measurement voltage 1. Measured by OVrms. In addition, the insulation resistance (IR) was measured when a DC voltage of 50 V was applied for 1 minute.

その結果を表1に示す。試料番号に*印を付したものは
本発明の範囲外である。尚、(Ba、−、Cax )(
Tit−y Zrv )03のX、Yのモル分率につい
ては、表中はモル%で示した。
The results are shown in Table 1. Sample numbers marked with * are outside the scope of the present invention. Furthermore, (Ba, -, Cax) (
The mole fractions of X and Y in Tit-y Zrv ) 03 are expressed in mol% in the table.

そして本発明の範囲の評価として、 比誘電率εはloQOO以上を良品とした。即ち、比誘
電率εが10000未満では、充分な比誘電率が得れず
、これにより積層セラミックコンデンサの小型化が困難
となってしまう。
As an evaluation within the scope of the present invention, a product with a dielectric constant ε of loQOO or higher was considered to be a good product. That is, if the dielectric constant ε is less than 10,000, a sufficient dielectric constant cannot be obtained, which makes it difficult to miniaturize the multilayer ceramic capacitor.

また、誘電損失tanδは1. 0%以下を良品とした
。即ち、誘電損失tanδが1. 0%を越えると、積
層セラミックコンデンサにおいて、誘電損失janδ不
良となり、誘電体層の薄膜化が困難となる。
Further, the dielectric loss tan δ is 1. 0% or less was considered a good product. That is, the dielectric loss tan δ is 1. If it exceeds 0%, the dielectric loss jan δ will be poor in the multilayer ceramic capacitor, making it difficult to make the dielectric layer thinner.

さらに密度は5.6g/cm3以上を良品とした。密度
が5.6g/cm3以下ではこの高誘電率系磁器組成物
を焼成した時に充分に焼成されず、1200″C以下と
いう低温焼成が困難となることが考えられる。
Furthermore, a product with a density of 5.6 g/cm3 or higher was considered to be a good product. If the density is less than 5.6 g/cm 3 , this high dielectric constant ceramic composition will not be fired sufficiently, and it may be difficult to fire at a low temperature of 1200″C or less.

さらに、絶縁抵抗(IR)は105MΩ以上を良品とし
た。
Furthermore, an insulation resistance (IR) of 105 MΩ or more was considered a good product.

試料番号1〜5は高誘電率系磁器の主成分となるチタン
ジルコン酸バリウムB a  (T i (−v Z 
r7)03のBサイトのモル分率Yについて検討した。
Sample numbers 1 to 5 are barium titanium zirconate B a (T i (-v Z
The mole fraction Y of the B site of r7)03 was studied.

即ち、Yを0.01〜0.16まで夫々値を変化させた
。このときAサイトのXをOとした。
That is, the value of Y was varied from 0.01 to 0.16. At this time, X at the A site was set to O.

また、添加するNd2O3、ZnO、Mn0zの重量%
を夫々1.6.1.5及び0. 2に固定した。これは
後述の夫々の添加量で本発明の範囲の中心的な値となる
ものである。
In addition, the weight percent of Nd2O3, ZnO, and Mn0z to be added
1.6, 1.5 and 0. respectively. It was fixed at 2. This is a central value within the range of the present invention in each addition amount described below.

試料番号1(Y:10モル%)では、焼成温度が120
0℃未満となり、誘電損失tanδ、密度及び絶縁抵抗
が比較的良好な結果となるものの、積層セラミックコン
デンサの小型化を大きく左右する比誘電率εが6500
と極めて低くなってしまう。
In sample number 1 (Y: 10 mol%), the firing temperature was 120
Although the dielectric loss tan δ, density, and insulation resistance are relatively good, the dielectric constant ε, which greatly affects the miniaturization of multilayer ceramic capacitors, is 6500.
It becomes extremely low.

また、試料番号2〜4(Y:11〜15モル%)では、
比誘電率εが10500〜14500になり、1120
℃で焼成可能な高誘電率系磁器組成物が達成できる。ま
た、誘電損失tanδが0゜52%以下、密度が5. 
82 g/cm3以上、絶縁11 抵抗が2.OX10SMΩ以上となる。
In addition, in sample numbers 2 to 4 (Y: 11 to 15 mol%),
The relative dielectric constant ε is 10500 to 14500, and 1120
A high dielectric constant ceramic composition that can be fired at ℃ can be achieved. In addition, the dielectric loss tan δ is 0°52% or less, and the density is 5.
82 g/cm3 or more, insulation 11, resistance 2. OX10SMΩ or more.

さらに、試料番号5(Y:16モル%)では、焼成温度
が1200℃未満となり、誘電損失tanδ、密度及び
絶縁抵抗が比較的良好な結果となるものの、積層セラミ
ックコンデンサの小型化に大きく左右する比誘電率εが
7500と極めて低くなってしまう。
Furthermore, in sample number 5 (Y: 16 mol%), the firing temperature is less than 1200°C, and although the dielectric loss tan δ, density, and insulation resistance are relatively good, it greatly affects the miniaturization of multilayer ceramic capacitors. The dielectric constant ε becomes extremely low at 7,500.

従って、本発明においてはチタンジルコン酸バリウムB
 a  (T i +−y Z ry ) 03のBサ
イトのモル分率Yは、充分な比誘電率εを得るために0
゜01<Y<0.16の範囲とした。
Therefore, in the present invention, barium titanium zirconate B
The mole fraction Y of the B site of a (T i +−y Z ry ) 03 is set to 0 in order to obtain a sufficient dielectric constant ε.
The range was 0.01<Y<0.16.

試料番号6〜11は高誘電率系磁器の主成分となるチタ
ンジルコン酸バリウムB a (T i lイZrv)
()+にU+nするNdzO:+の量について検討した
。即ち、NdzO3の添加量を0.7〜1.9まで値を
夫々変化させた。このときAサイトのモル分率Xを0と
した。また、ZnO及びMnO□の添加量を、夫々1.
5及び0. 3重量%に固定した。
Sample numbers 6 to 11 are barium titanium zirconate B a (T i l i Zrv), which is the main component of high dielectric constant porcelain.
The amount of NdzO:+ added to ()+ by U+n was studied. That is, the amount of NdzO3 added was varied from 0.7 to 1.9. At this time, the mole fraction X of the A site was set to 0. In addition, the amounts of ZnO and MnO□ were adjusted to 1.
5 and 0. It was fixed at 3% by weight.

試料番号6 (Nd2O3の添加量=0.7重量%)で
は、絶縁抵抗がlX105Mnと良品の範囲とな2 るものの、比誘電率εが8000と極めて低く、また焼
成温度が1200℃と低温焼成が困難となる。さらに、
誘電損失tanδ及び密度も良好な結果が得られない。
Sample No. 6 (added amount of Nd2O3 = 0.7% by weight) has an insulation resistance of lX105Mn, which is in the good range2, but a dielectric constant ε of 8000, which is extremely low, and a firing temperature of 1200°C, which is low temperature firing. becomes difficult. moreover,
Good results were also not obtained regarding dielectric loss tan δ and density.

また、試料番号7〜10 (NdzO:+の添加量:0
゜8〜1.8重量%)では、比誘電率εが11000〜
17000となり、誘電損失tanδが0.45%以下
、密度が5.82g/cm3以上、絶縁抵抗がlX10
5Mn以上となる。また、焼成温度が1100〜116
0℃となり、低温焼成が可能で、且つ比誘電率εが高い
値の組成物が達成される。
In addition, sample numbers 7 to 10 (Additional amount of NdzO:+: 0
8~1.8% by weight), the relative dielectric constant ε is 11000~
17000, dielectric loss tan δ is 0.45% or less, density is 5.82 g/cm3 or more, and insulation resistance is lX10.
It becomes 5Mn or more. In addition, the firing temperature is 1100 to 116
0° C., a composition that can be fired at a low temperature and has a high dielectric constant ε is achieved.

さらに、試料番号11 (Na2O2の添加量=19重
量%)では、比誘電率εが15800と、焼成温度が1
100℃と良好な結果が得られるものの、絶縁抵抗が8
×10″′MΩと2桁はど低下してしまう。このように
2桁も絶縁抵抗値が低下してしまうと、積層セラミック
コンデンサにおいて、−船釣な規格である1X10”M
nを満足しなくなる。
Furthermore, in sample number 11 (added amount of Na2O2 = 19% by weight), the dielectric constant ε was 15800 and the firing temperature was 1.
Good results are obtained at 100℃, but the insulation resistance is 8℃.
x 10"' MΩ, which is two orders of magnitude lower. If the insulation resistance value decreases by two orders of magnitude like this, in a multilayer ceramic capacitor, the 1X10"M
n will no longer be satisfied.

3− 従って、本発明においてはチタンジルコン酸バリウムB
 a (T i 1−y Z ry ) 03に添加す
るNd2O3の重量は、チタンジルコン酸バリウムBa
(T 1t−v Zry ) 03100重量部に対し
て、0.8〜1.8重量%の範囲とした。
3- Therefore, in the present invention, barium titanium zirconate B
a (T i 1-y Z ry ) The weight of Nd2O3 added to 03 is barium titanium zirconate Ba
(T 1t-v Zry ) 03100 parts by weight, the range was 0.8 to 1.8% by weight.

つぎに、試料番号12〜18は高誘電率系磁器の主成分
となるチタンジルコン酸バリウムBa(T i +−v
 Z’ry ) ()+に添加するZnOの量について
検討した。即ち、ZnOの添加量を0. 7〜2゜1ま
で値を夫々変化させた。このときAサイトのモル分率X
を0とした。また、Bサイトのモル分率Yを0.13と
し、Nd 203及びMn0zの添加量を夫々1.4及
び0. 3重量%として固定した。
Next, sample numbers 12 to 18 are barium titanium zirconate Ba (T i +-v
The amount of ZnO added to Z'ry ) ()+ was studied. That is, the amount of ZnO added is 0. The values were varied from 7 to 2°1. At this time, the mole fraction of A site is
was set to 0. Further, the mole fraction Y of the B site was set to 0.13, and the amounts of Nd 203 and Mn0z added were set to 1.4 and 0.0, respectively. It was fixed at 3% by weight.

試料番号12 (ZnOの添加量=0.7重量%)では
、比誘電率εが9000と低く、また誘電損失tanδ
、密度及び絶縁抵抗も良好な結果が得られない。
Sample No. 12 (Additional amount of ZnO = 0.7% by weight) has a low dielectric constant ε of 9000 and a low dielectric loss tanδ.
, density and insulation resistance also do not give good results.

また、試料番号13〜17(ZnOの添加量=0゜8〜
2.0重量%)では、比誘電率εが12000〜170
00となり、誘電損失tanδがO−54 4%以下、密度が5.75g/cm3以上、絶縁抵抗が
lX10!′MΩ以上となる。また、焼成温度が111
0〜1150℃となる。即ち、比誘電率εが高い値で、
且つ低温焼成が可能な組成物が達成される。
In addition, sample numbers 13 to 17 (added amount of ZnO = 0°8 to
2.0% by weight), the relative dielectric constant ε is 12000 to 170
00, the dielectric loss tan δ is O-54 4% or less, the density is 5.75 g/cm3 or more, and the insulation resistance is lX10! 'MΩ or more. In addition, the firing temperature is 111
The temperature ranges from 0 to 1150°C. That is, when the dielectric constant ε is high,
In addition, a composition that can be fired at low temperatures is achieved.

さらに、試料番号18 (ZnOの添加量=2.1重量
%)では、比誘電率εが8500と極めて低く、また焼
成温度が1200℃となり、低温焼成が困難となる。さ
らに、誘電損失tanδ、密度及び絶縁抵抗も良好な結
果が得られない。
Furthermore, in sample number 18 (addition amount of ZnO=2.1% by weight), the dielectric constant ε is extremely low at 8500, and the firing temperature is 1200° C., making low-temperature firing difficult. Furthermore, good results cannot be obtained regarding dielectric loss tan δ, density, and insulation resistance.

従って、本発明においてはチタンジルコン酸バリウムB
a  (Ti+−y ZrV)0:lに添加するZnO
の重量は、チタンジルコン酸バリウムBa(Ti+−y
 Zry )03100重量部に対して、0゜8〜2.
0重量%の範囲とした。
Therefore, in the present invention, barium titanium zirconate B
a (Ti+-y ZrV)0: ZnO added to l
The weight of barium titanium zirconate Ba (Ti+-y
Zry ) 03100 parts by weight, 0°8 to 2.
The range was 0% by weight.

つぎに、試料番号19〜24は高誘電率系磁器の主成分
となるチタンジルコン酸バリウムBa(T i +−y
 Z r v ) 03に添加するMnO□の量につい
て検討した。即ち、MnO□の添加量を0.〜0.6ま
で値を夫々変化させた。このときAサイトのモ5− ル分率XをOとした。また、Bサイトのモル分率Yを0
.13とし、Nd2O3及びZnOの添加量を夫々1.
5及び1.6重量%として固定した。
Next, sample numbers 19 to 24 are barium titanium zirconate Ba (T i +-y
The amount of MnO□ added to Z r v ) 03 was studied. That is, the amount of MnO□ added is 0. The values were varied up to 0.6. At this time, the mole fraction X of the A site was set to O. In addition, the mole fraction Y of the B site is 0
.. 13, and the amounts of Nd2O3 and ZnO added were each 1.
It was fixed as 5 and 1.6% by weight.

試料番号19 (MnO□の添加量がない)では、比誘
電率εが15500となり、また焼成温度が1120℃
となり、実際上、低温焼成可能な高誘電率系磁器組成物
が得られるものの、誘電損失tanδが2.12%と極
めて大きいものとなる。これにより、誘電体層の薄膜化
が困難となる。
In sample number 19 (no amount of MnO□ added), the dielectric constant ε was 15500, and the firing temperature was 1120°C.
Therefore, although a high dielectric constant ceramic composition that can be fired at a low temperature is actually obtained, the dielectric loss tan δ is extremely large at 2.12%. This makes it difficult to reduce the thickness of the dielectric layer.

また、試料番号20〜23(MnO□の添加量:0゜1
〜0.5重量%)では、比誘電率εが15000〜16
600となり、また焼成温度が1120℃となる。さら
に誘電損失tanδはMnO2の添加量なしく試料番号
19)の2.12%に比較して0.20〜0.80と大
幅に改善されることになる。これにより、高比誘電率ε
で且つ低温焼成可能で、さらに諸特性も良好な組成物が
達成される。
In addition, sample numbers 20 to 23 (addition amount of MnO□: 0゜1
~0.5% by weight), the dielectric constant ε is 15000~16
600, and the firing temperature is 1120°C. Further, the dielectric loss tan δ is significantly improved to 0.20 to 0.80 as compared to 2.12% in sample No. 19) without the addition amount of MnO2. This results in a high dielectric constant ε
A composition that can be fired at a low temperature and has good properties can be achieved.

さらに、試料番号24 (MnOzの添加量=0.6重
量%)では、比誘電率εが14000となり、6 また焼成温度が1120℃となる。低温焼成でかつ高い
比誘電率εの高誘電率系磁器組成物が可能となるものの
、その他の諸物件、即ち誘電損失tanδが1.5%と
なり、絶縁抵抗が9×103MΩとなる。絶縁抵抗が9
.X103Mn程度であると積層セラミックコンデンサ
において絶縁抵抗の一般的な規格を満足しなくなる。
Furthermore, in sample number 24 (addition amount of MnOz=0.6% by weight), the dielectric constant ε was 14000, and the firing temperature was 1120°C. Although it is possible to produce a high-permittivity ceramic composition that can be fired at a low temperature and has a high dielectric constant ε, other properties, namely, the dielectric loss tan δ is 1.5% and the insulation resistance is 9×10 3 MΩ. Insulation resistance is 9
.. If it is about X103Mn, it will no longer satisfy the general standard for insulation resistance in multilayer ceramic capacitors.

従って、本発明においてはチタンジルコン酸バリウムB
 a  (T i +−y Z rv ) 03に添加
するMnO2の重量は、チタンジルコン酸バリウムBa
(Tit−y Zry ) 03100重量部に対して
、0゜1〜0.5重量%の範囲とした。
Therefore, in the present invention, barium titanium zirconate B
a (T i +-y Z rv ) The weight of MnO2 added to 03 is barium titanium zirconate Ba
(Tit-y Zry) 03100 parts by weight, the range was 0.1 to 0.5% by weight.

つぎに、試料番号25〜30において、高誘電率系磁器
の主成分となるチタンジルコン酸バリウムB a (T
 i +−v Z rY ) 03の平均粒径を検討し
た。即ち、平均粒径を0. 1〜1.0μmに夫々変化
させた。このときAサイトのモル分率XをOとした。ま
た、Bサイトのモル分率Yを0゜13とし、Nd2O3
、ZnO及びMnO7の添加量を夫々1.5.1.5及
び0.3重量%として固定した。
Next, in sample numbers 25 to 30, barium titanium zirconate B a (T
The average particle size of i + -v Z rY ) 03 was investigated. That is, the average particle size is 0. The thickness was varied from 1 to 1.0 μm, respectively. At this time, the mole fraction X of the A site was set to O. In addition, the mole fraction Y of the B site is 0°13, and Nd2O3
, ZnO and MnO7 were fixed at 1.5, 1.5 and 0.3% by weight, respectively.

試料番号25〜29(平均粒径が0. 1〜0゜9μm
)では、比誘電率εが12000〜17500となり、
また焼成温度も1080〜1190°Cとなる。これに
より、高い比誘電率で且つ低温焼成可能な高誘電率系磁
器組成物が得られる。
Sample numbers 25 to 29 (average particle size 0.1 to 0.9 μm)
), the dielectric constant ε is 12,000 to 17,500,
Moreover, the firing temperature is also 1080 to 1190°C. As a result, a high dielectric constant ceramic composition which has a high dielectric constant and can be fired at a low temperature can be obtained.

これに対して、試料番号30(平均粒径が1゜0μm)
では、比誘電率εが17000と良好な結果が得られる
ものの、焼成温度が1200℃を越え、1250°Cと
なってしまう。即ち、平均粒径が大きくなるにつれて、
焼成温度が高くなるとともに、比誘電率εが平均粒径0
− 9μI(試料番号28)をピークに減少する。
On the other hand, sample number 30 (average particle size 1°0 μm)
In this case, a good result is obtained with a dielectric constant ε of 17000, but the firing temperature exceeds 1200°C and becomes 1250°C. That is, as the average particle size increases,
As the firing temperature increases, the relative dielectric constant ε decreases to an average particle size of 0.
- Decrease to a peak of 9μI (sample number 28).

従って、本発明においてはチタンジルコン酸バリウムB
 a (T i 1−y Z rY ) 03の平均粒
径を0.9μm以下とすることが、低温焼成の高誘電率
系磁器組成物として重要になる。
Therefore, in the present invention, barium titanium zirconate B
It is important that the average particle size of a (T i 1-y Z rY ) 03 be 0.9 μm or less for a high dielectric constant ceramic composition fired at a low temperature.

上述の実施例によれば、チタンジルコン酸バリウムB 
a (T i +−y Z rY ) 03を主成分、
即ちチタンジルコン酸バリウムカルシウム(B a 1
−XCax )  (T i +−v Z ry ) 
03におけるAサイトのモル分率にXがOであった。
According to the above embodiments, barium titanium zirconate B
a (T i +−y Z rY ) 03 as the main component,
That is, barium calcium titanium zirconate (B a 1
−XCax ) (T i +−v Z ry )
In the mole fraction of the A site in 03, X was O.

そこで、チタンジルコン酸バリウムカルシウム(Ba+
−x 、 Cax ) (Tit−y Zry )03
におけるAサイトのモル分率XをO〜0.11(7)範
囲で変化させた。尚、(Ba、−x 、Cax )(T
i +−y Z ry ) 03の粒径は0−2μm、
Bサイトのモル分率Yを0.14とし、Nd2O3、Z
nO及びMn0zの添加量を夫々1.5.1.5及び0
.3重量%として固定した。
Therefore, barium calcium titanium zirconate (Ba+
-x, Cax) (Tit-y Zry)03
The mole fraction X of the A site was varied in the range of 0 to 0.11(7). Furthermore, (Ba, -x, Cax) (T
The particle size of i + -y Z ry ) 03 is 0-2 μm,
The mole fraction Y of the B site is 0.14, and Nd2O3, Z
The amounts of nO and Mn0z added were 1.5, 1.5 and 0, respectively.
.. It was fixed at 3% by weight.

試料番号31はチタンジルコン酸バリウムカルシウム(
Ba+−x、Cax )(Tit−y Zrv )03
におけるAサイトのモル分率XをOに設定した。その結
果、比誘電率εが16500となり、誘電損失tanδ
が0.26%となり、密度が5゜92 g /cm3と
なり、絶縁抵抗が4×105MΩとなり、誘電率系磁器
組成物の諸物件を満足する。
Sample number 31 is barium calcium titanium zirconate (
Ba+-x, Cax) (Tit-y Zrv)03
The mole fraction X of the A site was set to O. As a result, the relative permittivity ε is 16500, and the dielectric loss tanδ
was 0.26%, the density was 5°92 g/cm3, and the insulation resistance was 4×105 MΩ, satisfying various properties of a dielectric ceramic composition.

また、焼成温度が1120°Cと低温焼成も可能なもの
となる。
In addition, low-temperature firing is possible at a firing temperature of 1120°C.

試料番号32〜36(x:1〜9モル%)では、比誘電
率εが11000〜16500となり、ま19・ た、焼成温度が1120〜1140℃となる。即ち、低
温で焼成が可能な高誘電率系磁器組成物が達成される。
For sample numbers 32 to 36 (x: 1 to 9 mol %), the dielectric constant ε is 11,000 to 16,500, and the firing temperature is 1,120 to 1,140°C. That is, a high dielectric constant ceramic composition that can be fired at low temperatures is achieved.

また、誘電損失tanδ、密度、絶縁抵抗IRも満足で
きる特性が得られる。
Further, satisfactory characteristics can be obtained in terms of dielectric loss tan δ, density, and insulation resistance IR.

これに対して、試料番号37.38(x:0゜10.0
.11(10モル%、11モル%〕)では、比誘電率ε
が9500.8000となり、高誘電率の磁器組成物が
達成できない。
On the other hand, sample number 37.38 (x: 0°10.0
.. 11 (10 mol%, 11 mol%), the dielectric constant ε
is 9500.8000, making it impossible to achieve a ceramic composition with a high dielectric constant.

従って、チタンジルコン酸バリウムカルシウム(Ba+
−x 、 Cax ) (Ti t−y Zry ) 
03におけるAサイトのモル分率XはO〜0− 1の範
囲となる。即ち、チタンジルコン酸バリウムBa(T 
1 r−v Z r v ) 03において、Baに対
するモル分率として、10モル%を限度としてCaが含
有しているチタンジルコン酸バリウムカルシウムの酸化
物を用いることができる。
Therefore, barium calcium titanium zirconate (Ba+
-x, Cax) (Ti ty Zry)
The mole fraction X of the A site in 03 is in the range of 0 to 0-1. That is, barium titanium zirconate Ba (T
1 r-v Z r v ) 03, it is possible to use an oxide of barium calcium titanium zirconate containing Ca at a molar fraction of Ba up to 10 mol %.

以上のように、本発明によれば、10000以上の比誘
電率εを有し、且つ焼成温度1200℃以下となり、高
誘電率系磁器組成物の諸物件、誘0 電損失tanδが1.0%以下、絶縁抵抗(IR)がl
X105Mn以上、密度が5 、 6 g 7cm”以
上の高誘電率系磁器組成物を得るには、複合酸化物(B
a、−x Cax ) (Tit−y Zrv )03
と表した時、モル分率でO≦x<0.1.0.1<Y<
0.16であり、さらに、 (Bat−x Cax )
 (Tl l−Y Zry )03の100重量部に対
して、ネオジウム化合物をNd2O3換算で0.8〜1
.8重量%、酸化亜鉛をZnO換算で(L8〜2.0重
量%、マンガン化合物をMnO2換算で0.1〜0.5
重量%を含有して成る高誘電率系磁器組成物となる。
As described above, according to the present invention, various objects of the high dielectric constant ceramic composition have a dielectric constant ε of 10,000 or more, a firing temperature of 1,200° C. or less, and a dielectric loss tan δ of 1.0. % or less, insulation resistance (IR) is l
In order to obtain a high dielectric constant ceramic composition with X105Mn or more and a density of 5,6 g 7 cm" or more, composite oxide (B
a, -x Cax ) (Tit-y Zrv )03
When expressed as O≦x<0.1.0.1<Y< in terms of mole fraction
0.16, and (Bat-x Cax)
For 100 parts by weight of (Tl l-Y Zry)03, the amount of neodymium compound is 0.8 to 1 in terms of Nd2O3.
.. 8% by weight, zinc oxide in terms of ZnO (L8-2.0% by weight, manganese compound in terms of MnO2 0.1-0.5
% by weight, resulting in a high dielectric constant ceramic composition.

最後に、添加するNd2O,、ZnO及びMn0zの添
加量が全て範囲に満たない、すなわち0. 7.0゜7
、及び0重量%の場合(試料番号39)、比誘電率εが
6500、焼成温度が1220℃となり、誘電損失ta
nδが2.4%、絶縁抵抗IR1密度までも評価範囲外
となってしまい、実質的実用不可能に近い高誘電率系磁
器組成物となってしまう。
Finally, the added amounts of Nd2O, ZnO, and Mn0z are all below the range, that is, 0. 7.0°7
, and 0% by weight (sample number 39), the relative permittivity ε is 6500, the firing temperature is 1220°C, and the dielectric loss ta
Even the nδ of 2.4% and the insulation resistance IR1 density were outside the evaluation range, resulting in a high dielectric constant ceramic composition that was virtually impossible to put into practical use.

逆に添加するNdzO:+ 、ZnO及びMnO2の添
加量が全て範囲を越える、即ち1,9.2.1、及び0
゜6重量%の場合(試料番号40)、比誘電率εが90
00となり、また絶縁抵抗IR1密度までも評価範囲外
となってしまい、実質的実用不可能に近い高誘電率系磁
器組成物となってしまう。
On the contrary, the added amounts of NdzO:+, ZnO and MnO2 all exceed the range, i.e. 1, 9.2.1, and 0.
゜In the case of 6% by weight (sample number 40), the relative dielectric constant ε is 90
00, and even the insulation resistance IR1 density is outside the evaluation range, resulting in a high dielectric constant ceramic composition that is virtually impossible to put into practical use.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、複合酸化物(Bat−
x caX) (Tit−y Zrv )03と表した
時、モル分率で0≦x<0.1.0.1<Y<0.16
であり、さらに、 (Bat−XCax )(Tit−
y Zrv )Oyの100重量部に対して、ネオジウ
ム化合物をNd2O3換算で0.8〜1.8重量%、酸
化亜鉛をZnO換算で0.8〜2.0重量%、マンガン
化合物をMnO□換算で0.1〜0.5重量%を含有し
て成るため、比誘電率εが10000以上で、且つ焼成
温度が1200℃以下となる。またその他の諸特性とし
て、誘電損失tanδが1.0%以下、絶縁抵抗(IR
)がlX105Mn以上、密度が5− 6g/cm3以
上の高誘電率系磁器組成物を得ることができる。
As described above, according to the present invention, composite oxide (Bat-
When expressed as x ca
, and furthermore, (Bat-XCax)(Tit-
y Zrv ) With respect to 100 parts by weight of Oy, the neodymium compound is 0.8 to 1.8 weight % in terms of Nd2O3, the zinc oxide is 0.8 to 2.0 weight % in terms of ZnO, and the manganese compound is in terms of MnO □ Since it contains 0.1 to 0.5% by weight, the dielectric constant ε is 10,000 or more and the firing temperature is 1,200° C. or less. Other characteristics include dielectric loss tan δ of 1.0% or less, insulation resistance (IR
) is 1X105Mn or more and the density is 5-6 g/cm3 or more.

これにより、例えば積層セラミックコンデンサを上述の
高誘電率系磁器組成物で構成した場合、小型大容量のコ
ンデンサが達成でき、焼成温度1200°C以下となり
、積層されたシート間に内部電極として安価な銀−パラ
ジウムを使用することも可能で、安価な積層セラミック
コンデンサの高誘電率系磁器組成物となる。
As a result, for example, when a multilayer ceramic capacitor is constructed from the above-mentioned high dielectric constant ceramic composition, a small, large-capacity capacitor can be achieved, the firing temperature is 1200°C or less, and an inexpensive internal electrode can be used between the laminated sheets. It is also possible to use silver-palladium, resulting in a high dielectric constant ceramic composition for inexpensive multilayer ceramic capacitors.

Claims (1)

【特許請求の範囲】  複合酸化物(Ba_1_−_XCa_X)(Ti_1
_−_YZr_Y)O_3と表した時、モル分率X、Y
がそれぞれ、 0≦X<0.1 0.1<Y<0.16であり、 さらに、(Ba_1_−_XCa_X)(Ti_1_−
_YZr_Y)O_3の100重量部に対して、 ネオジウム化合物をNd_2O_3換算で0.8〜1.
8重量%、酸化亜鉛をZnO換算で0.8〜2.0重量
%、マンガン化合物をMnO_2換算で0.1〜0.5
重量%を含有して成る高誘電率系磁器組成物。
[Claims] Composite oxide (Ba_1_-_XCa_X) (Ti_1
When expressed as _−_YZr_Y)O_3, the mole fractions X, Y
are respectively 0≦X<0.1 0.1<Y<0.16, and (Ba_1_-_XCa_X) (Ti_1_-
For 100 parts by weight of _YZr_Y)O_3, 0.8 to 1.0 parts of neodymium compound is added as Nd_2O_3.
8% by weight, zinc oxide 0.8 to 2.0% by weight in terms of ZnO, manganese compound 0.1 to 0.5 in terms of MnO_2
% by weight of a high dielectric constant ceramic composition.
JP2022985A 1990-01-31 1990-01-31 High dielectric porcelain composition Pending JPH03226909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022985A JPH03226909A (en) 1990-01-31 1990-01-31 High dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022985A JPH03226909A (en) 1990-01-31 1990-01-31 High dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH03226909A true JPH03226909A (en) 1991-10-07

Family

ID=12097840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022985A Pending JPH03226909A (en) 1990-01-31 1990-01-31 High dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH03226909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709914B2 (en) * 1998-08-11 2005-10-26 株式会社村田製作所 Multilayer ceramic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123614A (en) * 1988-11-02 1990-05-11 Tdk Corp High permittivity type porcelain composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123614A (en) * 1988-11-02 1990-05-11 Tdk Corp High permittivity type porcelain composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709914B2 (en) * 1998-08-11 2005-10-26 株式会社村田製作所 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP3046436B2 (en) Ceramic capacitors
KR0144693B1 (en) Dielectric ceramic compositions
JP3087657B2 (en) Dielectric porcelain composition
JPH03226909A (en) High dielectric porcelain composition
JP3634930B2 (en) Dielectric porcelain composition
JP2849857B2 (en) High dielectric constant porcelain composition
JP2821768B2 (en) Multilayer ceramic capacitors
JPH03115164A (en) Porcelain composition having high dielectric constant
US4601988A (en) Dielectric ceramic composition
JPH05190376A (en) Ceramic capacitor
JPH03115165A (en) Porcelain composition having high dielectric constant
JP2789110B2 (en) High dielectric constant porcelain composition
JP3250917B2 (en) Dielectric porcelain composition
JP2003012369A (en) Piezoelectric compact of ceramic composition
JP3071449B2 (en) Dielectric porcelain composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP3071452B2 (en) Dielectric porcelain composition
JP2872513B2 (en) Dielectric porcelain and porcelain capacitor
JPH10139536A (en) Dielectric porcelain composition
JPH07187780A (en) Dielectric ceramic composition
JPH04363012A (en) Ceramic capacitor
JPH08183658A (en) Dielectric porcelain composition
JPH08169759A (en) Dielectric porcelain composition
JPH0360787B2 (en)
JPS63156062A (en) High permittivity ceramic composition and manufacture