JPH03226582A - Formation of oxide coating on whisker - Google Patents

Formation of oxide coating on whisker

Info

Publication number
JPH03226582A
JPH03226582A JP2161890A JP2161890A JPH03226582A JP H03226582 A JPH03226582 A JP H03226582A JP 2161890 A JP2161890 A JP 2161890A JP 2161890 A JP2161890 A JP 2161890A JP H03226582 A JPH03226582 A JP H03226582A
Authority
JP
Japan
Prior art keywords
whiskers
whisker
oxide coating
metal oxide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2161890A
Other languages
Japanese (ja)
Inventor
Tatsutama Matsui
松井 辰珠
Osamu Komura
修 小村
Masaya Miyake
雅也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2161890A priority Critical patent/JPH03226582A/en
Priority to EP91101208A priority patent/EP0444426B1/en
Priority to DE69127761T priority patent/DE69127761T2/en
Priority to US07/648,762 priority patent/US5141579A/en
Publication of JPH03226582A publication Critical patent/JPH03226582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

PURPOSE:To uniformly form a coating of metal oxide on the whole surfaces of whiskers by immersing whiskers into a solution of the metallic salt of metal elements selected from the group consisting of the group IIa-IVa elements of the periodic table, Li, and Al and then heat treating these whiskers at a temp. not lower than the thermal decomposition temp. of the metallic salt. CONSTITUTION:Whiskers are immersed into a solution of the inorganometallic salt or organometallic salt of at least one metal element selected from the group consisting of the group IIa, IIIa, IVa elements of the periodic table, Li, and Al. The whiskers in which the metallic salt is allowed to adhere to respective surfaces are heat-treated at a temp. not lower than the thermal decomposition temp. of the metallic salt, by which a metal oxide coating is formed on respective surfaces of the whiskers. The thickness of the metal oxide coating is regulated to 0.5nm-5mum. By this method, the whiskers can be treated at one time in large quantities.

Description

【発明の詳細な説明】 二辛業上の利用分野〕 本発明は、セラミックス複合材料の強化材として有用な
ウィスカーの表面に、金属酸化物被覆を形成する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Fields of Application The present invention relates to a method for forming a metal oxide coating on the surface of whiskers useful as reinforcing materials in ceramic composite materials.

〔従来の技術〕[Conventional technology]

近年、セラミックスの機械構造部品への応用が盛んに進
められているが、セラミックスが本来有する脆性を克服
して如何に靭性を高めるかが重要な開発課題となってい
る。
In recent years, the application of ceramics to mechanical structural parts has been actively promoted, but an important development issue is how to overcome the inherent brittleness of ceramics and increase their toughness.

その一つの試みとして、セラミックスの母材中に強化材
としてウィスカーを分散して複合化させる方法がある。
One attempt is to disperse whiskers as a reinforcing material in a ceramic matrix to form a composite.

ウィスカーは直径数μm以下の針状単結晶であり、構造
欠陥が極端に少ないため理論値に近い強度を有している
。しかし、現状ではウィスカー混入による靭性向上のレ
ベルは低く、得られるウィスカー強化セラミックス複合
材料は機械構造部品として充分な信頼性を得るに至って
いない。
Whiskers are acicular single crystals with a diameter of several μm or less, and have extremely few structural defects, so they have a strength close to the theoretical value. However, at present, the level of improvement in toughness due to the inclusion of whiskers is low, and the resulting whisker-reinforced ceramic composite materials have not achieved sufficient reliability as mechanical structural parts.

そこで、ウィスカー強化セラミックス複合材料の靭性を
更に向上させるためには、セラミックス母材と強化材で
あるウィスカーとの界面反応を制御することが有効であ
ると考えられ、ウィスカーの表面に別の物質を被覆する
等の表面処理が検討されている。例えば特開平1−13
3981号公報にはSiCウィスカーの表面に部分安定
化ZrOをCVD法により被覆することが開示されてい
る。
Therefore, in order to further improve the toughness of whisker-reinforced ceramic composite materials, it is thought to be effective to control the interfacial reaction between the ceramic matrix and the reinforcing material, the whiskers. Surface treatments such as coating are being considered. For example, JP-A-1-13
No. 3981 discloses coating partially stabilized ZrO on the surface of SiC whiskers by CVD.

このようにウィスカーの表面に金属酸化物などの被覆を
形成する方法として、従来は上記の如くCVD法やスパ
ッタリング法のような気相合成法が用いられてきたが、
この方法では気相からの付着に方向性があるためウィス
カーの裏側まで回り込んで被覆することが困難であり、
全表面に均一な被覆を形成することが極めて難しかった
。そのため、従来の金属酸化物被覆ウィスカーを強化材
としたセラミックス複合材料は、未だ靭性の向上が充分
とは云えず、信頼性に欠けていた。
Conventionally, vapor phase synthesis methods such as the CVD method and sputtering method have been used as a method for forming coatings such as metal oxides on the surfaces of whiskers.
With this method, because the adhesion from the gas phase is directional, it is difficult to wrap around and coat the back side of the whiskers.
It was extremely difficult to form a uniform coating over the entire surface. Therefore, conventional ceramic composite materials using metal oxide-coated whiskers as reinforcing materials have not yet been sufficiently improved in toughness and lacked reliability.

又、気相合成法による被覆形成には、特殊な成膜装置や
複雑且つ厳密な条件管理若しくは操作が必要であるほか
、成膜装置の大きさによって一度に被覆出来るウィスカ
ーの量が制限されるので、量産に適さず経済的でない等
の問題もあった。
In addition, forming a coating by vapor phase synthesis requires special film-forming equipment and complex and strict condition control or operation, and the amount of whiskers that can be coated at one time is limited by the size of the film-forming equipment. Therefore, there were problems such as being unsuitable for mass production and uneconomical.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はかかる従来の事情に鑑み、簡便な方法であって
且つ量産性を備え、ウィスカー強化セラミックス複合材
料の強化材であるウィスカーの全表面に均一な金属酸化
物の被覆を形成する方法を提供することを目的とする。
In view of such conventional circumstances, the present invention provides a method that is simple and capable of mass production, and forms a uniform metal oxide coating on the entire surface of whiskers, which are reinforcing materials for whisker-reinforced ceramic composite materials. The purpose is to

(課題を解決するための手段〕 上記目的を達成するため、本発明は、ウィスカー強化セ
ラミックス複合材料の強化材として用いるウィスカーの
表面に金属酸化物の被覆を形成する方法において、周期
律表の2A、 3A、 4A族、Li及びAlからなる
群から選ばれた少なくとも1種の金属元素の無機金属塩
又は有機金属塩の溶液にウィスカーを浸し、表面に前記
金属塩を付着させたウィスカーを該金属塩の熱分解温度
以上の温度で熱処理することにより、ウィスカー表面に
金属酸化物被覆を形成することを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for forming a metal oxide coating on the surface of a whisker used as a reinforcing material of a whisker-reinforced ceramic composite material. A whisker is immersed in a solution of an inorganic metal salt or an organic metal salt of at least one metal element selected from the group consisting of Groups 3A, 4A, Li, and Al, and the whisker with the metal salt attached to the surface is immersed in a solution of the metal element. It is characterized in that a metal oxide coating is formed on the whisker surface by heat treatment at a temperature higher than the thermal decomposition temperature of the salt.

適用出来るウィスカーは、セラミックス複合材料の強化
材として従来から使用されているもの、例えばAl01
SiC及びSi N  等である。
Applicable whiskers include those conventionally used as reinforcing materials for ceramic composite materials, such as Al01.
These include SiC and SiN.

又、上記金属元素の無機又は有機金属塩としては、熱分
解により酸化物に変化する塩なら使用出来るが、熱分解
の容易さ等から、無機金属塩では上記金属元素と硝酸、
硫酸、燐酸及びハロゲン化水素との塩が、及び有機金属
塩では上記金属元素と炭素数3〜30の脂肪酸との塩が
好ましい。
In addition, as the inorganic or organic metal salt of the above metal element, any salt that changes into an oxide through thermal decomposition can be used.
Salts of sulfuric acid, phosphoric acid, and hydrogen halides are preferred, and as organic metal salts, salts of the above metal elements and fatty acids having 3 to 30 carbon atoms are preferred.

〔作用〕[Effect]

本発明方法では、特定の金属元素の無機又は有機金属塩
を用い、その熱分解により金属酸化物をウィスカー表面
に被覆として生成させる。即ち、水又は有機溶媒に可溶
な無機又は有機金属塩の溶液にウィスカーを浸し、全表
面に金属塩を均一に付着させ、次にウィスカーを乾・操
した後、金属塩の熱分解温度以上の温度に加熱すること
により、被覆状態を変えることなくウィスカー表面に金
属酸化物被覆を簡単に形成出来る。
In the method of the present invention, an inorganic or organic metal salt of a specific metal element is used, and a metal oxide is produced as a coating on the whisker surface by thermal decomposition. That is, whiskers are immersed in a solution of an inorganic or organic metal salt that is soluble in water or an organic solvent, the metal salt is uniformly deposited on the entire surface, and then the whisker is dried and processed at a temperature higher than the thermal decomposition temperature of the metal salt. By heating to a temperature of , a metal oxide coating can be easily formed on the whisker surface without changing the coating state.

ウィスカー表面への金属塩の付着状態が、後の金属酸化
物被覆の形状や状態に大きな影響を及ぼすので、ウィス
カーの全表面が金属塩溶液で濡れ被照射しながら溶液を
攪拌し、また溶液中でウィスカーを充分はぐすことが好
ましい。
Since the state of adhesion of the metal salt to the whisker surface has a great influence on the shape and state of the metal oxide coating, the entire surface of the whisker is wetted with the metal salt solution and the solution is stirred while being irradiated. It is preferable to thoroughly remove the whiskers with a .

無機又は有機金属塩を金属酸化物に変化させるための加
熱温度は、各金属塩の種類により異なるが、通常は大気
中において200〜2000 C’の範囲、好ましくは
300〜1000σの範囲である。
The heating temperature for converting an inorganic or organic metal salt into a metal oxide varies depending on the type of each metal salt, but is usually in the range of 200 to 2000 C', preferably in the range of 300 to 1000 σ, in the atmosphere.

又、得られる金属酸化物被覆の膜厚は0.5nm〜5μ
mの範囲が好ましく、膜厚が0.5nm未満では被覆に
よるウィスカー強化セラミックス複合材料の靭性値向上
の効果が得られず、5μmを超えると金属酸化物の影響
が大きくなって逆に靭性値が低下しやすいからである。
Moreover, the thickness of the metal oxide coating obtained is 0.5 nm to 5 μm.
m is preferably in the range; if the film thickness is less than 0.5 nm, the coating will not have the effect of improving the toughness of the whisker-reinforced ceramic composite material, and if it exceeds 5 μm, the effect of the metal oxide will become large and the toughness will conversely decrease. This is because it is easy to decrease.

金属酸化物被覆の膜厚は、金属塩溶液の濃度を変えるこ
とにより自由に且つ簡単にコントロールすることが出来
る。
The thickness of the metal oxide coating can be freely and easily controlled by changing the concentration of the metal salt solution.

〔実施例〕〔Example〕

実施例I Al(No、) 39HOのエタノール溶液(濃度70
 g、/C)1.27に、直径約0.5/jmで長さ約
15AmのSiCウィスカー120gを浸漬し、超音波
照射しながら攪液から取り出し、自然乾燥してエタノー
ルを蒸発させた。次に、このS1cウイスカーを大気中
において350C’で2時間加熱することにより、表面
に付着しているAl(No、) 、 9HOを熱分解し
Al、Osを生成させた。
Example I Al(No,) 39HO in ethanol solution (concentration 70
120 g of SiC whiskers with a diameter of about 0.5/jm and a length of about 15 Am were immersed in 1.27 g,/C), taken out from the stirring solution while being irradiated with ultrasonic waves, and air-dried to evaporate the ethanol. Next, this S1c whisker was heated in the atmosphere at 350 C' for 2 hours to thermally decompose Al(No, ) and 9HO adhering to the surface to generate Al and Os.

得られたSICウィスカーをX線結晶回折及び走査型電
子顕微鏡で分析又は観察したところ、S1Cウイスカー
の全表面がAIOで被覆され、Al。
When the obtained SIC whiskers were analyzed or observed by X-ray crystal diffraction and scanning electron microscopy, the entire surface of the S1C whiskers was covered with AIO and Al.

被覆の平均膜厚は80xであることが判った。The average thickness of the coating was found to be 80x.

又、上記実施例で得られたAt O被ffi SiC!
ウィスカー20 wt%と、SiN  粉末69.6w
t%、YO粉末6.7 wt%及びAl O粉末1,7
wt%を湿式混合し、s 通常の如く成形した後、1700 C”にて200 J
cg/cm”でホットプレス焼結して焼結体を製造した
Moreover, the At O-covered SiC obtained in the above example!
Whiskers 20wt% and SiN powder 69.6w
t%, YO powder 6.7 wt% and AlO powder 1.7
After wet mixing wt% and molding as usual, 200 J at 1700 C”
A sintered body was produced by hot-press sintering at a temperature of 1.2 cg/cm.

得られた焼結体は、曲げ強度が1)0≠l及びKO靭性
値が1) MN/m””であり、極めて高靭性であるこ
とが判った。
The obtained sintered body had a bending strength of 1) 0≠l and a KO toughness value of 1) MN/m'', and was found to have extremely high toughness.

実施例2 ステアリン酸アルミニウムのエタノール溶液(濃度10
0 g//) 1.2 /に、直径約0.5μmで長さ
約15μmのSi、N、ウィスカー120gを浸漬し、
実施例1と同様に処理した後、このウィスカーを大気中
において900σで2時間加熱し、表面に付着している
ステアリン酸アルミニウムを熱分解してA40  を生
成させた。
Example 2 Ethanol solution of aluminum stearate (concentration 10
120 g of Si, N, and whiskers having a diameter of about 0.5 μm and a length of about 15 μm are immersed in 0 g//) 1.2 /,
After being treated in the same manner as in Example 1, this whisker was heated in the atmosphere at 900σ for 2 hours to thermally decompose aluminum stearate adhering to the surface to generate A40.

得られたSi N  ウィスカーを実施例1と同様に分
析又は観察したところ、SiN  ウィスカーの全表面
がAlOで被覆され、AIO被覆の平均膜厚は80χで
あった。
When the obtained SiN whiskers were analyzed or observed in the same manner as in Example 1, the entire surface of the SiN whiskers was coated with AlO, and the average thickness of the AIO coating was 80χ.

実施例3 Zr (No、) 、 2HOのエタノール溶液(濃度
33g/l)1.27に、直径約0.5μmで長さ約1
5μmのSiCウィスカー120gを浸漬し、実施例1
と同様に処理した後、このS1Cウイスカーを大気中に
て900σで2時間加熱し、表面に付着したZr (N
o、) 22H0を熱分解してZrOを生成させた。
Example 3 Zr (No,), 2HO in an ethanol solution (concentration 33 g/l) of 1.27 mm was added with a diameter of approximately 0.5 μm and a length of approximately 1 mm.
Example 1 120 g of 5 μm SiC whiskers was immersed.
After being treated in the same manner as above, this S1C whisker was heated in the air at 900σ for 2 hours to remove Zr (N
o,) 22H0 was thermally decomposed to produce ZrO.

得られたSICウィスカーを実施例1と同様に分析又は
観察したところ、SiCウィスカーの全表面がZrOで
被覆され、ZrO被覆の平均膜厚は100Aであった。
When the obtained SIC whiskers were analyzed or observed in the same manner as in Example 1, the entire surface of the SiC whiskers was coated with ZrO, and the average film thickness of the ZrO coating was 100A.

〔発明の効果〕 本発明によれば、ウィスカー強化セラミックス複合材料
の強化材であるウィスカーの全表面に、金属酸化物の被
覆を均一に形成出来る。しかも、本発明方法は特殊な装
置や複雑な操作等が不要で簡便であると共に、−度に多
量のウィスカーを処理出来るので量産性、経済性にも優
れている。
[Effects of the Invention] According to the present invention, a metal oxide coating can be uniformly formed on the entire surface of the whisker, which is a reinforcing material of a whisker-reinforced ceramic composite material. In addition, the method of the present invention is simple and does not require special equipment or complicated operations, and is also excellent in mass production and economy since a large number of whiskers can be processed at one time.

本発明方法により得られる表面に均一な金属酸化物被覆
を有するウィスカーは、ウィスカー強化セラミックス複
合材料の強化材としてセラミックス母材との界面反応を
制御することができ、従って靭性を高いレベルで確実に
向上させうるので、ウィスカー強化セラミックス複合材
料の機械構造部品への応用が期待出来る。
The whiskers with a uniform metal oxide coating on the surface obtained by the method of the present invention can be used as reinforcing materials for whisker-reinforced ceramic composites to control the interfacial reaction with the ceramic matrix, thus ensuring a high level of toughness. Therefore, the application of whisker-reinforced ceramic composite materials to mechanical structural parts can be expected.

Claims (2)

【特許請求の範囲】[Claims] (1)ウィスカー強化セラミックス複合材料の強化材と
して用いるウィスカーの表面に金属酸化物の被覆を形成
する方法において、周期律表の2A、3A、4A族、L
i及びAlからなる群から選ばれた少なくとも1種の金
属元素の無機金属塩又は有機金属塩の溶液にウィスカー
を浸し、表面に前記金属塩を付着させたウィスカーを該
金属塩の熱分解温度以上の温度で熱処理することにより
、ウィスカーの表面に金属酸化物被覆を形成することを
特徴とするウィスカーへの酸化物被覆形成方法。
(1) In a method of forming a metal oxide coating on the surface of whiskers used as a reinforcing material of a whisker-reinforced ceramic composite material, groups 2A, 3A, 4A of the periodic table,
A whisker is immersed in a solution of an inorganic metal salt or an organic metal salt of at least one metal element selected from the group consisting of i and Al, and the whisker with the metal salt attached to the surface is heated to a temperature higher than the thermal decomposition temperature of the metal salt. 1. A method for forming an oxide coating on a whisker, the method comprising forming a metal oxide coating on the surface of the whisker by heat treatment at a temperature of .
(2)上記金属酸化物被覆の膜厚が0.5nm〜5μm
であることを特徴とする、請求項(1)記載のウィスカ
ーへの酸化物被覆形成方法。
(2) The thickness of the metal oxide coating is 0.5 nm to 5 μm
The method for forming an oxide coating on whiskers according to claim 1, characterized in that:
JP2161890A 1990-01-31 1990-01-31 Formation of oxide coating on whisker Pending JPH03226582A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2161890A JPH03226582A (en) 1990-01-31 1990-01-31 Formation of oxide coating on whisker
EP91101208A EP0444426B1 (en) 1990-01-31 1991-01-30 Process for producing a silicon carbide whisker-reinforced silicon nitride composite material
DE69127761T DE69127761T2 (en) 1990-01-31 1991-01-30 Process for the production of silicon carbide whisker-reinforced silicon nitride composite material
US07/648,762 US5141579A (en) 1990-01-31 1991-01-31 ProducingSi3 N4 composite by sheeting a mixture of Si3 N.sub.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2161890A JPH03226582A (en) 1990-01-31 1990-01-31 Formation of oxide coating on whisker

Publications (1)

Publication Number Publication Date
JPH03226582A true JPH03226582A (en) 1991-10-07

Family

ID=12060039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2161890A Pending JPH03226582A (en) 1990-01-31 1990-01-31 Formation of oxide coating on whisker

Country Status (1)

Country Link
JP (1) JPH03226582A (en)

Similar Documents

Publication Publication Date Title
US5525560A (en) Zirconia based composite material and method of manufacturing the same product
US3492153A (en) Silicon carbide-aluminum nitride refractory composite
JPH05186266A (en) Production of carbon fiber-reinforced silicon carbide composite ceramic
Kocjan The hydrolysis of AlN powder–a powerful tool in advanced materials engineering
Dong et al. Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method
JPH03226582A (en) Formation of oxide coating on whisker
Zhitomirsky et al. Cathodic electrosynthesis of PZT films
JPH03253598A (en) Dispersion plating method
JPH03226581A (en) Formation of oxide coating on inorganic fiber
US5141579A (en) ProducingSi3 N4 composite by sheeting a mixture of Si3 N.sub.
JPH03232799A (en) Method for forming non-oxide coating layer on whisker
Vahlas et al. Investigation of interfacial reactivity in composite materials
KR20030054077A (en) Method to coat ceramic powder with TiO2 and Method to improve wettability of B4C-Al composite material
JP3311915B2 (en) Alumina sintered body
KR100349169B1 (en) A preparing method of metal hydrate-even coated graphite powder having a good oxidation resistance in high temperature
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPH04357187A (en) Sintered silicon nitride and its production
Podbolotov et al. Effect of Synthesis Conditions on the Phase Composition and Structure of Nickel-Based Microspheres Prepared by Exothermic Synthesis from a Glycine–Nitrate Solution
JPS5846546B2 (en) Manufacturing method of metal evaporation container
JP2764318B2 (en) Method for producing titanium carbide having acicular particles
JP3496488B2 (en) Method for producing aluminum oxide fiber
Novikova et al. Some properties of pyrolitic boron nitride
Istomina et al. Fabrication of Carbon–Silicon Carbide Core–Shell Composite Fibers
JP2862283B2 (en) Method for producing conductive ceramic fiber
Feng et al. Preparation and Characteristics of Al Matrix Composites Reinforced with ZnWO 4 Coated (WO 3 p+ ABOw) Hybrid Reinforcements