JPH03226534A - Metallic porous body and its manufacture - Google Patents

Metallic porous body and its manufacture

Info

Publication number
JPH03226534A
JPH03226534A JP2033490A JP2033490A JPH03226534A JP H03226534 A JPH03226534 A JP H03226534A JP 2033490 A JP2033490 A JP 2033490A JP 2033490 A JP2033490 A JP 2033490A JP H03226534 A JPH03226534 A JP H03226534A
Authority
JP
Japan
Prior art keywords
powder
metallic
metal
ultrafine
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033490A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nakada
中田 好和
Toshihiko Kubo
敏彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2033490A priority Critical patent/JPH03226534A/en
Publication of JPH03226534A publication Critical patent/JPH03226534A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily manufacture a metallic porous body of high quality by uniformly sticking metallic superfine powder having specified average grain size on the surface of metallic powder having specified average grain size, forming it into a paste shape and executing loose sintering. CONSTITUTION:Metallic powder having 1 to 50mu average grain size and metallic superfine powder having <=0.1mu average grain size are charged to acetone, are violently stirred while ultrasonic waves are applied, are then uniformly dispersed, are mixed till acetone volatilizes and they are formed into a paste shape and are kneaded by a triple roller mill. When acetone perfectly volatilizes and paste contg. composite powder in which the metallic superfine powder is uniformly stuck on the surface of the metallic powder is obtd., the paste is compacted into a prescribed shape and is then dried and sintered. Furthermore, the sintering is executed in the atmosphere of an inert gas in the range from the temp. at which the ultrafine powder is sintered to form a neck or above to the one at which the metallic powder starts to sinter or below. In this way, the metallic porous body of high quality having high mechanical strength can be obtd. by low temp. sintering and is useful for filters, catalysts or the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、低温で焼結が可能であり、かつ、機械的強度
が大きく、例えば触媒、その担体、あるいはフィルター
などとして利用できる金属多孔質体とその製造方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention is a porous metal material that can be sintered at low temperatures and has high mechanical strength, and can be used as, for example, a catalyst, its carrier, or a filter. Concerning the body and its manufacturing methods.

〔従来の技術) 金属多孔質体は文字どおり多くの孔を有しているため、
孔を持たない通常の金属に比べて通気性、比表面積、毛
細管現象、および吸収性にすぐれ、それを利用した多く
のすぐれた特性と各種機能を持っている。今日、下記に
まとめて示すように金属多孔質体は広範な分野で利用さ
れている。
[Prior art] Porous metal bodies literally have many pores, so
Compared to ordinary metals that do not have pores, it has superior air permeability, specific surface area, capillary action, and absorbency, and has many excellent properties and various functions that utilize these characteristics. Today, porous metal bodies are used in a wide range of fields, as summarized below.

■通気性を利用するもの: フィルター、エアベアリング、エアロゾル、ガスの混合
・分離、粉粒体輸送基板、通気性金型■高比表面積を利
用するもの: 触媒、触媒担体、電池電極材、熱交換器エレメント、熱
絶縁材 ■毛細管現象を利用するもの: 含油軸受 ■吸収性を利用するもの: 消音材、緩衝材、電磁波シールド このように広範囲に利用されている金属多孔質体は、主
に粉末冶金の応用技術によって製造された焼結体から構
成されており、金属質であることから、プラスチックあ
るいはその他の材質のものと比較して過酷な条件下でも
使用でき、また焼結体であることから三次元構成の気孔
が存在するなどその優れた特性からますますその利用範
囲が拡大しているのが現状である。しがも、原料粉の形
状により気孔の形状を変え、さらに、粉末の充填あるい
は圧縮の状態それに焼結の程度や造孔材の使用などによ
って多孔率をがなり広範囲にわたって変えることができ
るのも有利な点である。
■Things that utilize breathability: Filters, air bearings, aerosols, gas mixing/separation, powder transport substrates, breathable molds ■Things that utilize high specific surface area: Catalysts, catalyst carriers, battery electrode materials, heat Exchanger elements, heat insulating materials ■ Items that utilize capillary action: Oil-impregnated bearings ■ Items that utilize absorption properties: Sound deadening materials, cushioning materials, electromagnetic wave shields These widely used metal porous materials are mainly It is composed of a sintered body manufactured using powder metallurgy applied technology, and because it is metallic, it can be used under harsh conditions compared to plastic or other materials. Due to its excellent properties such as the presence of pores with a three-dimensional structure, its range of use is currently expanding. However, the shape of the pores can be changed depending on the shape of the raw material powder, and the porosity can also be changed over a wide range by changing the filling or compression conditions of the powder, the degree of sintering, and the use of pore-forming materials. This is an advantageous point.

(発明が解決しようとするLliり ところで、金属多孔質体を微細孔用フィルターや有害ガ
スの浄化触媒に用いる場合には、圧力損失が小さく、孔
径が微細かつ均一に制御され、十分な機械的強度を有し
ていることが要求される。
(The problem that the invention seeks to solve) When a porous metal body is used as a microporous filter or a catalyst for purifying harmful gases, pressure loss is small, the pore diameter is controlled finely and uniformly, and sufficient mechanical strength is required. It is required to have strength.

この点すでに当業者にはよく知られているように、機械
的強度の向上には、比較的粒径の大きな金属粉末を強い
圧力を掛けて成形し、さらに、圧力を掛けながら高温で
焼結すればよい、しかし、この手法では原料金属粉末の
造粒が起こりゃすいために孔径制御が難しく、さらに、
連通気孔が得られにくいため圧力損失が大きいという問
題が生しる。金属多孔質体の製造には適しない。
As is well known to those skilled in the art, mechanical strength can be improved by molding metal powder with relatively large particle size under strong pressure, and then sintering it at high temperature while applying pressure. However, with this method, granulation of the raw metal powder tends to occur, making it difficult to control the pore size.
Since it is difficult to obtain continuous ventilation holes, a problem arises in that pressure loss is large. Not suitable for manufacturing porous metal bodies.

一方、孔径を精度よく制御しかつ圧力損失の増大を防ぐ
には、原料金属粉末が当初の粒径を保つ、いわゆるルー
スシンタリングという手法が採用される。このルースシ
ンタリングとは前記原料金属粉末が造粒したり、あるい
は潰れたりしないように、また、焼結による粒子間の結
合を最小にする(粒子間のネック成長の進行をできるだ
け抑える)ために該金属粉末の成形に関しては該金属粉
末に圧力を掛けずにバインダ等によってペースト化する
ことにより成形を行い、また、焼結も低い温度で短時間
内に終了させる方法である。この手法では、ペースト化
することにより厚膜状の金属多孔質体を任意の形状で作
製することが可能であり、圧力損失を下げることができ
る。
On the other hand, in order to accurately control the pore diameter and prevent an increase in pressure loss, a method called loose sintering is adopted in which the raw metal powder maintains its original particle size. This loose sintering is to prevent the raw metal powder from granulating or crushing, and to minimize the bond between particles due to sintering (to suppress the progress of neck growth between particles as much as possible). Regarding the molding of the metal powder, the metal powder is formed into a paste with a binder or the like without applying pressure, and the sintering is also completed within a short time at a low temperature. With this method, it is possible to produce a thick film-like porous metal body in any shape by making it into a paste, and pressure loss can be reduced.

しかし、その反面、機械的強度が極めて弱いという問題
が生じる。
However, on the other hand, a problem arises in that the mechanical strength is extremely weak.

さらに、孔径を精度よく制御するには原料金属粉末の形
状は球状であることが望ましく、理論的孔径は原料金属
粉末の粒子径の15.5〜41.4%の範囲、実際には
16.3〜20%の範囲であり、通常の金属粉末を用い
る工業的利用では18%が目安とされている。
Furthermore, in order to precisely control the pore size, it is desirable that the raw metal powder has a spherical shape, and the theoretical pore size is in the range of 15.5 to 41.4% of the particle size of the raw metal powder, and in practice it is 16.5% to 41.4% of the particle size of the raw metal powder. It ranges from 3 to 20%, and 18% is the standard for industrial use using ordinary metal powder.

しかし、金属多孔質体の孔を微細にするには原料金属粉
末の粒子径そのものを微小化しなければならず、このた
め、焼結による粒子間のネック成長の抑制が難しく孔径
精度が悪いものとなる。
However, in order to make the pores of a porous metal body finer, the particle size of the raw metal powder itself must be made smaller, which makes it difficult to suppress the growth of necks between particles during sintering, resulting in poor pore size accuracy. Become.

以上のように、従来法では、十分な機械的強度があり、
圧力損失が低く、かつ微細孔を持つ金属多孔質体は作製
できないという問題を有している。
As mentioned above, the conventional method has sufficient mechanical strength,
The problem is that a metal porous body with low pressure loss and fine pores cannot be produced.

それぞれが相反する性質であるため、それらを同時に満
足する焼結体は製造できないと考えられていた。
Since each of these properties is contradictory, it was thought that it would be impossible to produce a sintered body that satisfies both of them at the same time.

すなわち、高品位の金属多孔質体を作製するには粒子間
のネック成長を抑制しなければならない。
That is, in order to produce a high-quality porous metal body, neck growth between particles must be suppressed.

一方、粒子間のネック成長が進行するほど、金属多孔質
体の機械的強度は増すが、反面、孔径の制御は難しくな
り、圧力損失も大きくなる。さらに、金属粉末にネック
成長を起こさせるには約1000°C以上まで加熱して
焼結しなければならず、ネック成長そのものの制御も決
して容易ではない。
On the other hand, as the neck growth between particles progresses, the mechanical strength of the metal porous body increases, but on the other hand, it becomes difficult to control the pore diameter and the pressure loss increases. Furthermore, in order to cause neck growth in the metal powder, it is necessary to sinter the metal powder by heating it to a temperature of about 1000° C. or higher, and controlling the neck growth itself is not easy.

本発明の目的は、以上の従来技術の問題点を解決すべく
、十分な機械的強度があり、圧力損失が低く、微細孔を
持つ高品位の金属多孔質体およびその製造方法を提供す
ることである。
An object of the present invention is to provide a high-quality porous metal body having sufficient mechanical strength, low pressure loss, and micropores, and a method for manufacturing the same, in order to solve the problems of the prior art described above. It is.

(課題を解決するための手段) ここに、本発明者らは、低温における焼結で粒子間のネ
ック成長が起こり、しかもそのネック成長が制御可能で
ある粉末混合体を出発原料とする金属多孔質体によって
上述の目的が効果的に達成されることを知り、本発明を
完成した。
(Means for Solving the Problems) Here, the present inventors have developed a metal porous material using a powder mixture as a starting material, in which neck growth between particles occurs during low-temperature sintering, and the neck growth can be controlled. The present invention was completed based on the knowledge that the above-mentioned object can be effectively achieved by a mass body.

すなわち、本発明は、平均粒径1〜50μmの金属粉末
の表面上に平均粒径0.1−以下の金属超微粉を付着さ
せた複合粉末の焼結体より成ることを特徴とする金属多
孔質体である。
That is, the present invention provides a metal porous body characterized by comprising a sintered body of a composite powder in which ultrafine metal powder with an average particle size of 0.1- or less is adhered to the surface of a metal powder with an average particle size of 1 to 50 μm. It is a quality structure.

別の面からは、本発明は、平均粒径l〜50pの金属粉
末の表面上に平均粒径0.1−以下の金属超微粉を均一
に付着させ、つまりまぶして得た複合粉末をペースト化
してルースシンタリングすることを特徴とする金属多孔
質体の製造方法である。
From another aspect, the present invention provides a composite powder obtained by uniformly adhering ultrafine metal powder with an average particle size of 0.1- or less on the surface of a metal powder with an average particle size of 1 to 50p, that is, by sprinkling it onto the surface of a metal powder with an average particle size of 1 to 50p. This is a method for manufacturing a porous metal body, which is characterized by forming a porous metal body and loosely sintering it.

このように、本発明によれば、凝集性の強い金属の超微
粉を湿式混合法により原料金属粉末の表面上に可及的均
一に付着させることにより、該原料金属粉末の表面を低
温焼結が可能になるよう改質し、一方、上記の金属超微
粉の添加量を変えることにより粒子間のネック成長を制
御することで、十分な機械的強度を持ち、圧力損失が低
い微細金属多孔質体が作製される。
As described above, according to the present invention, the surface of the raw metal powder is subjected to low-temperature sintering by attaching highly cohesive ultrafine metal powder to the surface of the raw metal powder as uniformly as possible by a wet mixing method. On the other hand, by controlling neck growth between particles by changing the amount of the ultrafine metal powder added, we can create fine porous metal with sufficient mechanical strength and low pressure loss. A body is created.

本発明にかかる金属多孔質体をフィルターとして利用す
る場合、上述のようにして得た複合粉末を含むペースト
をセラミック等の補助基板等に塗布し乾燥・焼結後前記
補助基板より剥離すればよい。
When using the metal porous body according to the present invention as a filter, the paste containing the composite powder obtained as described above may be applied to an auxiliary substrate such as a ceramic, dried and sintered, and then peeled from the auxiliary substrate. .

また、本発明にかかる金属多孔質体を触媒あるいはその
担体として利用する場合、上述のようにして得た複合粉
末を含むペーストを、予め用意したハニカム構造体、パ
イプ、金属網状体等に塗布し、乾燥後焼結させればよい
In addition, when the metal porous body according to the present invention is used as a catalyst or its carrier, a paste containing the composite powder obtained as described above is applied to a previously prepared honeycomb structure, pipe, metal mesh body, etc. , and then sintered after drying.

(作用) 本発明の構成と作用を説明する。(effect) The structure and operation of the present invention will be explained.

金属超微粉の低温焼結特性は一般に広く知られており、
本発明はこれを巧みに利用するものである。
The low-temperature sintering properties of ultrafine metal powder are generally well known;
The present invention takes advantage of this.

例えば、平均粒径0.05μmの鉄超微粉のベレット状
成形体は、ミクロンオーダーの粉末の成形体に比べて2
00℃以上低い300〜400℃で体積減少が始まる。
For example, a pellet-shaped compact made of ultrafine iron powder with an average particle size of 0.05 μm is 2 times smaller than a pellet-shaped compact made of ultrafine iron powder with an average particle size of 0.05 μm.
Volume decrease begins at 300 to 400°C, which is lower than 00°C.

したがって、この低温焼結特性を持つ金属超微粉をミク
ロンオーダーの金属粉末の表面に被覆させると、得られ
た複合粉末は低温で焼結しネック成長を起こす、ここで
、低温で焼結を起こすのは金属微粉表面上の金属超微粉
のみであり、母体のミクロンオーダーの金属粉末の焼結
は起こらない、すなわち、この手法で作製した金属多孔
質体においてはネック部を形成しているのは金属超微粉
のみであり、ミクロンオーダーの金属粉末はネック成長
に寄与していない、したがって、超微粉が金属粉末粒子
間に形成されたネックとなり金属微粉がネットワーク状
に結ばれ多孔質体を作るのである。
Therefore, when ultrafine metal powder with low-temperature sintering characteristics is coated on the surface of micron-order metal powder, the resulting composite powder will sinter at low temperatures and cause neck growth.Here, sintering occurs at low temperatures. This is only the ultrafine metal powder on the surface of the fine metal powder, and no sintering of the micron-order metal powder in the matrix occurs.In other words, in the porous metal body produced by this method, the neck is formed by It is only ultrafine metal powder, and metal powder on the micron order does not contribute to the neck growth. Therefore, the ultrafine powder becomes the neck formed between the metal powder particles, and the metal fine powder is connected in a network to create a porous body. be.

このため、この超微粉を被覆した複合粉末を焼結させる
温度(Ts)を、超微粉が焼結を起こしネックを成形す
る温度(T、)とミクロンオーダーの金属粉末単体が焼
結を開始する温度(T2)の間に設定すれば(すなわち
Tl<Ts<Tz) 、金属粉末粒子表面上の超微粉の
みが焼結を起こしネック部を形成する。
For this reason, the temperature at which the composite powder coated with this ultrafine powder is sintered (Ts) is the temperature at which the ultrafine powder causes sintering and forms the neck (T, ), and the micron-order metal powder alone starts sintering. If the temperature is set between T2 (ie, Tl<Ts<Tz), only the ultrafine powder on the surface of the metal powder particles will sinter and form a neck portion.

さらにネック部の幅は超微粉の添加量によって制御でき
る。当然のことながら、超微粉の添加量が多いとネック
幅は太く、超微粉の添加量が少ないとネック幅は細くな
る。
Furthermore, the width of the neck can be controlled by the amount of ultrafine powder added. Naturally, the larger the amount of ultrafine powder added, the wider the neck width, and the smaller the amount of ultrafine powder added, the narrower the neck width.

かくして、本発明によれば、低温における焼結で粒子間
のネック部が完全に制御された高品位の金属多孔質体が
得られる。
Thus, according to the present invention, a high-quality porous metal body in which the neck portion between particles is completely controlled can be obtained by sintering at a low temperature.

原料粉末となる金属粉末の平均粒径を1〜50μmとす
るのは焼結体に十分な強度を付与するためである。1μ
−未満では凝集性が強く、十分な強度が実現されず、一
方50t1m超と大形粒子となると低温焼結による超微
粉のネック成長部が多孔質体構造を維持するに十分でな
くなる。
The reason why the average particle size of the metal powder serving as the raw material powder is set to 1 to 50 μm is to impart sufficient strength to the sintered body. 1μ
If it is less than -, the cohesiveness is strong and sufficient strength cannot be achieved, while if the particle size exceeds 50 t1m, the neck growth part of the ultrafine powder due to low-temperature sintering will not be sufficient to maintain the porous body structure.

また、超微粉の平均粒径を0.1 μ−以下としたのは
、それより大きな粒子であると凝集性が十分でなく、満
足するネック成長が期待できない。
Further, the reason why the average particle size of the ultrafine powder is set to be 0.1 μm or less is because particles larger than this do not have sufficient cohesiveness and satisfactory neck growth cannot be expected.

これらの原料粉末および超微粉の種類はおよび組み合わ
せは特に制限ないが、例えば金属フィルターに用いる場
合には、金、銀、白金、銅、ニッケル、鉄、青銅、黄銅
、ステンレス鋼、モネルメタル、インコネルなとである
The types and combinations of these raw material powders and ultrafine powders are not particularly limited, but when used for metal filters, for example, gold, silver, platinum, copper, nickel, iron, bronze, brass, stainless steel, monel metal, inconel, etc. That is.

その他、触媒、その担体の場合には銀、ニッケル、白金
の組み合わせも考えられる。
In addition, in the case of catalysts and their carriers, combinations of silver, nickel, and platinum may also be considered.

また、原料粉末および超微粉としては同一種類の金属を
使用するが、場合によっては異質の金属を使用してもよ
い。
Further, although the same type of metal is used as the raw material powder and the ultrafine powder, different metals may be used depending on the case.

このようにして用意した超微粉および原料粉末は、次い
で混合するが、そのとき凝集性の強い金属超微粉を金属
粉末の表面に可及的均一にかつ超・微粉が変形すること
なく付着させることが最も重要である。
The ultrafine powder and raw material powder prepared in this way are then mixed, and at this time, the highly cohesive metal ultrafine powder is adhered to the surface of the metal powder as uniformly as possible without deforming the ultrafine powder. is the most important.

乾式の粉末混合法においては単純な流動による混合ある
いは機械的なせん断力による混合では金属超微粉の凝集
状態の分散は不可能である。一方、微粉表面に超微粉を
高速気流により衝突させる方法もあるが、しかし、この
方法では、超微粉は強制的に粉末粒子表面に結合される
ため、超微粉はつぶされて変形してしまう、すなわち、
粉末の表面上には、超微粉の曲率半径の大きな突起物が
多数形成されるのみである。しかし、このようにして得
られた複合粉末には低温焼結特性が現れなかった。この
原因は、超微粉のもつ低温焼結特性はその微小な曲率半
径によるものであるが、この複合粉末の表面上の突起物
の曲率半径は当初の曲率半径より大きくなっているため
である。さらに、この複合粉末中には酸素等の不純物の
濃度も増加していた。
In the dry powder mixing method, it is impossible to disperse the agglomerated state of ultrafine metal powder by mixing by simple flow or mixing by mechanical shearing force. On the other hand, there is a method in which ultrafine powder is collided with the surface of fine powder using high-speed airflow, but in this method, the ultrafine powder is forcibly bonded to the surface of the powder particles, so the ultrafine powder is crushed and deformed. That is,
On the surface of the powder, only a large number of protrusions of ultrafine powder with a large radius of curvature are formed. However, the composite powder thus obtained did not exhibit low-temperature sintering properties. The reason for this is that the low-temperature sintering properties of ultrafine powder are due to its minute radius of curvature, but the radius of curvature of the protrusions on the surface of this composite powder is larger than the initial radius of curvature. Furthermore, the concentration of impurities such as oxygen was also increased in this composite powder.

そこで、本発明者らは湿式混合を行い超微粉による原料
粉末の被覆を試みた。分散媒としては揮発性の高いアセ
トンを用いた。まず、アセトン中に原料粉末および超微
粉を投入し、超音波を掛けながら激しく撹拌した。この
操作によりアセトン中に原料粉末と超微粉とが均一に分
散し、超微粉の凝集状態は解体される。この混合操作は
アセトンが揮発(蒸発)して、アセトン・粉末・超微粉
の混合物がペースト状になるまで続ける。この混合物が
ペースト状になれば、次に、三本ローラーミルで混練す
る。最終的に、アセトンが完全に揮発すれば、原料粉末
粒子表面上に超微粉が可及的均一に付着した複合粉末が
得られる。このプロセスにおいては超微粉に加わる力は
ペースト混練時に加わるごく弱いせん断力のみであるた
め超微粒子の変形・造粒は発生しない、すなわち、超微
粒子は原料粉末粒子の表面上に、そのファンデルワール
ス力により付着している。よってこの方法では理想的な
超微粉被覆複合粉末が作製できる。
Therefore, the present inventors conducted wet mixing and attempted to coat the raw material powder with ultrafine powder. Highly volatile acetone was used as the dispersion medium. First, raw material powder and ultrafine powder were put into acetone and stirred vigorously while applying ultrasonic waves. By this operation, the raw material powder and the ultrafine powder are uniformly dispersed in acetone, and the agglomerated state of the ultrafine powder is broken up. This mixing operation continues until the acetone volatilizes (evaporates) and the mixture of acetone, powder, and ultrafine powder becomes a paste. Once this mixture has become a paste, it is then kneaded using a three-roller mill. Finally, when the acetone is completely volatilized, a composite powder in which ultrafine powder is adhered as uniformly as possible on the surface of the raw powder particles is obtained. In this process, the only force applied to the ultrafine powder is a very weak shearing force applied during paste kneading, so no deformation or granulation of the ultrafine particles occurs. It is attached by force. Therefore, with this method, an ideal ultrafine powder-coated composite powder can be produced.

ここに、上記の原料粉末と超微粉との配合割合は、特に
制限はないが、超微粉が可及的均一に原料粉末の粒子表
面に付着するに必要かつ十分な量であればよく、例えば
、原料粉末と超微粉との配合重量比は1〜30、好まし
くは3〜15であれば十分である。
Here, the blending ratio of the raw material powder and the ultrafine powder is not particularly limited, but it may be in an amount necessary and sufficient for the ultrafine powder to adhere to the particle surface of the raw material powder as uniformly as possible, for example. It is sufficient that the weight ratio of the raw material powder to the ultrafine powder is 1 to 30, preferably 3 to 15.

このようにして準備された複合粉末を含むペーストは次
いで所定形状に成形してから、あるいはセラミック等の
補助基板などに塗布し、または予め別途用意されたハニ
カム構造体、バイブ、金属網状体等に慣用手段で塗布、
乾燥し、焼結後そのままあるいは基板から剥離して製品
とする。
The paste containing the composite powder prepared in this way is then molded into a predetermined shape, or applied to an auxiliary substrate such as ceramic, or applied to a separately prepared honeycomb structure, vibrator, metal mesh, etc. Apply by conventional means,
After drying and sintering, it is used as a product as it is or by peeling it off from the substrate.

なお、成形に当たっては超微粉の変形を可及的に抑える
ことが好ましく、そのような注意を払う必要があるが、
成形手段それ自体は特に制限されない。
It should be noted that during molding, it is preferable to suppress the deformation of the ultrafine powder as much as possible, and it is necessary to take such precautions.
The molding means itself is not particularly limited.

焼結は、従来法に従って行えばよく、本発明において特
に制限されるものではない0例えば、不活性ガス雰囲気
あるいは真空雰囲気下で、すでに述べたように、上記ペ
ーストの焼結温度をTs、超微粉が焼結を起こしネック
を成形する温度をT、、原料粉末が焼結を開始する温度
をTtとした場合、T、<Ts<Tzの範囲内の温度T
sで焼結すればよい。
Sintering may be carried out according to a conventional method, and is not particularly limited in the present invention. For example, in an inert gas atmosphere or a vacuum atmosphere, as already mentioned, the sintering temperature of the paste is set to exceed Ts. If the temperature at which the fine powder sinters and forms the neck is T, and the temperature at which the raw material powder starts sintering is Tt, the temperature T is within the range of T,<Ts<Tz.
It may be sintered with s.

本発明の好適態様によれば、上記焼結体の製造に際して
は、湿式混合ペーストを約1/2Tm(T−は融点K)
の低温で焼結するのが好ましい。
According to a preferred embodiment of the present invention, when producing the sintered body, the wet mixed paste is mixed at about 1/2 Tm (T- is the melting point K).
It is preferable to sinter at a low temperature of .

具体的には、銅微細粉0.05μ冒、銅原料粉末5μμ
mの場合、焼結温度は、550〜700″Cである。
Specifically, copper fine powder 0.05μμ, copper raw material powder 5μμ
m, the sintering temperature is 550-700''C.

次に、本発明を実施例により、より詳細に説明するがこ
れらの実施例は本発明の単なる例示として示すもので、
それを何ら限定するものではない。
Next, the present invention will be explained in more detail with reference to Examples, but these Examples are shown merely as illustrations of the present invention.
It is not limited in any way.

実施例1 平均粒径5pの球状整粒であるCu粉末9.5gと、平
均粒径0.05p1のCu超微粉0.5gとを15cc
のアセトン中に投入し超音波振動を加えながら撹拌し、
アセトンの揮発が進んで混合物がペースト状になったと
ころで、三本ローラーミルで混練し、アセトンを完全に
揮発させて超微粉被覆複合粉末を得た。
Example 1 15 cc of 9.5 g of spherical Cu powder with an average particle size of 5 p and 0.5 g of Cu ultrafine powder with an average particle size of 0.05 p1
Pour into acetone and stir while applying ultrasonic vibration.
When the acetone had progressed to volatilization and the mixture had become paste-like, it was kneaded in a three-roller mill to completely volatilize the acetone to obtain an ultrafine powder-coated composite powder.

この複合粉末10gを有機液体媒質(6重量%エチルセ
ルロース−テルピネオール) 1.2g中に分散させペ
ースト化した。該ペーストを厚さlam、縦横それぞれ
25IIIlのセラミックス製素焼盤上に厚さlawと
なるように塗布した0次に、120°Cで10分間乾燥
させた後、窒素雰囲気中において600°Cで12分間
焼結させた。なお、有機液体媒質は400°Cまでにバ
ーンアウトしている。冷却後焼結膜を素焼板から剥した
ところ孔径の約2μmの銅矛孔質体が得られた。
10 g of this composite powder was dispersed in 1.2 g of an organic liquid medium (6% by weight ethyl cellulose-terpineol) to form a paste. The paste was applied to a ceramic clay plate with a thickness of lam and 25 mm in each direction to a thickness of 1. Next, after drying at 120°C for 10 minutes, it was dried at 600°C in a nitrogen atmosphere for 12 minutes. Sintered for minutes. Note that the organic liquid medium burns out by 400°C. After cooling, the sintered film was peeled off from the unglazed plate to obtain a copper porous body with a pore diameter of approximately 2 μm.

機械的強度(引張強度)は、10kg10n”、気孔率
は25%、また空気を100N j! /win流した
場合の圧力損失は10gf/cm”であった、このよう
な特性は、平均粒径5μmの球状整粒であるCu粉末単
独の焼結体あるいは、平均粒径0,05−〇Cu超微粉
単独の焼結体の特性と比較して特に通気性の点において
優れている。
The mechanical strength (tensile strength) was 10kg10n'', the porosity was 25%, and the pressure loss when air was flowed at 100Nj!/win was 10gf/cm''. It is particularly superior in terms of air permeability compared to the properties of a sintered body made of only 5 μm spherical sized Cu powder or a sintered body made only of ultrafine Cu powder with an average particle size of 0.05-0.

このようにして得られた金属多孔質体は、特にフィルタ
ーとして有用であり、特に、Arガス中のO1量を10
ppb以下にまで低減できた。
The metal porous body obtained in this way is particularly useful as a filter, and in particular, the amount of O1 in Ar gas can be reduced by 10
It was possible to reduce the amount to less than ppb.

なお、第1図は、本例において原料粉末と超微粉との配
合量を種々変更した場合の、得られた焼結体の性質の変
化をグラフで示したものであり、これからも分かるよう
に、本発明によれば、気孔率、気孔寸法、等について大
きく変更が可能であることが分かる。
Furthermore, Figure 1 is a graph showing the changes in the properties of the obtained sintered body when the blending amounts of raw material powder and ultrafine powder were variously changed in this example, and as can be seen from this figure. It can be seen that according to the present invention, the porosity, pore size, etc. can be greatly changed.

実施例2 平均粒径5pの球状整粒のCu粉末9gと平均粒径0.
05/jIのCu超微粉1gとを実施例1と同様にアセ
トンによる湿式混合法により複合粉末とした。この複合
粉末10gを有機液体媒質(6重量%エチルセルロース
−テルピネオール) 1.4g中に分散させペースト化
した。
Example 2 9 g of spherical Cu powder with an average particle size of 5p and an average particle size of 0.
05/jI and 1 g of Cu ultrafine powder were made into a composite powder by the wet mixing method using acetone in the same manner as in Example 1. 10 g of this composite powder was dispersed in 1.4 g of an organic liquid medium (6% by weight ethyl cellulose-terpineol) to form a paste.

このようにして得たペーストを実施例1と同様に素焼盤
上に塗布し、乾燥させた後、窒素雰囲気中において60
0°Cで12分間焼結させた。冷却後焼結膜を素焼板か
ら剥がしたところ孔径的1μmの多孔質体が得られた0
機械的強度は8 kg/+gn”であった、また気孔率
は20%であった。
The paste thus obtained was applied on a bisque board in the same manner as in Example 1, dried, and then heated for 60 minutes in a nitrogen atmosphere.
Sintering was performed at 0°C for 12 minutes. When the sintered film was peeled off from the unglazed plate after cooling, a porous body with a pore diameter of 1 μm was obtained.
The mechanical strength was 8 kg/+gn'' and the porosity was 20%.

このようにして得られた金属多孔質体は、特にフィルタ
ーとして有用であり、特に、^rガス中のθ□量を1o
ppb以下にまで低減できた。
The metal porous body obtained in this way is particularly useful as a filter, especially when the amount of θ□ in the ^r gas is reduced by 10
It was possible to reduce the amount to less than ppb.

実施例3 平均粒径3)gの球状整粒のCu粉末9gと平均粒径0
.05μのCu超微粉1gとを実施例1と同様にアセト
ンによる湿式混合法により複合粉末とした。この複合粉
末10gを有機液体媒質(6%工・チルスルロース−テ
ルピネオール)1.4g中に分散させペースト化した。
Example 3 9 g of spherical Cu powder with an average particle size of 3) g and an average particle size of 0
.. A composite powder was prepared by wet mixing with 1 g of Cu ultrafine powder having a diameter of 0.05 μm using acetone in the same manner as in Example 1. 10 g of this composite powder was dispersed in 1.4 g of an organic liquid medium (6% Tilsululose-Terpineol) to form a paste.

得られたペーストを実施例1と同様に素焼盤上に塗布し
、乾燥させた後、窒素雰囲気中において600°Cで1
2分間焼結させた。冷却後焼結膜を素焼板から剥がした
ところ孔径的0.57jの多孔質体が得られた。ll械
的強度は9 kg/+u+”であった、また気孔率は2
0%であった。
The obtained paste was applied on a bisque plate in the same manner as in Example 1, dried, and then heated at 600°C in a nitrogen atmosphere for 1 hour.
Sintered for 2 minutes. After cooling, the sintered film was peeled off from the unglazed plate, and a porous body with a pore diameter of 0.57j was obtained. The mechanical strength was 9 kg/+u+'', and the porosity was 2.
It was 0%.

このようにして得られた金属多孔質体は、特にフィルタ
ーとして有用であり、特に、Arガス中のowlをto
ppb以下にまで低減できた。
The metal porous body obtained in this way is particularly useful as a filter, especially for removing owl in Ar gas.
It was possible to reduce the amount to less than ppb.

実施例4 平均粒径5μmの球状整粒のNi粉末9.5gと平均粒
径0.02/JlのNi超微粉0.5gとを実施例1と
同様にアセトンによる湿式混合法により複合粉末とした
Example 4 9.5 g of spherical Ni powder with an average particle size of 5 μm and 0.5 g of ultrafine Ni powder with an average particle size of 0.02/Jl were mixed into a composite powder using a wet mixing method using acetone in the same manner as in Example 1. did.

この複合粉末10gを有機液体媒質(6%エチルセルロ
ース−チルビオネール) 1.4gに分散すせペースト
化した。
10 g of this composite powder was dispersed in 1.4 g of an organic liquid medium (6% ethylcellulose-chilbionel) to form a paste.

得られたペーストを実施例1と同様に素焼盤上に塗布し
、乾燥させた後、窒素雰囲気中において700°Cで1
2分間焼結させた。冷却後、焼結膜を素焼板から剥がし
たところ孔径の約2/j多孔質体が得られた0機械的強
度は12kg/−m”であった。また気孔率は20%で
あった。
The obtained paste was applied on a bisque plate in the same manner as in Example 1, dried, and then heated at 700°C in a nitrogen atmosphere for 1 hour.
Sintered for 2 minutes. After cooling, the sintered film was peeled off from the unglazed plate to obtain a porous body with a pore size of about 2/j.The mechanical strength was 12 kg/-m''.The porosity was 20%.

このようにして得られた金属多孔質体は、特に触媒とし
て有用であり、特に水素と一酸化炭素とから炭化水素を
合成する反応(フィンシャートロピッシュ合成反応H2
÷CO→CxHy)において約570°CでCO転化率
が95%に達した。
The metal porous body obtained in this way is particularly useful as a catalyst, especially for the reaction of synthesizing hydrocarbons from hydrogen and carbon monoxide (Finscher-Tropish synthesis reaction H2).
The CO conversion rate reached 95% at about 570°C (÷CO→CxHy).

実施例5 平均粒径5μmの球状整粒のNi粉末9gと平均粒径0
、02mのNi超微粉1gとを実施例1と同様にアセト
ンによる湿式混合法により複合粉末とした。この複合粉
末10gを有機液体媒質(6重量%エチルセルロース−
テルピネオール) 1.4g中に分散させペースト化し
た。得られたペーストを実施例1と同様に素焼盤上に塗
布し、乾燥させた後、窒素雰囲気中において700°C
で12分間焼結させた。冷却後焼結膜を素焼板から剥が
したところ孔径的1μmの多孔質体が得られた。
Example 5 9 g of spherical Ni powder with an average particle size of 5 μm and an average particle size of 0
, 02m and 1 g of ultrafine Ni powder were made into a composite powder by wet mixing using acetone in the same manner as in Example 1. 10 g of this composite powder was mixed with an organic liquid medium (6% by weight of ethyl cellulose).
Terpineol) was dispersed in 1.4 g to form a paste. The obtained paste was applied on a bisque plate in the same manner as in Example 1, dried, and then heated at 700°C in a nitrogen atmosphere.
It was sintered for 12 minutes. After cooling, the sintered film was peeled off from the unglazed plate, and a porous body with a pore diameter of 1 μm was obtained.

このようにして得られた金属多孔質体は、特に触媒とし
て有用であり、フィッシャートロピッシュ合成反応にお
いて、約590°CでCO転化率95%に達した。
The metal porous body thus obtained is particularly useful as a catalyst, and reached a CO conversion rate of 95% at about 590°C in a Fischer-Tropish synthesis reaction.

実施例6 実施例5と同様に、平均粒径5/Jlの球状整粒のNi
粉末9gと平均粒径0.02μmのNi超微粉1gとを
実施例1と同様にアセトンによる湿式混合法により複合
粉末とした。この複合粉末10gを有機液体媒質(61
1量%エチルセルロース−テルピネオール)1.4g中
に分散させペースト化した。該ペーストを内径20mm
のステンレス製パイプの内面に塗布し、乾燥させた後、
窒素雰囲気中において700″Cで12分間焼結させた
ところ、パイプの内面に孔径的1μmのNi多孔質層が
形成された。このNi多孔質層はパイプと金属結合をし
、強固に接着していた。
Example 6 Similar to Example 5, spherical Ni with an average particle size of 5/Jl
Similar to Example 1, 9 g of powder and 1 g of ultrafine Ni powder having an average particle size of 0.02 μm were mixed using acetone to form a composite powder. 10 g of this composite powder was mixed with an organic liquid medium (61
The mixture was dispersed in 1.4 g of 1% ethylcellulose-terpineol to form a paste. The paste has an inner diameter of 20 mm.
After applying it to the inner surface of the stainless steel pipe and letting it dry,
When sintered at 700"C for 12 minutes in a nitrogen atmosphere, a Ni porous layer with a pore diameter of 1 μm was formed on the inner surface of the pipe. This Ni porous layer formed a metallic bond with the pipe and firmly adhered. was.

このようにして得られた金属多孔質体は、特に触媒とし
て有用であり、約700℃で自動車の排気ガス中のNO
xガスを除去した。
The metal porous body obtained in this way is particularly useful as a catalyst, and at about 700°C it is possible to reduce NO in automobile exhaust gas.
x gas was removed.

なお、同様の操作によって触媒および触媒担体を製造し
たが、いずれについても満足する結果が得られた。
Incidentally, a catalyst and a catalyst carrier were manufactured by the same operation, and satisfactory results were obtained for both.

(発明の効果) 以上詳述したように本発明により、高品位の金属多孔質
体が容易に作製可能である。この高品位の金属多孔質体
はフィルター、触媒、触媒担体等に応用でき、その工業
的価値は大である。
(Effects of the Invention) As detailed above, according to the present invention, a high-quality porous metal body can be easily produced. This high-grade porous metal material can be applied to filters, catalysts, catalyst supports, etc., and has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の結果を示すグラフである。 FIG. 1 is a graph showing the results of an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)平均粒径1〜50μmの金属粉末の表面上に平均
粒径0.1μm以下の金属超微粉を付着させた複合粉末
の焼結体より成ることを特徴とする金属多孔質体。
(1) A metal porous body characterized by being made of a sintered body of a composite powder in which ultrafine metal powder with an average particle size of 0.1 μm or less is adhered to the surface of metal powder with an average particle size of 1 to 50 μm.
(2)平均粒径1〜50μmの金属粉末の表面上に平均
粒径0.1μm以下の金属超微粉を均一に付着させて得
た複合粉末をペースト化してからルースシンタリングす
ることを特徴とする金属多孔質体の製造方法。
(2) A composite powder obtained by uniformly adhering ultrafine metal powder with an average particle size of 0.1 μm or less on the surface of metal powder with an average particle size of 1 to 50 μm is turned into a paste and then loose sintered. A method for producing a porous metal body.
JP2033490A 1990-01-30 1990-01-30 Metallic porous body and its manufacture Pending JPH03226534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033490A JPH03226534A (en) 1990-01-30 1990-01-30 Metallic porous body and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033490A JPH03226534A (en) 1990-01-30 1990-01-30 Metallic porous body and its manufacture

Publications (1)

Publication Number Publication Date
JPH03226534A true JPH03226534A (en) 1991-10-07

Family

ID=12024240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033490A Pending JPH03226534A (en) 1990-01-30 1990-01-30 Metallic porous body and its manufacture

Country Status (1)

Country Link
JP (1) JPH03226534A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306753B2 (en) 1999-12-29 2007-12-11 Gkn Sinter Metals Gmbh Method of making a thin porous layer
CN104419848A (en) * 2013-08-30 2015-03-18 成都易态科技有限公司 Powdery sintered metal porous body, filter element and method for improving permeability thereof
JP2016008604A (en) * 2014-06-24 2016-01-18 筌誠機械股▲分▼有限公司 Noise suppressor for pneumatic tool
JP2018511706A (en) * 2015-04-01 2018-04-26 成都易態科技有限公司 Flexible porous metal foil and method for producing flexible porous metal foil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7306753B2 (en) 1999-12-29 2007-12-11 Gkn Sinter Metals Gmbh Method of making a thin porous layer
CN104419848A (en) * 2013-08-30 2015-03-18 成都易态科技有限公司 Powdery sintered metal porous body, filter element and method for improving permeability thereof
CN104419848B (en) * 2013-08-30 2016-09-28 成都易态科技有限公司 Powder sintered metal porous body, filter element and improve its infiltrative method
JP2016008604A (en) * 2014-06-24 2016-01-18 筌誠機械股▲分▼有限公司 Noise suppressor for pneumatic tool
JP2018511706A (en) * 2015-04-01 2018-04-26 成都易態科技有限公司 Flexible porous metal foil and method for producing flexible porous metal foil

Similar Documents

Publication Publication Date Title
US7108828B2 (en) Method of making open cell material
US20100028710A1 (en) Open cell porous material and method for producing same
WO2003015963A1 (en) Method of making open cell material
WO1995026844A1 (en) Method for producing porous bodies
JP2000510807A (en) Stabilization of sintered foam and production of open-cell sintered foam
JPH03226534A (en) Metallic porous body and its manufacture
JP2680819B2 (en) Method for producing tabular products from granular materials
JP3566637B2 (en) Manufacturing method of sintered titanium filter
JP2018104768A (en) Aluminum alloy porous body and manufacturing method therefor
JP2000192107A (en) Porous metal, and its manufacture
JP2020534433A (en) A method for manufacturing a metal perforated molded body, and a molded body manufactured by the method.
JP2011111652A (en) Method for producing copper porous body, and coating film layer of copper porous body
JPS6133041B2 (en)
JPH1046209A (en) Production of porous aluminum green compact
JPH0736381B2 (en) Heat resistant jig and its manufacturing method
JPH03188203A (en) Manufacture of porous sintered body
JPH01194914A (en) Metallic filter and manufacture thereof
JP2949130B2 (en) Method for producing porous metal filter
CA2355790C (en) Method of making open cell material
JP3300871B2 (en) Porous sintered body and method for producing the same
JP3473794B2 (en) Porous material and method for producing the same
JPH0760035A (en) Metal filter and production thereof
CN115740431A (en) Compound copper powder and preparation method and application thereof
Hong et al. Fabrication of a dense La0. 2Sr0. 8CoO3− δ/CoO composite membrane by utilizing the electroless cobalt plating technique
JPS60264365A (en) Porous silicon carbide sintered body and manufacture