JPH03223648A - Thin film moisture sensitive element - Google Patents

Thin film moisture sensitive element

Info

Publication number
JPH03223648A
JPH03223648A JP16073890A JP16073890A JPH03223648A JP H03223648 A JPH03223648 A JP H03223648A JP 16073890 A JP16073890 A JP 16073890A JP 16073890 A JP16073890 A JP 16073890A JP H03223648 A JPH03223648 A JP H03223648A
Authority
JP
Japan
Prior art keywords
film
thin film
moisture
metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16073890A
Other languages
Japanese (ja)
Inventor
Makoto Murata
誠 村田
Masakazu Kamikita
正和 上北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP16073890A priority Critical patent/JPH03223648A/en
Publication of JPH03223648A publication Critical patent/JPH03223648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a thin film moisture sensitive element characterized by excellent resistance against temperature, chemical and the like, high sensitivity and high-speed response by using a dielectric film comprising a metal oxide film or metal nitride film and a polyimide-based thin film having a specified thickness or less. CONSTITUTION:In a thin film moisture sensitive element, metal, a moisture sensitive film and metal are formed on an insulating substrate IS in this order. The moisture sensitive film is a dielectric film formed by laminating a metal oxide film or a metal nitride film having the thickness of 2,000Angstrom or less and a polyimide-based thin film having the thickness of 1,000Angstrom in this order. It is preferable that the thickness of the polyimide-based thin film is 1,000Angstrom or less, more preferably 500Angstrom or less, so that the desorption of moisture in the entire thin film readily occurs. The polyimide-based thin film on the metal oxide film or the metal nitride film having the thickness of 2,000Angstrom or less has high dielectric strength.

Description

【発明の詳細な説明】 皮果上■且朋立互 本発明は、薄膜感湿素子に関する。更に詳しくは、温度
、薬品等への耐性がすぐれ、高感度で高速応答性を有す
る薄膜感湿素子に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film moisture sensitive element. More specifically, the present invention relates to a thin film moisture-sensitive element having excellent resistance to temperature, chemicals, etc., high sensitivity, and high-speed response.

従来勿技地 空気中の相対湿度の制御は、精密工業、食品工業、繊維
工業、ビル管理上等で大変重要であり、それを検知する
感湿素子としては、従来次のような材料を用いたものが
知られている。
Conventionally, controlling the relative humidity in the air is very important in the precision industry, food industry, textile industry, building management, etc., and the following materials have traditionally been used as moisture-sensing elements to detect it. What was there is known.

(1) Se、 Ge、 St等の金属あるいは半導体
(2) Sn、 Pe、 Tt等の金属の酸化物(3)
Atto:+等の多孔質金属酸化物(4) LiC1等
の電解質塩 (5)有機または無機材料からなる高分子厚膜しかしな
がら、これらの各種材料を用いた感湿素子は、いずれも
保守が大変であったり、あるいは信鯨性や応答性に問題
がある等、満足される状態にはない。
(1) Metals or semiconductors such as Se, Ge, St, etc. (2) Metal oxides such as Sn, Pe, Tt, etc. (3)
Porous metal oxides such as Atto: + (4) Electrolyte salts such as LiC1 (5) Thick polymer films made of organic or inorganic materials However, all moisture-sensitive elements using these various materials are difficult to maintain. The system is not in a satisfactory state, as there are problems with reliability and responsiveness.

例えば、上記(2)の金属酸化物を用いる場合には、そ
れの成形にプレスや焼結が行われるが、均質なプレスが
問題であったりあるいは焼結時の割れなどの問題がみら
れる。また、工程上では問題なく成形されても、耐久性
、換言すれば信顛性にも問題がある。
For example, when using the metal oxide of (2) above, pressing and sintering are performed to shape it, but there are problems with homogeneous pressing or cracking during sintering. Further, even if the molding is performed without any problem in the process, there is a problem in durability, in other words, in reliability.

また、上記(5)の高分子厚膜を用いた場合には、材料
面では廉価であるものの、溶剤等の薬品による劣化や信
軌性の低下等の問題点がみられる。更に、吸湿部分の体
積が大きいため、高速化及び高感度化にも限界があり、
キャパシタを構成して、容量または電気伝導度を測定す
る場合に、その値が小さいことにより、検出系の安定度
が重要な課題となっている。ここで、高分子厚膜とは、
スピンコード等の方法により得られる厚みが数千Å以上
の高分子膜のことである。
Furthermore, when the thick polymer film of (5) above is used, although it is inexpensive in terms of material, there are problems such as deterioration due to chemicals such as solvents and a decrease in reliability. Furthermore, because the volume of the moisture-absorbing part is large, there are limits to increasing speed and sensitivity.
When measuring capacitance or electrical conductivity by configuring a capacitor, the stability of the detection system is an important issue because the value is small. Here, what is a polymer thick film?
A polymer film with a thickness of several thousand angstroms or more obtained by methods such as spin coding.

が ° しよ゛と る  占 ラングミュア・ブロジェット法を利用して得られたポリ
イミド系薄膜は、その規則的な構造のため水分の脱着速
度が速く、またぐ微量の水分の存在により誘電率、ある
いは電気伝導度が大きく変化する。更には、薄膜である
ため、素子を構成した場合の容量および電気伝導度が比
較的大きく、検出系の低コスト化にもつながる。
Polyimide thin films obtained using the Langmuir-Blodgett method have a regular structure that allows them to desorb water at a high rate, and the presence of a small amount of water across them increases the dielectric constant or Electrical conductivity changes significantly. Furthermore, since it is a thin film, the capacitance and electrical conductivity of the device are relatively large, which leads to a reduction in the cost of the detection system.

しかし、我々が特願昭63−149763で提案した、
ラングミュア・ブロジェット法を利用して得られたポリ
イミド系薄膜のみを感湿膜として用いた素子では、高電
界のバイアス下での使用は困難であり、薄厚が薄い場合
では、零バイアス下でも容量及び電気伝導度にドリフト
を住じる可能性がある。
However, we proposed in patent application No. 63-149763,
In a device using only a polyimide thin film obtained using the Langmuir-Blodgett method as a moisture-sensitive film, it is difficult to use it under a high electric field bias, and if the film is thin, the capacitance decreases even under zero bias. and may cause drift in electrical conductivity.

本発明者等は、こうしたラングミュア・ブロジェット法
を利用して得られたポリイミド系薄膜を感湿膜として用
いることの利点を生かし、更に素子の容量および電気伝
導度のドリフトを押さえ、高電界のバイアス下での使用
を可能とするために、厚みが2000Å以下の金属酸化
物膜あるいは金属窒化物膜と積層されてなる誘電体膜を
感湿膜として薄膜感湿素子とした。これにより保守、信
顛性、応答性等に問題のみられる従来の感湿素子のかわ
りに、感度および応答性のいずれの点においてもすぐれ
、また、耐熱性、耐薬品性にすぐれたポリイミド系薄膜
を含む、薄膜感湿素子を提供することを目的とする。
The present inventors took advantage of the advantages of using the polyimide thin film obtained using the Langmuir-Blodgett method as a moisture-sensitive film, further suppressed the drift of capacitance and electrical conductivity of the device, and In order to enable use under bias, a dielectric film laminated with a metal oxide film or metal nitride film having a thickness of 2000 Å or less was used as a moisture-sensitive film to form a thin film moisture-sensitive element. As a result, instead of conventional moisture-sensitive elements that have problems with maintenance, reliability, responsiveness, etc., a polyimide thin film that has excellent sensitivity and responsiveness, and also has excellent heat resistance and chemical resistance. An object of the present invention is to provide a thin film moisture-sensitive element including the following.

口 占 7゛ るための 本発明は、我々が特開昭63−218728等に提案し
た、両性ポリイミド前駆体をラングミュア・ブロジェッ
ト法により、厚みが2000Å以下の金属酸化物膜ある
いは金属窒化物膜を形成した基板上に累積し、それに続
くイミド化反応によって作られたポリイミド系薄膜を利
用して、薄膜感湿素子を作製することによってなされた
ものである。ポリイミド系薄膜としては、特に下式の構
造の繰返し単位を有する2種類が応答性が速く、本発明
において好ましい例である。
The present invention, which we proposed in JP-A No. 63-218728, etc., forms a metal oxide film or metal nitride film with a thickness of 2000 Å or less by using an amphoteric polyimide precursor using the Langmuir-Blodgett method. This method was made by fabricating a thin film moisture-sensitive element using a polyimide thin film that was accumulated on a substrate on which a polyimide film was formed and then produced by an imidization reaction. In particular, two types of polyimide thin films having repeating units having the structure shown below have quick response and are preferred examples in the present invention.

(以下余白) また、ここでいう金属酸化物膜とは、例えばCVD法、
真空蒸着法、スパッタ法、電極酸化法により得られる酸
化ケイ素、酸化アルミニウム、酸化タンタル膜であり、
金属窒化物膜とは、例えばCVD法により得られる窒化
ケイ素膜である。
(Left below) Also, the metal oxide film referred to here means, for example, the CVD method,
Silicon oxide, aluminum oxide, tantalum oxide films obtained by vacuum evaporation method, sputtering method, electrode oxidation method,
The metal nitride film is, for example, a silicon nitride film obtained by a CVD method.

ラングミュア・ブロジェット法により得られるポリイミ
ド系薄膜は、薄膜全体にわたる水分の脱着が容易に起こ
るように、1000Å以下、好ましくは500Å以下の
膜厚が望ましい。また、こうして得られたポリイミド系
薄膜は、厚みが2000Å以下の金属酸化物膜あるいは
金属窒化物股上で高い絶縁耐圧を有する。
The polyimide thin film obtained by the Langmuir-Blodgett method desirably has a thickness of 1000 Å or less, preferably 500 Å or less so that moisture can be easily desorbed throughout the thin film. Moreover, the polyimide thin film thus obtained has a high dielectric strength voltage on a metal oxide film or metal nitride film having a thickness of 2000 Å or less.

金属/感湿膜/金属(以下MUMという)構造の薄膜感
湿素子の模式図を、第1〜2図に示す。
Schematic diagrams of a thin film moisture sensitive element having a metal/moisture sensitive membrane/metal (hereinafter referred to as MUM) structure are shown in FIGS. 1 and 2.

絶縁基板(Is)あるいは半導体基板(SS)を用い、
その上に金属、感湿膜、金属の順tコ形成される。用い
る金属および半導体は、酸化被膜を形成するものでも良
い。また、上部電極となる金属は、水分の出入りを容易
とするため、多孔πで、なお且つ金属的な電気伝導度を
有する程度の厚みでなくてはならない。
Using an insulating substrate (Is) or a semiconductor substrate (SS),
A metal layer, a moisture sensitive film, and a metal layer are formed thereon in this order. The metal and semiconductor used may be those that form an oxide film. In addition, the metal serving as the upper electrode must have pores π and be thick enough to have metallic electrical conductivity in order to facilitate the entry and exit of moisture.

金属/感湿膜/半導体(以下MISという)構造の薄膜
感湿素子の模式図を、第3〜4図に示す。
Schematic diagrams of a thin film moisture sensitive element having a metal/moisture sensitive film/semiconductor (hereinafter referred to as MIS) structure are shown in FIGS. 3 and 4.

半導体基板(SS)あるいは電極(M)を持つ絶縁基板
(Is)上に形成された半導体膜(S)を用い、その上
に、感湿膜、金属の順に形成される。
A semiconductor film (S) formed on a semiconductor substrate (SS) or an insulating substrate (Is) having an electrode (M) is used, and a moisture sensitive film and a metal are formed thereon in this order.

用いる金属および半導体は、酸化被膜を形成するもので
も良い。また、上部電極となる金属は1.水分の出入り
を容易とするため、多孔質で、なお且つ金属的な電気伝
導度を有する程度の厚みでなくてはならない。
The metal and semiconductor used may be those that form an oxide film. In addition, the metal that becomes the upper electrode is 1. In order to facilitate the entry and exit of moisture, it must be porous and thick enough to have metallic electrical conductivity.

さらに、上部電極は開口部を存し、その開口部より水分
等の出入りが可能な構造をもち、例えば櫛形や渦巻状の
電極を用いることができる。
Further, the upper electrode has an opening, and has a structure that allows water to enter and exit through the opening, and for example, a comb-shaped or spiral-shaped electrode can be used.

第1〜4図中の感湿膜とは、厚みが2000Å以下の金
属酸化物膜、あるいは金属窒化物膜と厚みが1000Å
以下のポリイミド系′R膜がこの順序で積層されてなる
誘電体膜のことである。
The moisture sensitive film in Figures 1 to 4 refers to a metal oxide film with a thickness of 2000 Å or less, or a metal nitride film with a thickness of 1000 Å.
This is a dielectric film formed by laminating the following polyimide-based R films in this order.

又肌免作朋二四来 本発明に係る薄膜感湿素子は、ラングミュア・ブロジェ
ット法を利用して得られたポリイミド系薄膜が、湿度に
対して迅速に感応するという性質を有効に利用し、更に
、素子の容量および電気伝導度のドリフトを押さえ、高
電界のバイアス下での使用を可能とするために、厚みが
5000Å以下の金属酸化物膜、あるいは金属窒化物膜
と積層されてなる誘電体膜を感湿膜として含むものであ
る。この発明により、温度、薬品等への耐性がすぐれ、
高感度で高速応答性の感湿薄膜素子の提供が可能となっ
た。また、素子を構成した場合の容量および電気伝導度
が比較的大きく、検出系の低コスト化も達成できる。
In addition, the thin film moisture-sensitive element according to the present invention effectively utilizes the property that a polyimide thin film obtained using the Langmuir-Blodgett method quickly responds to humidity. Furthermore, in order to suppress drift in capacitance and electrical conductivity of the device and enable use under high electric field bias, it is laminated with a metal oxide film or metal nitride film with a thickness of 5000 Å or less. It includes a dielectric film as a moisture sensitive film. This invention has excellent resistance to temperature, chemicals, etc.
It has become possible to provide a moisture-sensitive thin film element with high sensitivity and fast response. Furthermore, the capacitance and electrical conductivity of the device are relatively large, and the cost of the detection system can be reduced.

1施■ 次に実施例によって、本発明を説明する。1 serving■ Next, the present invention will be explained by examples.

実施例1 ガラス基板上に、アルミニウムを蒸着して電極を形成し
た基板の上に、CVD法により1000人厚さに酸化ケ
イ素薄膜を形成し、下図に示す構造の繰り返し単位を有
する両性ポリイミド前駆体(PIF)をラングミュア・
ブロジェット法により41層累積した。その後、400
″Cで■ 1時間熱処理を施しイミド化を完結させた。得られたポ
リイミド薄膜は、200人である。形成されたポリイミ
ド薄膜の上に、電極幅100μm、電極間隔500μm
の櫛形の金を500人の厚さに抵抗加熱法で蒸着して、
MrM型の薄膜感湿素子を作製した。
Example 1 A silicon oxide thin film was formed to a thickness of 1000 nm by CVD on a glass substrate on which aluminum was vapor-deposited to form an electrode, and an amphoteric polyimide precursor having a repeating unit of the structure shown in the figure below was formed. Langmuir (PIF)
41 layers were accumulated by Blodgett's method. After that, 400
The imidization was completed by heat treatment for 1 hour at "C."
The comb-shaped gold is deposited using resistance heating to a thickness of 500 mm.
A MrM type thin film moisture sensitive element was fabricated.

この程度の厚さの金は、多孔質で、なお且つ金属的な電
気伝導度を有し、水分の出入りが容易である。
Gold of this thickness is porous and has metallic electrical conductivity, allowing moisture to easily enter and exit.

このようにして構成された薄膜感湿素子を、湿度試験瓶
に取りつけ、YHP4192Aインピーダンスアナライ
ザーに接続した後、周波数を一定(IKHz)に保ちな
がら、11〜92%の相対湿度に対応するキャパシタン
スの変化を20’Cの温度で測定した。得られた結果を
、第5図のグラフに示す。この結果から、キャパシタン
スにより相対湿度を高感度で測定することができる感湿
素子としての有効性が確かめられた。もちろん、電気伝
導度によっても、対応湿度を測定することができる。
After attaching the thin film moisture sensitive element thus constructed to a humidity test bottle and connecting it to a YHP4192A impedance analyzer, the change in capacitance corresponding to relative humidity from 11 to 92% was measured while keeping the frequency constant (IKHz). was measured at a temperature of 20'C. The obtained results are shown in the graph of FIG. This result confirmed its effectiveness as a humidity sensing element that can measure relative humidity with high sensitivity using capacitance. Of course, the corresponding humidity can also be determined by electrical conductivity.

更に、このMIM型の薄膜感湿素子は、5■のバイアス
下でも、素子破壊せずに、キャパシタンス、電気伝導度
の変化が殆どなく、安定的に用いることが可能なことも
確かめられた。
Furthermore, it has been confirmed that this MIM type thin film moisture sensitive element can be used stably even under a bias of 5 cm without breaking the element and with almost no change in capacitance or electrical conductivity.

実施例2 金でオーミック接触を取り、裏面電極を形成したシリコ
ン基板に、500人の厚さに熱酸化法により酸化ケイ素
膜を形成し、実施例1と同様の方法で下式の構造の繰り
返し単位を有するポリイミド薄膜を形成した。
Example 2 A silicon oxide film was formed to a thickness of 500 mm by thermal oxidation on a silicon substrate on which an ohmic contact was made with gold and a back electrode was formed, and the structure of the following formula was repeated in the same manner as in Example 1. A polyimide thin film having units was formed.

形成されたポリイミド薄膜の上に、電極幅100μm、
電極間隔500umの櫛形の金を500人の厚さに抵抗
加熱法で蒸着して、MIS型の薄膜感湿素子を作製した
On the formed polyimide thin film, an electrode width of 100 μm,
A MIS type thin film moisture sensitive element was fabricated by depositing comb-shaped gold with an electrode spacing of 500 um to a thickness of 500 mm using a resistance heating method.

このようにして構成された薄膜感湿素子も、実施例1の
MIM型の薄膜感湿素子と同様の性質を有し、相対湿度
の変化に対する、キャパシタンス、電気伝導度の変化は
5秒で完結し、薄膜感湿素子としての有効性が確かめら
れた。
The thin film humidity sensing element constructed in this manner also has properties similar to the MIM type thin film humidity sensing element of Example 1, and changes in capacitance and electrical conductivity in response to changes in relative humidity are completed in 5 seconds. However, its effectiveness as a thin film moisture-sensitive element was confirmed.

実施例3 ガラス基板上にタンタルを蒸着して電極を形成した基板
上に、陽極酸化法により500人の厚さに酸化タンタル
薄膜を形成し、実施例1と同様の方法で下式の構造の繰
り返し単位を有するポリイミド薄膜を形成した。
Example 3 A tantalum oxide thin film was formed to a thickness of 500 mm by anodization on a glass substrate on which an electrode was formed by vapor deposition of tantalum. A polyimide thin film having repeating units was formed.

形成されたポリイミ ド薄膜の上に、 電極幅100 μm、電極間隔500μmの櫛形の金を500人の厚さ
に抵抗加熱法で蒸着して、MIM型の薄膜感湿素子を作
製した。
On the formed polyimide thin film, comb-shaped gold having an electrode width of 100 μm and an electrode spacing of 500 μm was deposited to a thickness of 500 μm using a resistance heating method, thereby producing an MIM type thin film moisture sensitive element.

このようにして構成された薄膜感湿素子は、相対湿度の
変化に対する、キャパシタンス、電気伝導度の変化は、
5秒以内に完結し、この薄膜感湿素子が高速応答性を有
することが確かめられた。
The thin film humidity sensitive element constructed in this way shows changes in capacitance and electrical conductivity in response to changes in relative humidity.
The test was completed within 5 seconds, and it was confirmed that this thin film moisture sensitive element had high-speed response.

尚、本実施例において、感湿膜の形成法としてラングミ
ュア・ブロジェット法として垂直浸漬法を用いたが、一
般的に知られている回転円筒法や水平付着法を用いても
良い。また、ポリイミド形薄膜としては、本実施例中の
材料に限定するものではなく、熱環化反応によりイミド
環を生じる、両親媒性ポリマーより得られるポリマーで
あれば、いかなる物質でも良い。
In this example, a vertical immersion method as a Langmuir-Blodgett method was used as a method for forming the moisture-sensitive film, but a generally known rotating cylinder method or horizontal deposition method may also be used. Further, the polyimide type thin film is not limited to the materials used in this example, but any material may be used as long as it is a polymer obtained from an amphipathic polymer that generates an imide ring through a thermal cyclization reaction.

更に、金属酸化物膜あるいは金属窒化物膜についても、
本実施例中の材料、製膜法に限定するものではなく、世
の中で広く知られている金属酸化物膜あるいは金属窒化
物膜で良い。
Furthermore, regarding metal oxide films or metal nitride films,
The material and film forming method are not limited to those used in this embodiment, and metal oxide films or metal nitride films that are widely known in the world may be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第2図は、MIM型の薄膜感湿素子の模式図で
あり、第3図〜第4図は、MIS型の薄膜感湿素子の模
式図である。第5図は、実施例1に記載したMIM型の
薄膜感湿素子の、相対湿度に対するキャパシタンスの変
化を示すグラフである。 (符号の説明) M・・・・・電極 ■・・・・感湿膜 S・・・・半導体 VS・・・絶縁性基板 SS・・・半導体装置 第 1 図 82図 第5図 7FB荊;’!!L/1 (6ム)
1 to 2 are schematic diagrams of an MIM type thin film moisture sensitive element, and FIGS. 3 to 4 are schematic diagrams of an MIS type thin film moisture sensitive element. FIG. 5 is a graph showing a change in capacitance with respect to relative humidity of the MIM type thin film moisture sensitive element described in Example 1. (Explanation of symbols) M... Electrode ■... Moisture sensitive film S... Semiconductor VS... Insulating substrate SS... Semiconductor device 1 Figure 82 Figure 5 Figure 7 FB 荊; '! ! L/1 (6mm)

Claims (4)

【特許請求の範囲】[Claims] (1)厚みが2000Å以下の金属酸化物膜、あるいは
金属窒化物膜と、厚みが1000Å以下のポリイミド系
薄膜とが積層されてなる誘電体膜を含む薄膜感湿素子。
(1) A thin film moisture sensitive element including a dielectric film formed by laminating a metal oxide film or metal nitride film with a thickness of 2000 Å or less and a polyimide thin film with a thickness of 1000 Å or less.
(2)誘電体膜が、ラングミュア・ブロジェット法によ
り得られた両性ポリイミド前駆体薄膜をイミド化したポ
リイミド系薄膜を含むことを特徴とする請求項(1)記
載の薄膜感湿素子。
(2) The thin film moisture sensitive element according to claim (1), wherein the dielectric film includes a polyimide thin film obtained by imidizing an amphoteric polyimide precursor thin film obtained by the Langmuir-Blodgett method.
(3)開口部を有する、多孔質で且つ金属的な電気伝導
度を有する程度の厚みをもつ上部電極を備えた、金属/
感湿膜/金属構造の素子からなり、感湿膜は請求項(1
)もしくは(2)の誘電体膜を含むことを特徴とする薄
膜感湿素子。
(3) A metal/
It consists of a moisture-sensitive film/metallic structure element, and the moisture-sensitive film is defined by claim (1).
) or (2) A thin film moisture sensitive element comprising the dielectric film of (2).
(4)開口部を有する、多孔質で且つ金属的な金属的な
電気伝導度を有する程度の厚みをもつ上部電極を備えた
、金属/感湿膜/半導体構造の素子からなり、感湿膜は
請求項(1)もしくは(2)の誘電体膜を含むことを特
徴とする薄膜感湿素子。
(4) A moisture-sensitive membrane consisting of an element having a metal/moisture-sensitive membrane/semiconductor structure and having an upper electrode having an opening and having a thickness that is porous and has metal-like electrical conductivity. A thin film moisture sensitive element comprising the dielectric film according to claim (1) or (2).
JP16073890A 1989-10-17 1990-06-19 Thin film moisture sensitive element Pending JPH03223648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16073890A JPH03223648A (en) 1989-10-17 1990-06-19 Thin film moisture sensitive element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-271298 1989-10-17
JP27129889 1989-10-17
JP16073890A JPH03223648A (en) 1989-10-17 1990-06-19 Thin film moisture sensitive element

Publications (1)

Publication Number Publication Date
JPH03223648A true JPH03223648A (en) 1991-10-02

Family

ID=26487146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16073890A Pending JPH03223648A (en) 1989-10-17 1990-06-19 Thin film moisture sensitive element

Country Status (1)

Country Link
JP (1) JPH03223648A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980570B2 (en) 2003-06-05 2005-12-27 Shimadzu Corporation Solid laser apparatus
CN104458489A (en) * 2014-12-03 2015-03-25 中国石油大学(北京) Method and device for predicating adsorption gas content of mud shale
CN114018991A (en) * 2021-09-18 2022-02-08 中国科学院微电子研究所 Humidity sensor and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980570B2 (en) 2003-06-05 2005-12-27 Shimadzu Corporation Solid laser apparatus
CN104458489A (en) * 2014-12-03 2015-03-25 中国石油大学(北京) Method and device for predicating adsorption gas content of mud shale
CN114018991A (en) * 2021-09-18 2022-02-08 中国科学院微电子研究所 Humidity sensor and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101093612B1 (en) The capacitance type humidity sensor and fabrication method thereof
JP3744539B2 (en) Gas detection method and apparatus
WO2015085816A1 (en) Mems humidity sensor and preparation method
KR101367887B1 (en) Capacitance Type Humidity Sensor
EP0395349B2 (en) Moisture sensitive element
JP2007139447A (en) Moisture permeability measuring instrument of thin film and moisture permeability measuring method
KR20090029383A (en) Fabricating method for capacitor type polymer sensor for measuring humidity and the same
US8132457B2 (en) Nano-porous alumina sensor
JPS6166160A (en) Humidity sensor and manufacture thereof
Neri et al. Humidity sensing properties of Li–iron oxide based thin films
Tahir et al. Enhancement in the sensing properties of methyl orange thin film by TiO 2 nanoparticles
JP2005031090A (en) Humidity sensor and method of manufacturing the same
Braik et al. Development of a capacitive chemical sensor based on Co (II)-phthalocyanine acrylate-polymer/HfO 2/SiO 2/Si for detection of perchlorate
JPH03223648A (en) Thin film moisture sensitive element
Sberveglieri et al. Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate
JPH06281610A (en) Humidity sensor, alcohol sensor or ketone sensor
JP3047137B2 (en) Manufacturing method of humidity sensor
CN1037041C (en) Inorganic thin film humidity-sensitive element with high performance and its producing method
JPH022912A (en) Thin film moisture sensitive element
JPH03122591A (en) Thin film moisture-sensitive element
JPH03202798A (en) Thin film moisture sensitive element
JPS6358249A (en) Humidity detecting element
JP3724143B2 (en) Gas sensor
JP2753654B2 (en) Moisture sensitive element
JPS63313047A (en) Gas sensor and its production