JPH03223191A - Surface-treatment of ceramics - Google Patents

Surface-treatment of ceramics

Info

Publication number
JPH03223191A
JPH03223191A JP1727790A JP1727790A JPH03223191A JP H03223191 A JPH03223191 A JP H03223191A JP 1727790 A JP1727790 A JP 1727790A JP 1727790 A JP1727790 A JP 1727790A JP H03223191 A JPH03223191 A JP H03223191A
Authority
JP
Japan
Prior art keywords
sic
heat
heating element
layer
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1727790A
Other languages
Japanese (ja)
Other versions
JP3009166B2 (en
Inventor
Shunichi Tsumura
俊一 津村
Ryuichi Sugita
杉田 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2017277A priority Critical patent/JP3009166B2/en
Publication of JPH03223191A publication Critical patent/JPH03223191A/en
Application granted granted Critical
Publication of JP3009166B2 publication Critical patent/JP3009166B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Spark Plugs (AREA)

Abstract

PURPOSE:To obtain a ceramic igniter heat-generating member having suppressed oxidation rate and prolonged life, free from the trouble of short-circuit even by the deposition of highly conductive carbon and exhibiting improved reliability as an ignition source by heat-treating an SiC/ZrB2 composite ceramic in air, thereby forming an SiC/ZrO2 layer on the surface. CONSTITUTION:An SiC/ZrB2 composite ceramic is heat-treated at 650-1000 deg.C in air to form a dense and highly heat-resistant insulation film composed of SiC/ZrO2 on the ceramic surface. The insulation and heat-resistance can further be improved by coating the surface of the composite ceramic having the SiC/ ZrO2 layer with a high melting oxide such as alumina or silica, especially preferably mullite.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックスの表面処理方法に係り、特にセラ
ミックスの表面に耐熱温度の高い絶縁被膜を形成するの
に好適な表面処理方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a surface treatment method for ceramics, and particularly to a surface treatment method suitable for forming an insulating coating with a high heat resistance on the surface of ceramics. .

〔従来の技術〕[Conventional technology]

従来、バーナ点火装置の点火源として、電極間に生ずる
火花放電を利用したパルスイグナイタが用いられている
が、点火領域が狭(、プラグ先端部の耐熱温度が700
℃と低いため寿命が短い等の欠点があった。
Conventionally, pulse igniters that utilize spark discharge generated between electrodes have been used as the ignition source for burner ignition devices, but the ignition range is narrow (and the heat resistant temperature of the plug tip is 700°C).
It had shortcomings such as a short lifespan due to the low temperature.

最近、パルスイグナイタに代わるものとして、SiCと
ZrB、とからなる複合セラミックスを応用したセラミ
ックスイグナイタが開発されている。該セラミックスイ
グナイタはパルスイグナイタに比較して着火領域が広く
、発熱体の耐熱温度が高く、寿命が長いという特長があ
る。
Recently, as an alternative to pulse igniters, ceramic igniters using composite ceramics made of SiC and ZrB have been developed. The ceramic igniter has the advantage of having a wider ignition range, a higher temperature resistance of the heating element, and a longer life than a pulse igniter.

第4図は、従来のセラミックスイグナイタ発熱体の構造
図である。図においてSiC/ZrB。
FIG. 4 is a structural diagram of a conventional ceramic igniter heating element. In the figure, SiC/ZrB.

導電部lは、発熱体中央部の長手方向に形成したAlN
 (窒化アルミニウム)絶縁部2で分離されてコ字状を
なし、それぞれの末端は電極板4と接続されている。該
導電部1に電極板4を介して電流を印加すると、発熱体
先端の薄肉にした発熱部3が赤熱する。発熱部の温度制
御は、SiC/ZrB、複合セラミックスが正の抵抗温
度係数を有しているため、該抵抗値を一定とする方法で
行われる。しかしながら、SiC/ZrB、発熱体が大
気に露出しているため高温酸化が起こり、抵抗値が経時
的に増加して発熱温度が低下するという現象を生じる。
The conductive part 1 is made of AlN formed in the longitudinal direction of the central part of the heating element.
(Aluminum nitride) They are separated by an insulating part 2 to form a U-shape, and each end is connected to an electrode plate 4. When a current is applied to the conductive portion 1 through the electrode plate 4, the thin heat generating portion 3 at the tip of the heating element becomes red hot. Since SiC/ZrB and composite ceramics have a positive temperature coefficient of resistance, temperature control of the heat generating part is performed by a method that keeps the resistance value constant. However, since the SiC/ZrB heating element is exposed to the atmosphere, high-temperature oxidation occurs, resulting in a phenomenon in which the resistance value increases over time and the heat generation temperature decreases.

また燃料が熱分解して高結晶化したカーボンが発熱体に
付着すると、短絡により発熱体の抵抗値が減少し、焼損
につながるという問題があった。
Furthermore, when the fuel is thermally decomposed and highly crystallized carbon adheres to the heating element, there is a problem in that the resistance value of the heating element decreases due to short circuiting, leading to burnout.

〔発明が解決しようとする課題] 上記問題の解決策としてSiC/ZrB、発熱体をあら
かじめ1100〜1200℃の大気中で熱処理し、Si
C/ZrB2導電部1の表面層にS iC/S ioz
 /ZrBz /Zr0zの酸化層およびはう珪酸ガラ
ス層を形成する方法が考えられる。第5図には、第4図
の発熱体を1100〜1200℃の大気中で熱処理した
場合のB−B線断面図を示した。この方法で得られる発
熱体は酸化速度が抑制されるため寿命が約2倍向上する
[Problems to be Solved by the Invention] As a solution to the above problem, the SiC/ZrB heating element is heat-treated in advance at 1100 to 1200°C in the atmosphere, and Si
SiC/S ioz on the surface layer of the C/ZrB2 conductive part 1
A method of forming an oxide layer of /ZrBz /Zr0z and a borosilicate glass layer is considered. FIG. 5 shows a sectional view taken along the line B-B when the heating element shown in FIG. 4 is heat-treated in the atmosphere at 1100 to 1200°C. The heating element obtained by this method has a service life approximately doubled because the oxidation rate is suppressed.

しかし、外表面に形成されるほう珪酸ガラス層8は70
0℃から軟化して1200℃では溶融状態となるため、
点火の際の軽油噴霧等で除去され易く、第6図に示すよ
うにS ic/S io、/ZrB2/ZrO□層7の
間に導電性の高結晶化カーボン9が付着し易く、短絡に
よる焼損現象が発生し易いという問題がある。発熱部3
が焼損すると点火機能を失うことになり、点火源として
の信顛性を著しく損なうこととなる。
However, the borosilicate glass layer 8 formed on the outer surface is 70%
It softens from 0°C and becomes molten at 1200°C, so
It is easily removed by light oil spray etc. during ignition, and as shown in Fig. 6, highly conductive crystallized carbon 9 tends to adhere between the Sic/Sio, /ZrB2/ZrO□ layers 7, resulting in short circuits. There is a problem in that a burnout phenomenon is likely to occur. Heat generating part 3
If it burns out, it will lose its ignition function, significantly impairing its reliability as an ignition source.

本発明の目的は、上記問題をJ決し、SiC/ZrB、
複合セラミックスの表面に緻密で、かつ耐熱性に優れた
絶縁被膜を形成することができるセラミックスの表面処
理方法を提供することにある。
The purpose of the present invention is to solve the above problem and to
An object of the present invention is to provide a method for surface treatment of ceramics, which can form a dense insulating film with excellent heat resistance on the surface of composite ceramics.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の第1は、SiC/ZrB2複合セラミックスを
650〜1000℃の大気中で熱処理し、上記複合セラ
ミックスの表面にSiC/Z−0□層を形成することを
特徴とするセラミックスの表面処理方法に関する。
The first aspect of the present invention is a method for surface treatment of ceramics, which comprises heat-treating a SiC/ZrB2 composite ceramic in the atmosphere at 650 to 1000°C to form a SiC/Z-0□ layer on the surface of the composite ceramic. Regarding.

本発明の第2は、SiC/ZrB2複合セラミックスの
表面に高融点酸化物をコーティングすることを特徴とす
るセラミックスの表面処理方法。
The second aspect of the present invention is a method for surface treatment of ceramics, which comprises coating the surface of SiC/ZrB2 composite ceramics with a high melting point oxide.

本発明の第3は、前記SiC/Zr0.層を有する複合
セラミックスの表面に高融点酸化物をコーティングする
ことを特徴とするセラミックスの表面処理方法に関する
The third aspect of the present invention is the SiC/Zr0. The present invention relates to a method for surface treatment of ceramics, which comprises coating the surface of a composite ceramic layer with a high melting point oxide.

[作用〕 ZrB、の酸化開始温度は650℃であるため、この温
度以上では大気中の酸素と反応して下式に示すように、
ZrO,とB20.とを生成する。
[Effect] Since the oxidation starting temperature of ZrB is 650°C, above this temperature it reacts with oxygen in the atmosphere and as shown in the formula below,
ZrO, and B20. and generate.

ZrO,+ 5/20t−hZrO,+B、O,↑また
SiCの酸化開始温度は1000℃であるため、この温
度以上では大気中の酸素と反応して下式に示すように、
SingとCO□とを生成する。
ZrO, + 5/20t-hZrO, +B, O, ↑Also, since the oxidation initiation temperature of SiC is 1000°C, above this temperature it reacts with oxygen in the atmosphere and as shown in the formula below,
Generates Sing and CO□.

SiC±20□−3i O,+CO,↑一方、SiC/
Zr0zは1100℃以上の大気中で熱処理すると、上
記SingおよびZrO2以外に、SiCとZrB、と
酸素とが反応して融点の低いはう珪酸ガラスを生成する
SiC±20□-3i O, +CO, ↑while SiC/
When Zr0z is heat-treated in the atmosphere at 1100° C. or higher, SiC, ZrB, and oxygen, in addition to the above-mentioned Sing and ZrO2, react to form silicic acid glass having a low melting point.

したがって、SiC/ZrB、を650〜1000℃の
温度範囲の酸化雰囲気中で熱処理することにより、Si
Cは反応せず、ZrB2だけがZro、となり、SiC
/Zr0z層が形成される。
Therefore, by heat treating SiC/ZrB in an oxidizing atmosphere in the temperature range of 650 to 1000°C, Si
C does not react, only ZrB2 becomes Zro, and SiC
/Zr0z layer is formed.

ZrO□は耐熱温度が2670℃と高く、優れた絶縁性
を有するため、SiC/Zr0z層を表面に有する発熱
体は、SiC/ZrB、発熱体に比較して抵抗率が4倍
程度高くなり、また耐熱性が向上する。
ZrO□ has a high heat resistance temperature of 2670°C and has excellent insulation properties, so a heating element with a SiC/ZrOz layer on the surface has a resistivity about 4 times higher than that of a SiC/ZrB heating element. Also, heat resistance is improved.

また上記SiC/Zr0z層を表面に有する発熱体の表
面にさらに高融点酸化物をコーティングすると、発熱体
が大気と遮断されるため、絶縁性および耐熱性をさらに
向上することができる。該高融点酸化物としては、アル
ミナ、シリカ、ムライト、スピネル、ジルコン等が挙げ
られる。これらの物性および化学的安定性を第1表に示
した。
Further, when the surface of the heating element having the SiC/Zr0z layer on its surface is further coated with a high melting point oxide, the heating element is isolated from the atmosphere, so that insulation and heat resistance can be further improved. Examples of the high melting point oxide include alumina, silica, mullite, spinel, zircon, and the like. Their physical properties and chemical stability are shown in Table 1.

以下余白 これらの高融点酸化物のうち、ムライトは科学的に安定
であり、高温環境条件下においてもカーボンと反応する
ことはなく、絶縁性を保持でき、また不透過性を示すた
め特に好ましい。これらの高融点酸化物層の厚さは、母
材との熱膨張差を考慮して適宜法めるのが好ましい。
Among these high melting point oxides, mullite is particularly preferred because it is scientifically stable, does not react with carbon even under high temperature environmental conditions, can maintain insulation properties, and exhibits impermeability. The thickness of these high-melting point oxide layers is preferably determined as appropriate, taking into account the difference in thermal expansion with the base material.

[実施例〕 以下、本発明を実施例により詳しく説明する。[Example〕 Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図は、本発明の一実施例の表面処理方法によって得
られるセラミックス発熱体の構造図、第2図は、第1図
のA−A線断面図、第3図は、第1図の発熱体に高融点
酸化物層を形成させた場合のA−A線断面図である。
FIG. 1 is a structural diagram of a ceramic heating element obtained by a surface treatment method according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. FIG. 3 is a cross-sectional view taken along the line A-A when a high melting point oxide layer is formed on the heating element.

第1図において、SiC/ZrB2導電部1は、基材で
あるSiCと導電材であるZrB2とを容積比で30%
添加した、抵抗率が1.4X10−3Ω・cm、常温か
ら1200°Oまでの線膨脹率が6×10−”/”Cで
ある導電性セラミックスである。またAIN絶縁部2は
、線膨張特性がSiC/ZrB2とほぼ同じである。
In FIG. 1, the SiC/ZrB2 conductive part 1 consists of SiC as a base material and ZrB2 as a conductive material in a volume ratio of 30%.
It is a conductive ceramic having a resistivity of 1.4×10 −3 Ω·cm and a coefficient of linear expansion of 6×10 −”/”C from room temperature to 1200° O. Furthermore, the linear expansion characteristic of the AIN insulation portion 2 is almost the same as that of SiC/ZrB2.

発熱体の焼結は、電極板4を取りつける前の発熱体をホ
ットプレス法により900℃の大気中で24時間熱処理
して行った。得られた焼結体の密度は99%であり、S
iC/ZrB2の上層にSic/ZrO,層5が平均で
10IIm形成された(第2図)。熱処理の温度は、Z
rB、の酸化開始温度である650℃以上で、SiCの
酸化開始温度の1000℃以下であればよい。SiC/
ZrO□層5の厚さは、熱処理温度および処理時間によ
ってコントロールできる。またAIN絶縁部2はAlx
の酸化開始温度が1100℃であるため前記温度範囲で
は変化しない。
Sintering of the heating element was carried out by heat-treating the heating element before attaching the electrode plate 4 in the atmosphere at 900° C. for 24 hours using a hot press method. The density of the obtained sintered body was 99%, and S
A layer 5 of Sic/ZrO with an average thickness of 10 IIm was formed on the iC/ZrB2 layer (FIG. 2). The temperature of heat treatment is Z
The temperature may be 650° C. or higher, which is the oxidation starting temperature of rB, and 1000° C., which is the oxidation starting temperature of SiC. SiC/
The thickness of the ZrO□ layer 5 can be controlled by the heat treatment temperature and treatment time. Also, the AIN insulation part 2 is Alx
Since the oxidation start temperature of is 1100° C., there is no change in the above temperature range.

S i C/ Z r Oz層5が形成された発熱体に
さらに高融点酸化物としてムライトを用いて高融点酸化
物層6を形成した(第3図)。高融点酸化物層6のコー
ティングはゾル−ゲル法で行った。まずアルミナゾルと
シリカゾルを重量比で5:2の割合で約1時間部合した
。該混合溶液を、上記SiC/Zr0.層5の上に塗布
して2時間風乾した。この塗布−風乾の工程を5回繰り
返し行った後、アルゴン中で1200℃の温度条件下で
2時間熱処理した。1200 ”Cの熱処理によって3
Ajl!z Os +23 i0□→ 3 A 120i  ・2SiO2 の反応が生じ、ムライト(3Alz03  ・2SiO
□)組成の塗布層を平均で5μmの厚さで形成すること
ができた。
A high melting point oxide layer 6 was further formed using mullite as a high melting point oxide on the heating element on which the S i C/Z r Oz layer 5 was formed (FIG. 3). The high melting point oxide layer 6 was coated by a sol-gel method. First, alumina sol and silica sol were combined at a weight ratio of 5:2 for about 1 hour. The mixed solution was mixed with the SiC/Zr0. It was coated on top of layer 5 and air dried for 2 hours. After repeating this coating-air-drying process five times, it was heat-treated in argon at a temperature of 1200° C. for 2 hours. 3 by heat treatment at 1200”C
Ajl! The reaction of z Os +23 i0□→ 3 A 120i ・2SiO2 occurs, and mullite (3Alz03 ・2SiO
□) It was possible to form a coating layer with an average thickness of 5 μm.

未処理発熱体(1)、S iC/Zr0z層を有する発
熱体(2)およびSiC/ZrB2層とムライト層を有
する発熱体(3)の抵抗値(サンプルの1cII1間の
表面抵抗値)を測定し、それらの結果を第2表に示した
Measure the resistance value (surface resistance value between 1cII1 of the sample) of the untreated heating element (1), the heating element with SiC/Zr0z layer (2), and the heating element with SiC/ZrB2 layer and mullite layer (3) The results are shown in Table 2.

第2表 第2表から、未処理発熱体(1)では抵抗値が0.05
Ωと低いのに対し、SiC/ZrO□層を有する発熱体
(2)では抵抗値が100〜1にΩと非常に高く、さら
にムライト層を有する発熱体(3)では抵抗値がIMΩ
〜■であり、はぼ完全な絶縁被膜が得られることがわか
る。
Table 2 From Table 2, the resistance value of untreated heating element (1) is 0.05.
In contrast, the resistance value of the heating element (2) having a SiC/ZrO□ layer is extremely high at 100 to 1 Ω, and the resistance value of the heating element (3) having a mullite layer is IMΩ.
~ ■, which shows that a nearly perfect insulating film can be obtained.

本実施例では、熱処理によりSiC/ZrO。In this example, SiC/ZrO was formed by heat treatment.

層を形成した後にムライトコーティングを実施して絶縁
被膜の信幀性向上を図ったが、熱処理または高融点酸化
物のコーティングを単独で実施してもよい。
Although a mullite coating was performed after forming the layer to improve the reliability of the insulating coating, heat treatment or a high melting point oxide coating may also be performed alone.

〔発明の効果〕〔Effect of the invention〕

第1および第2の発明によれば、耐熱温度の高い絶縁被
膜が形成されるため、発熱体の酸化速度が著しく抑制さ
れ、高寿命化を図ることができる。
According to the first and second inventions, since an insulating coating having a high heat resistance temperature is formed, the oxidation rate of the heating element is significantly suppressed, and a longer life can be achieved.

また点火トーチ等の高温環境条件下において、導電性の
高い高結晶化カーボンが発熱体に付着しても短絡するこ
とがなく、点火源としての信頼性が著しく向上する。
In addition, even if the highly conductive, highly crystallized carbon adheres to the heating element under high-temperature environmental conditions such as in an ignition torch, there will be no short circuit, and the reliability as an ignition source is significantly improved.

第3の発明によれば、さらに発熱体を不透過性の緻密な
酸化膜で覆うため、はぼ完全な絶縁被膜が得られ、上記
効果がさらに向上する。
According to the third aspect of the invention, since the heating element is further covered with an impermeable dense oxide film, a nearly perfect insulation coating is obtained, and the above-mentioned effects are further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の表面処理方法によって得
られるセラミックス発熱体の構造図、第2図は、第1図
のA−A線断面図、第3図は、第1図の発熱体に高融点
酸化物層を形成させた場合のA−A線断面図、第4図は
、従来のセラミックスイグナイタ発熱体の構造図、第5
図は、第4図の発熱体を1100〜1200 ”Cの大
気中で熱処理した場合のB−B線断面図、第6図は、第
5図の発熱体を用いた場合の高結晶化カーボンの付着状
況を示す図である。 1−3 i C/ Z r Bz導電部、2・AnN!
縁部、3・・・発熱部、4・・・電極板、5・・・Si
C/ZrO□層、6・・・高融点酸化物層、7・・・S
iC/SiO,/ZrB、/ZrO2層、8・・・はう
珪酸ガラス層、9・・・高結晶化カーボン。
FIG. 1 is a structural diagram of a ceramic heating element obtained by a surface treatment method according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG. Fig. 4 is a cross-sectional view taken along the line A-A when a high melting point oxide layer is formed on the heating element, and Fig. 5 is a structural diagram of a conventional ceramic igniter heating element.
The figure is a sectional view taken along the line B-B when the heating element shown in Fig. 4 is heat treated in the atmosphere at 1100 to 1200''C, and Fig. 6 is a cross-sectional view of highly crystallized carbon when the heating element shown in Fig. 5 is used. 1-3 i C/ Z r Bz conductive part, 2 AnN!
Edge, 3... Heat generating part, 4... Electrode plate, 5... Si
C/ZrO□ layer, 6...high melting point oxide layer, 7...S
iC/SiO, /ZrB, /ZrO2 layer, 8... borosilicate glass layer, 9... highly crystallized carbon.

Claims (3)

【特許請求の範囲】[Claims] (1)SiC/ZrB_2複合セラミックスを650〜
1000℃の大気中で熱処理し、上記複合セラミックス
の表面にSiC/ZrO_2層を形成することを特徴と
するセラミックスの表面処理方法。
(1) SiC/ZrB_2 composite ceramics from 650
A method for surface treatment of ceramics, characterized in that a SiC/ZrO_2 layer is formed on the surface of the composite ceramic by heat treatment in the atmosphere at 1000°C.
(2)SiC/ZrB_2複合セラミックスの表面に高
融点酸化物をコーティングすることを特徴とするセラミ
ックスの表面処理方法。
(2) A method for surface treatment of ceramics, which comprises coating the surface of SiC/ZrB_2 composite ceramics with a high melting point oxide.
(3)請求項(1)記載のSiC/ZrO_2層を有す
る複合セラミックスの表面に高融点酸化物をコーティン
グすることを特徴とするセラミックスの表面処理方法。
(3) A method for surface treatment of ceramics, which comprises coating the surface of the composite ceramic having the SiC/ZrO_2 layer according to claim (1) with a high melting point oxide.
JP2017277A 1990-01-26 1990-01-26 Surface treatment method for ceramics Expired - Fee Related JP3009166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017277A JP3009166B2 (en) 1990-01-26 1990-01-26 Surface treatment method for ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017277A JP3009166B2 (en) 1990-01-26 1990-01-26 Surface treatment method for ceramics

Publications (2)

Publication Number Publication Date
JPH03223191A true JPH03223191A (en) 1991-10-02
JP3009166B2 JP3009166B2 (en) 2000-02-14

Family

ID=11939487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017277A Expired - Fee Related JP3009166B2 (en) 1990-01-26 1990-01-26 Surface treatment method for ceramics

Country Status (1)

Country Link
JP (1) JP3009166B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194506A (en) * 2020-08-26 2021-01-08 北京理工大学 Preparation of oxide in-situ coated ZrB by using oxyacetylene fuel flow2Method for agglomerating powder by using-SiC
CN113800955A (en) * 2021-09-29 2021-12-17 湖北瑞宇空天高新技术有限公司 Multilayer ceramic matrix composite thermal protection coating and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112194506A (en) * 2020-08-26 2021-01-08 北京理工大学 Preparation of oxide in-situ coated ZrB by using oxyacetylene fuel flow2Method for agglomerating powder by using-SiC
CN113800955A (en) * 2021-09-29 2021-12-17 湖北瑞宇空天高新技术有限公司 Multilayer ceramic matrix composite thermal protection coating and preparation method and application thereof

Also Published As

Publication number Publication date
JP3009166B2 (en) 2000-02-14

Similar Documents

Publication Publication Date Title
KR940008738A (en) Fluid heater and its manufacturing method
JP2002174618A (en) Solid electrolyte gas sensor
TW444113B (en) Novel ceramic igniter having improved oxidation resistance, and method of using same
US4556780A (en) Ceramic heater
JPS61138486A (en) Planar ceramics heater
JPH0418261B2 (en)
JPH03223191A (en) Surface-treatment of ceramics
US6636142B2 (en) Sensor element, in particular a temperature sensor
JPH11351521A (en) Combustion equipment
JP2000055740A (en) Thermocouple protection pipe for measuring temp. of molten metal
JPH0785435B2 (en) Electric heating element
JPS6340360B2 (en)
JPS61241658A (en) Oxygen sensor element and its production
JP4090767B2 (en) Heat-generating material mainly composed of MoSi2 having a low oxygen diffusible glassy coating
JP2512818Y2 (en) Ceramic heater
WO2021111870A1 (en) Electrical resistance body, honeycomb structure, and electrically-heated catalyst device
JPH02178503A (en) Radiant tube
JPS5998501A (en) Thermistor for high temperature and method of producing same
JP2001102161A (en) Ceramic heater
JP3366546B2 (en) Ceramic heater
JPS63285891A (en) Silicon carbide heating body
JPH0737114Y2 (en) Electric furnace
JPH04370689A (en) Heater for gas sensor
JPS6037101A (en) High temperature thermistor
JPH0343988A (en) Manufacture of thin-type high-temperature heater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees