JPH03223184A - Porous ceramic material - Google Patents

Porous ceramic material

Info

Publication number
JPH03223184A
JPH03223184A JP34058390A JP34058390A JPH03223184A JP H03223184 A JPH03223184 A JP H03223184A JP 34058390 A JP34058390 A JP 34058390A JP 34058390 A JP34058390 A JP 34058390A JP H03223184 A JPH03223184 A JP H03223184A
Authority
JP
Japan
Prior art keywords
porosity
weight
slurry
foam
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34058390A
Other languages
Japanese (ja)
Other versions
JP2510044B2 (en
Inventor
Koichi Imura
浩一 井村
Shunzo Shimai
駿蔵 島井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2340583A priority Critical patent/JP2510044B2/en
Publication of JPH03223184A publication Critical patent/JPH03223184A/en
Application granted granted Critical
Publication of JP2510044B2 publication Critical patent/JP2510044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a porous ceramic material having light weight and small heat-capacity, usable at a high temperature over a long period and durable to quick heating and quenching by using ceramic aggregate having a porosity smaller than a specific level and producing the objective material in such a manner as to attain the overall porosity falling within a specific range. CONSTITUTION:A slurry is produced by mixing a ceramic aggregate having a porosity of <=10% (e.g. zirconia powder stabilized with calcia), a binder, a dispersing agent, a foam homogenizer, a foam stabilizer, a dispersing medium (e.g. water), etc. The slurry is frothed by stirring and formed. The formed material is dried and baked to obtain a porous ceramic material having an overall porosity of 30-98%. The porosity of the porous material can be controlled by selecting the amount of foam homogenizer to be added to the slurry, the degree of stirring, etc. The porous ceramic material produced by this process is suitable as a light-weight tool material for baking electronic parts.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス多孔体に関し、特に電子部品焼成
などに使用される多孔質道具材、床材。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to porous ceramic bodies, particularly porous tool materials and flooring materials used for firing electronic parts.

壁材等の軽量構造材、冷蔵庫、家屋等の断熱材、エア、
水等のフィルター材、人口骨材、基板、振動子等のエレ
クトロニクス材等の各種の用途に用いられるものである
Lightweight structural materials such as wall materials, insulation materials for refrigerators and houses, air,
It is used for various purposes such as filter materials for water, artificial aggregates, substrates, electronic materials such as vibrators, etc.

[従来の技術と課題] 従来、例えば電子部品焼成用の軽量道具材として、アル
ミナファイバーを主成分としこれをシリカ化合物等で結
合したものが使用されていた。
[Prior Art and Problems] Conventionally, for example, as a lightweight tool material for firing electronic parts, a material made of alumina fiber as a main component and bonded with a silica compound or the like has been used.

ところで、電子部品材料としては、チタン酸バリウムな
とによるコンデンサーやフェライトなどが代表的である
が、チタン酸バリウムはアルミナと反応するため焼成用
道具材にはジルコニアコーティングか施されていた。ま
た、ジルコニア質の軽量道具材として、一部では網目構
造をもったセラミックも使用されており、大型炉用とし
てはジルコニア質の耐火物が使用されている。
By the way, typical electronic component materials include capacitors and ferrite made of barium titanate, but since barium titanate reacts with alumina, firing tool materials were coated with zirconia. Ceramics with a mesh structure are also used as lightweight zirconia tool materials, and zirconia refractories are used for large furnaces.

しかしながら、アルミファイバーにジルコニアコーティ
ングを施しである軽量道具材においては、基材のアルミ
ナとジルコニアの熱膨張率が異なるため、使用における
加熱冷却の繰り返しによりジルコニアコーティングの剥
離が起こり、ジルコニア片が焼成物に付着したり1むき
出しになったアルミナと焼成物が反応するという問題点
を有している。また、ジルコニア質耐火物性の道具材は
、その重量・熱容量ともに大きいという問題点を有して
いる。
However, in lightweight tool materials made of aluminum fiber coated with zirconia, the thermal expansion coefficients of the base material alumina and zirconia are different, so repeated heating and cooling during use causes the zirconia coating to peel off, causing zirconia pieces to form in the fired product. There is a problem in that the fired product reacts with the alumina that adheres to or is exposed. Additionally, zirconia refractory tool materials have the problem of being large in weight and heat capacity.

また、ジルコニア質の網目構造をもったセラミックは、
例えばウレタンフオームのような網目構造をもった下地
に、セラミック原料スラリーを付着させ、乾燥・焼成し
て得られるものであり、その製造方法の制約から大きな
網目構造のものしか得られない。このため、例えばチッ
プコンデンサのような小さな被焼成物を焼成する際に被
焼成物が大きな網目構造に入り込み、うまく焼成できな
いという問題点を有している。更に、同様に製造上の制
約から、この網目構造をもったセラミックはそのセラミ
ック部分の内部にポリマー下地に起因する孔か有り、そ
のうえほとんどのものでは、そのセラミック部分に亀裂
か多数生しており、強度が著しく低くなっている。この
ため、このような軽量道具材ては、数回の使用で破損し
てしまうという問題を有している。
In addition, ceramics with a zirconia network structure are
For example, it is obtained by adhering a ceramic raw material slurry to a base with a network structure such as urethane foam, drying and firing it, and due to limitations in the manufacturing method, only those with a large network structure can be obtained. For this reason, when firing a small object to be fired, such as a chip capacitor, for example, there is a problem that the object to be fired gets into a large network structure and cannot be fired properly. Furthermore, due to similar manufacturing constraints, ceramics with this network structure have pores inside the ceramic part due to the polymer base, and most of them also have many cracks in the ceramic part. , the strength is significantly lower. Therefore, such lightweight tool materials have the problem of being damaged after being used several times.

本発明は上記事情に鑑みてなされたもので、軽量で熱容
量が小さく、高温で長時間使用でき、かつ急熱急冷に耐
えうるセラミックス多孔体を提供することを目的とする
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a ceramic porous body that is lightweight, has a small heat capacity, can be used at high temperatures for a long time, and can withstand rapid heating and cooling.

[課題を解決するための手段と作用] 本発明は、気孔率10%以下のセラミックス骨材から構
成され、かつ全体の気孔率か30〜98%の多孔体であ
ることを特徴とする多孔質道具材である。
[Means and effects for solving the problems] The present invention provides a porous body comprising ceramic aggregate with a porosity of 10% or less and having an overall porosity of 30 to 98%. It is a tool material.

本発明において、全体の気孔率を30〜9896と規定
としたのは、気孔率が98%を越えると、網目構造を構
成する緻密なセラミックス網の直径が小さくなりすぎて
、使用上必要とされる十分な強度が得られず、製作も困
難になるためである。また、気孔率が30%未満の場合
、熱容量が大きくなりすぎて本発明の効果が十分得られ
ないからである(第1図及び第2図参照)、、ここで、
第1図はZrO2多孔体の場合を示し、第2図はMgO
多孔体の場合を示す。
In the present invention, the overall porosity is specified as 30 to 9896.If the porosity exceeds 98%, the diameter of the dense ceramic network that makes up the network structure becomes too small, which is not necessary for use. This is because sufficient strength cannot be obtained and manufacturing becomes difficult. In addition, if the porosity is less than 30%, the heat capacity becomes too large and the effects of the present invention cannot be obtained sufficiently (see FIGS. 1 and 2).Here,
Figure 1 shows the case of ZrO2 porous body, and Figure 2 shows the case of MgO2 porous body.
The case of a porous body is shown.

本発明において、セラミックス骨材の気孔率を10%以
下とするのは、10%を越えると強度か低下するためで
ある(第3図及び第4図参照)。ここで、第3図はZr
O2における気孔率と曲げ強さとの関係を示し、第4図
はMgOにおける気孔率と曲げ強さとの関係を示す。セ
ラミックス部分の気孔率の測定は、次のようにして求め
る。まず、比重ビンを用いて粗砕したサンプルと微粉砕
したサンプルの比重を測定する。ここで、本発明品のセ
ラミック部分は概略全て閉気孔であるため、粗砕したサ
ンプルの比重はかさ比重、微粉砕したサンプルの比重は
真比重と考える事ができる。従って、前記気孔率は、以
下の式により求める事ができる。
In the present invention, the reason why the porosity of the ceramic aggregate is set to 10% or less is that if it exceeds 10%, the strength will decrease (see FIGS. 3 and 4). Here, Figure 3 shows Zr
The relationship between porosity and bending strength in O2 is shown, and FIG. 4 shows the relationship between porosity and bending strength in MgO. The porosity of the ceramic portion is determined as follows. First, the specific gravity of the coarsely crushed sample and the finely crushed sample is measured using a specific gravity bottle. Here, since the ceramic part of the product of the present invention has almost all closed pores, the specific gravity of the coarsely crushed sample can be considered to be the bulk specific gravity, and the specific gravity of the finely crushed sample can be considered to be the true specific gravity. Therefore, the porosity can be determined by the following formula.

気孔率−(1−(真比重−かさ比重)/真比重)X10
0 (%) なお、上記気孔率は、望ましくは5%以下が好ましい。
Porosity-(1-(true specific gravity-bulk specific gravity)/true specific gravity)X10
0 (%) The above porosity is preferably 5% or less.

本発明において、本発明に係るセラミックス多孔体を電
子部品焼成などの多孔質道具材として使用する場合は、
表面部分の気孔径を5μm〜2mmにするのが望ましい
。この理由は、気孔径か2mmを越えると小さな被焼成
物、大きさ数mmの焼成に不都合であり、気孔径が5μ
m未満の場合セラミック部分の直径か小さくなりすぎて
使用上g 要とされる十分な強度か得られないからであ
る。
In the present invention, when the ceramic porous body according to the present invention is used as a porous tool material for firing electronic parts, etc.,
It is desirable that the pore diameter of the surface portion be 5 μm to 2 mm. The reason for this is that if the pore diameter exceeds 2 mm, it is inconvenient for firing small objects to be fired, or those with a size of several mm.
This is because if it is less than m, the diameter of the ceramic portion becomes too small and sufficient strength required for use cannot be obtained.

本発明において、セラミックスとしては、純ジルコニア
、あるいはジルコニアをカルシア、マグネンア、イツト
リア、セリアなどで部分安定化又は全安定化したものが
挙げられ、これらを単一あるいは複数混合して用いても
よい。なお、緻密な安定化されていないジルコニアの場
合、相転移温度における急激な体積変化から生ずる応力
によって破壊してしまうが、本発明品の場合にはその構
造中に多量に存在する空間が応力を緩和し、破壊する事
がない。しかし、相転移温度における体積変化が起こる
事は避けられないため、望ましくは安定化したジルコニ
アを使用したほうがよい。また、上記セラミックスとし
ては、高純度(99νt%以上)なマグネシアを用いる
ことができる。
In the present invention, examples of the ceramic include pure zirconia, or zirconia partially or fully stabilized with calcia, magneur, ittria, ceria, etc., and these may be used singly or in combination. In the case of dense, unstabilized zirconia, it will break due to the stress caused by the rapid volume change at the phase transition temperature, but in the case of the product of the present invention, the large amount of space existing in its structure suppresses the stress. Alleviating and non-destructive. However, since a volume change at the phase transition temperature is unavoidable, it is preferable to use stabilized zirconia. Further, as the ceramic, highly pure (99vt% or more) magnesia can be used.

本発明において、三次元網目構造を有するセラミック多
孔体の骨格における気孔率の測定は、股に行われるでい
るようなような水銀圧入法等では、三次元網目構造に起
因する気孔であるのか骨格中に存在する気孔に起因する
ものであるか区別かつかず測定不可能である。しかし、
非測定物を樹脂包埋した後これを研磨し顕微鏡を使用し
てその81織を観測し画像処理によって骨格中の気孔部
分を特定して、骨格中の気孔率を測定することにより骨
格中の気孔率を求める事ができる。
In the present invention, the porosity of the skeleton of a ceramic porous body having a three-dimensional network structure is measured by the mercury intrusion method, etc., which is carried out on the crotch. It is impossible to distinguish whether this is due to the pores present in the pores and cannot be measured. but,
After embedding the object to be measured in resin, polishing it and observing its 81 textures using a microscope, identifying the pores in the skeleton through image processing and measuring the porosity in the skeleton. Porosity can be determined.

次に、網目構造をもつセラミック骨材から構成される多
孔体は、例えばセラミック粉末と分散媒をバインダー、
分散剤、整泡剤、泡安定剤のうち少なくとも一つと共に
混合して原料スラリーとして、これを攪拌して泡立て成
形することにより作られる。ここで、バインダーは、乾
燥後の成形体強度を増し作業を容易にするため、またス
ラリーの粘度を増して泡立ての効率を増し泡の安定化を
計る目的で添加される。分散剤は、分散媒中でセラミッ
ク粉を分散して原料スラリーの高濃度化を可能にし、成
形体のセラミック部分の密度を増加する目的で添加され
る。整泡剤は、原料スラリーの泡立ちを助は成形体の気
孔率を増す目的で添加される。泡安定剤は、泡立てによ
って生じた原料スラリーの泡を安定化し、成形体が乾燥
する間に泡が消失しないように添加される。以上のよう
に多孔体は成形体を乾燥、焼成して作製されるか、焼成
の方法1条件等は緻密なセラミックスの場合と同様でよ
い。また、前記多孔体の気孔率は、原料スラリーに添加
する整泡剤の量や攪拌の度合いによって調整することが
できる。
Next, a porous body made of a ceramic aggregate with a network structure is made by combining ceramic powder and a dispersion medium with a binder, for example.
It is produced by mixing with at least one of a dispersant, a foam stabilizer, and a foam stabilizer to form a raw material slurry, which is then stirred and foam-molded. Here, the binder is added for the purpose of increasing the strength of the molded product after drying and making the work easier, and also for the purpose of increasing the viscosity of the slurry, increasing the efficiency of foaming, and stabilizing the foam. The dispersant is added for the purpose of dispersing the ceramic powder in the dispersion medium, making it possible to increase the concentration of the raw material slurry, and increasing the density of the ceramic portion of the molded body. The foam stabilizer is added for the purpose of assisting foaming of the raw material slurry and increasing the porosity of the molded article. The foam stabilizer is added to stabilize the foam of the raw material slurry generated by foaming and to prevent the foam from disappearing while the molded product is drying. As described above, the porous body may be produced by drying and firing a molded body, or the firing method and conditions may be the same as those for dense ceramics. Further, the porosity of the porous body can be adjusted by adjusting the amount of foam stabilizer added to the raw material slurry and the degree of stirring.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

[実施例1] 平均粒径1μmでCaOを5%含んだジルコニア粉10
0重量部にポリアクリル酸アンモニウム1重量部、イオ
ン交換水100重量部、PVA2重量部をボールミルに
て1昼夜混合した。次に、これに、ステアリン酸アンモ
ニウム1重量部、アクリル系バインダー5重量部、イオ
ン交換水20重量部を混合しながら攪拌機で泡立てた。
[Example 1] Zirconia powder 10 containing 5% CaO with an average particle size of 1 μm
0 parts by weight, 1 part by weight of ammonium polyacrylate, 100 parts by weight of ion-exchanged water, and 2 parts by weight of PVA were mixed day and night in a ball mill. Next, 1 part by weight of ammonium stearate, 5 parts by weight of an acrylic binder, and 20 parts by weight of ion-exchanged water were mixed into the mixture and foamed with a stirrer.

次いで、泡が安定した後、乾燥機で乾燥して成形体を得
た。
Then, after the foam became stable, it was dried in a drier to obtain a molded article.

この成形体を空気中、 1700℃で2時間焼成したと
ころ、得られた網目構造をもった多孔体は、表面部分の
最大機構径が約500μmであり、気孔の平均の大きさ
は100μm1気孔率は85%、かさ密度は0.9g/
cm3であった。
When this molded body was fired in air at 1700°C for 2 hours, the resulting porous body with a network structure had a maximum mechanical diameter of about 500 μm on the surface, and an average pore size of 100 μm. is 85%, bulk density is 0.9g/
It was cm3.

この網目構造をもった多孔体を200mm X 1oo
II+m×5m1llに加工しチタン酸バリウムの焼成
に使用したところ、1300℃で破損することなく10
0回の使用に耐えた。
The porous material with this network structure is 200mm x 1oo
When it was processed into a size of II+m x 5ml and used for firing barium titanate, it was heated at 1300℃ without breaking.
Withstood 0 uses.

[実施例2] 平均粒径3μmでCaOを5%含んだジルコニア粉10
0重量部にポリアクリル酸アンモニウム1重量部、イオ
ン交換水100重量部、PVA2重量部をボールミルに
て1昼夜混合した。次に、これに、ステアリン酸アンモ
ニウム0.5〜lO重量部、アクリル系バインダー5重
量部、イオン交換水20重量部を混合しながら攪拌機で
泡立てた。次いで、泡が安定した後、乾燥機で乾燥して
気孔率の異なる成形体を数種類得た。
[Example 2] Zirconia powder 10 containing 5% CaO with an average particle size of 3 μm
0 parts by weight, 1 part by weight of ammonium polyacrylate, 100 parts by weight of ion-exchanged water, and 2 parts by weight of PVA were mixed day and night in a ball mill. Next, 0.5 to 10 parts by weight of ammonium stearate, 5 parts by weight of an acrylic binder, and 20 parts by weight of ion-exchanged water were mixed into the mixture and foamed with a stirrer. Next, after the foam became stable, it was dried in a dryer to obtain several types of molded bodies with different porosity.

この成形体を空気中、 1700℃で2時間焼成して得
られた気孔率の異なる網目構造をもった多孔体を、4 
mmX 31DIIIX 4DIに加工しそれらの三点
曲げ強さを測定した。この結果から得た気孔率と曲げ強
さの関係の一例は、第1図に示す通りである。
This molded body was fired in air at 1700°C for 2 hours, and a porous body with a network structure with different porosity was obtained.
The three-point bending strength of the three-point bending strength was measured. An example of the relationship between porosity and bending strength obtained from this result is as shown in FIG.

同図より、気孔率が98%を超えると、曲げ強さか著し
く低下することか明らかである。
From the figure, it is clear that when the porosity exceeds 98%, the bending strength decreases significantly.

〔実施例3コ 平均粒径1μmで純度99.5%のマグネシア粉100
重量部にポリアクリル酸アンモニウム1重量部、イオン
交換水100重量部、PVA2重量部をボールミルにて
1昼夜混合した。次に、これに、ステアリン酸アンモニ
ウム1重量部、アクリル系バインダー5重量部、イオン
交換水20重量部を混合しながら攪拌機で泡立てた。次
いで、泡が安定した後、乾燥機で乾燥して成形体を得た
[Example 3 Magnesia powder 100 with an average particle size of 1 μm and a purity of 99.5%]
1 part by weight of ammonium polyacrylate, 100 parts by weight of ion-exchanged water, and 2 parts by weight of PVA were mixed in a ball mill for one day and night. Next, 1 part by weight of ammonium stearate, 5 parts by weight of an acrylic binder, and 20 parts by weight of ion-exchanged water were mixed into the mixture and foamed with a stirrer. Then, after the foam became stable, it was dried in a drier to obtain a molded article.

この成形体を空気中、 1700℃で2時間焼成したと
ころ、得られた網目構造をもった多孔体は、表面部分の
最大気孔径が約500μmであり、気孔の平均の大きさ
は100μm1気孔率は85%、かさ密度は0.5g/
c113であった。
When this molded body was fired in air at 1700°C for 2 hours, the resulting porous body with a network structure had a maximum pore diameter of about 500 μm on the surface, and an average pore size of 100 μm. is 85%, bulk density is 0.5g/
It was c113.

この網目構造をもった多孔体を200mm X 100
mm×5111mに加工し、チタン酸バリウムの焼成に
使用したところ、1300℃で破損や製品と反応するこ
となく100回の使用に耐えた。
The porous body with this network structure is 200 mm x 100
When it was processed into a size of 5111 mm x 5111 m and used for firing barium titanate, it withstood 100 uses at 1300°C without breaking or reacting with the product.

[実施例4コ 平均粒径3μmで純度99,5%のマグネシア粉100
重量部にポリアクリル酸アンモニウム1重量部、イオン
交換水100重量部、PVA2重量部をボールミルにて
1昼夜混合した。次に、これに、ステアリン酸アンモニ
ウム0.5〜10重量部、アクリル系バインダー5重量
部、イオン交換水20重量部を混合しながら攪拌機で泡
立てた。次いて、泡が安定した後、乾燥機で乾燥して気
孔率の異なる成形体を数種類書た。
[Example 4] Magnesia powder 100 with an average particle size of 3 μm and a purity of 99.5%
1 part by weight of ammonium polyacrylate, 100 parts by weight of ion-exchanged water, and 2 parts by weight of PVA were mixed in a ball mill for one day and night. Next, 0.5 to 10 parts by weight of ammonium stearate, 5 parts by weight of an acrylic binder, and 20 parts by weight of ion-exchanged water were mixed into the mixture and foamed with a stirrer. Next, after the foam became stable, it was dried in a dryer to form several types of molded bodies with different porosity.

これらの成形体を空気中、 1700℃で2時間焼成し
て得られた気孔率の異なる網目構造をもった多孔体を、
4 nunX 3 mmX 40mmに加工しそれらの
三点曲げ強さを測定した。この結果から得た気孔率と曲
げ強さの関係の一例は、第2図に示す通りである。同図
より、気孔率が98%を超えると、曲げ強さが著しく低
下することか明らかである。
These molded bodies were fired in air at 1,700°C for 2 hours, and the resulting porous body had a network structure with different porosity.
It was processed into 4 mm x 3 mm x 40 mm and its three-point bending strength was measured. An example of the relationship between porosity and bending strength obtained from this result is as shown in FIG. From the figure, it is clear that when the porosity exceeds 98%, the bending strength decreases significantly.

また、実施例1及び実施例3において作製した多孔体を
樹脂包埋した後これを研磨し、顕微鏡を使用して組織を
画像処理により骨格中の気孔部分を特定して、骨格中の
気孔率を測定した。測定は、それぞれの試料につき10
0本の骨格を測定しその平均値を求めた。なお、気孔径
0.5μm以上を測定の対象としたか、これは顕微鏡の
解像度とαj定の簡便さのために設定したものて、でき
うる限り小さい径の気孔まで測定する事が望ましい。し
かしながら、気孔が機械的強度に及ぼす影響はその気孔
径の大きいものはと顕著であるため実際上あまり問題に
はならない。骨格中の気孔率(%)は、実施例1の場合
が1,5、実施例3の場合が3.0であった。更に、実
施例2について、実施例1の場合と同様な測定方法を用
いて骨材の気孔率を調べたところ(平均粒径3μmのマ
グネシア、全体気孔率85%のもの) 、5.0であっ
た。更には、実施例4についても、全体気孔率85%の
ものについて、同様に測定したところ、6.5%であっ
た。
In addition, the porous bodies produced in Example 1 and Example 3 were embedded in resin, polished, and the pores in the skeleton were identified by image processing of the structure using a microscope, and the porosity in the skeleton was determined. was measured. Measurements are made on 10 samples for each sample.
0 skeletons were measured and the average value was determined. Note that although the pore diameter of 0.5 μm or more was the object of measurement, this was set for the resolution of the microscope and the ease of determining αj, and it is desirable to measure pores with a diameter as small as possible. However, since the influence of pores on mechanical strength is more pronounced as the pores have larger diameters, this does not pose much of a problem in practice. The porosity (%) in the skeleton was 1.5 in Example 1 and 3.0 in Example 3. Furthermore, regarding Example 2, when the porosity of the aggregate was examined using the same measuring method as in Example 1 (magnesia with an average particle size of 3 μm, total porosity of 85%), it was found to be 5.0. there were. Furthermore, in Example 4, the overall porosity of 85% was similarly measured and found to be 6.5%.

[比較例1,2] ポリウレタンフォームにジルコニア及びマグネシアのス
ラリーを付着させこれを乾燥した後、1700℃で2時
間焼成しこれらをそれぞれ比較例1゜比較例2とした。
[Comparative Examples 1 and 2] A slurry of zirconia and magnesia was applied to a polyurethane foam, dried, and then baked at 1700° C. for 2 hours to form Comparative Example 1 and Comparative Example 2, respectively.

これらについて上述した方法にて骨格中の気孔率(%)
を測定した。また、多孔体の気孔率(%)、三点曲げ強
度(MPa)を測定した。その結果、比較例1の場合は
骨格中の気孔率40%、気孔率8296.三点曲げ強度
1.2MPaで、比較例2の場合は骨格中の気孔率40
%、気孔率87%、三点曲げ強度0.7MPaであった
The porosity (%) in the skeleton was calculated using the method described above.
was measured. In addition, the porosity (%) and three-point bending strength (MPa) of the porous body were measured. As a result, in the case of Comparative Example 1, the porosity in the skeleton was 40%, and the porosity was 8296. The three-point bending strength was 1.2 MPa, and the porosity in the skeleton was 40 in the case of Comparative Example 2.
%, porosity was 87%, and three-point bending strength was 0.7 MPa.

このように、ウレタンフオームにセラミックスラリ−を
付着させる方法で得られた多孔体は、実施例2及び実施
例4に示めされる、同気孔率の本発明品と比較して著し
く低い三点曲げ強さを示し、実施例1.実施例3に示さ
れる本発明品と比較して非常に大きな骨格中の気孔率を
もつことが分かる。
As described above, the porous body obtained by the method of attaching ceramic slurry to urethane foam has a significantly lower three points than the products of the present invention having the same porosity as shown in Examples 2 and 4. The bending strength is shown in Example 1. It can be seen that compared to the product of the present invention shown in Example 3, it has a very large porosity in the skeleton.

[発明の効果] 以上詳述した如く本発明によれば、軽量で熱容量が小さ
く、高温で長時間使用でき、かつ急熱急冷に耐えうる高
信頼性のセラミックス多孔体を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a highly reliable ceramic porous body that is lightweight, has a small heat capacity, can be used at high temperatures for a long time, and can withstand rapid heating and cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るZrO2多孔体の気孔率と曲げ強
さ、熱容量との関係を示す特性図、第2図は本発明に係
るMgO多孔体の気孔率と曲げ強さ、熱容量との関係を
示す特性図、第3図はZrO2の気孔率と曲げ強さとの
関係を示す特性図、第4図はMgOの気孔率と曲げ強さ
との関係を示す特性図である。
Figure 1 is a characteristic diagram showing the relationship between the porosity, bending strength, and heat capacity of the ZrO2 porous body according to the present invention, and Figure 2 is a characteristic diagram showing the relationship between the porosity, bending strength, and heat capacity of the MgO porous body according to the present invention. FIG. 3 is a characteristic diagram showing the relationship between the porosity of ZrO2 and bending strength, and FIG. 4 is a characteristic diagram showing the relationship between the porosity of MgO and bending strength.

Claims (1)

【特許請求の範囲】[Claims] 気孔率10%以下のセラミックス骨材から構成され、か
つ全体の気孔率が30〜98%であることを特徴とする
セラミックス多孔体。
A porous ceramic body comprising a ceramic aggregate having a porosity of 10% or less, and having an overall porosity of 30 to 98%.
JP2340583A 1989-12-28 1990-11-30 Ceramic porous body Expired - Lifetime JP2510044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340583A JP2510044B2 (en) 1989-12-28 1990-11-30 Ceramic porous body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-343617 1989-12-28
JP34361789 1989-12-28
JP2340583A JP2510044B2 (en) 1989-12-28 1990-11-30 Ceramic porous body

Publications (2)

Publication Number Publication Date
JPH03223184A true JPH03223184A (en) 1991-10-02
JP2510044B2 JP2510044B2 (en) 1996-06-26

Family

ID=26576738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340583A Expired - Lifetime JP2510044B2 (en) 1989-12-28 1990-11-30 Ceramic porous body

Country Status (1)

Country Link
JP (1) JP2510044B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895897A (en) * 1996-12-26 1999-04-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Light-weight ceramic acoustic absorber and method of manufacturing the same
JP2004337833A (en) * 2003-01-17 2004-12-02 Toshiba Ceramics Co Ltd Member for separating gas
WO2012008352A1 (en) * 2010-07-13 2012-01-19 三井金属鉱業株式会社 Heat insulating refractory and method for producing same
CN114095597A (en) * 2020-08-24 2022-02-25 Oppo广东移动通信有限公司 Ceramic composite material, manufacturing method thereof, shell of electronic equipment and electronic equipment
CN114532618A (en) * 2022-02-28 2022-05-27 山东国瓷功能材料股份有限公司 Porous ceramic tape-casting slurry, porous ceramic atomizing core and preparation method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617976A (en) * 1979-06-22 1981-02-20 Kurosaki Refractories Co Manufacture of gas blowing refractories
JPS6150912A (en) * 1984-08-16 1986-03-13 Shionogi & Co Ltd Production of liposome preparation
JPS6236083A (en) * 1985-08-09 1987-02-17 日本特殊陶業株式会社 Manufacture of porous ceramics
JPS6287472A (en) * 1985-10-14 1987-04-21 カネボウ株式会社 Ceramic porous body and manufacture
JPS63125259A (en) * 1986-11-14 1988-05-28 旭光学工業株式会社 Calcium phosphate type porous bone filler
JPS63248781A (en) * 1987-03-31 1988-10-17 カネボウ株式会社 Manufacture of silicon carbide porous body
JPS63270368A (en) * 1987-04-30 1988-11-08 Okura Ind Co Ltd Production of porous ceramic
JPS6411808A (en) * 1987-07-06 1989-01-17 Nichias Corp Manufacture of ceramic honeycomb structure
JPS6448226A (en) * 1987-08-19 1989-02-22 Hitachi Ltd Optical disk device
JPH0193476A (en) * 1987-10-06 1989-04-12 Mitsubishi Heavy Ind Ltd Production of porous ceramics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617976A (en) * 1979-06-22 1981-02-20 Kurosaki Refractories Co Manufacture of gas blowing refractories
JPS6150912A (en) * 1984-08-16 1986-03-13 Shionogi & Co Ltd Production of liposome preparation
JPS6236083A (en) * 1985-08-09 1987-02-17 日本特殊陶業株式会社 Manufacture of porous ceramics
JPS6287472A (en) * 1985-10-14 1987-04-21 カネボウ株式会社 Ceramic porous body and manufacture
JPS63125259A (en) * 1986-11-14 1988-05-28 旭光学工業株式会社 Calcium phosphate type porous bone filler
JPS63248781A (en) * 1987-03-31 1988-10-17 カネボウ株式会社 Manufacture of silicon carbide porous body
JPS63270368A (en) * 1987-04-30 1988-11-08 Okura Ind Co Ltd Production of porous ceramic
JPS6411808A (en) * 1987-07-06 1989-01-17 Nichias Corp Manufacture of ceramic honeycomb structure
JPS6448226A (en) * 1987-08-19 1989-02-22 Hitachi Ltd Optical disk device
JPH0193476A (en) * 1987-10-06 1989-04-12 Mitsubishi Heavy Ind Ltd Production of porous ceramics

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895897A (en) * 1996-12-26 1999-04-20 Ishikawajima-Harima Heavy Industries Co., Ltd. Light-weight ceramic acoustic absorber and method of manufacturing the same
JP2004337833A (en) * 2003-01-17 2004-12-02 Toshiba Ceramics Co Ltd Member for separating gas
WO2012008352A1 (en) * 2010-07-13 2012-01-19 三井金属鉱業株式会社 Heat insulating refractory and method for producing same
JP2012020895A (en) * 2010-07-13 2012-02-02 Mitsui Mining & Smelting Co Ltd Insulating refractory and method of manufacturing the same
CN102811973A (en) * 2010-07-13 2012-12-05 三井金属矿业株式会社 Heat insulating refractory and method for producing same
CN114095597A (en) * 2020-08-24 2022-02-25 Oppo广东移动通信有限公司 Ceramic composite material, manufacturing method thereof, shell of electronic equipment and electronic equipment
CN114532618A (en) * 2022-02-28 2022-05-27 山东国瓷功能材料股份有限公司 Porous ceramic tape-casting slurry, porous ceramic atomizing core and preparation method
CN114532618B (en) * 2022-02-28 2023-01-31 山东国瓷功能材料股份有限公司 Porous ceramic tape-casting slurry, porous ceramic atomizing core and preparation method

Also Published As

Publication number Publication date
JP2510044B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
Adams et al. Young's modulus, flexural strength, and fracture of yttria‐stabilized zirconia versus temperature
EP2088134B1 (en) Lightweight ceramic material
JPH0465030B2 (en)
GB2160858A (en) Alumina-zirconia ceramic
Zenabou et al. Improving insulation in metakaolin based geopolymer: Effects of metabauxite and metatalc
JPH03223184A (en) Porous ceramic material
KR20200078759A (en) Manufacturing method of the aluminum titanate ceramics
Ma et al. Effect of production process parameters on manufacture and properties of porous ceramic based on Al 2 O 3
JPH0572341B2 (en)
Ewais et al. Effect of hercynite spinel on the technological properties of MCZ products used for lining cement rotary kilns
JP2788061B2 (en) Firing jig and its manufacturing method
JP4560199B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
EP0248048B1 (en) Beryllium oxide ceramics
JP4822605B2 (en) Roller hearth roller made of heat-resistant mullite sintered body
JP2003040688A (en) Lightweight ceramic sintered compact
EP1137611A1 (en) Insulating raw material for high temperature applications
JP4546609B2 (en) Ceramic heat treatment material with excellent thermal shock resistance
JP4993812B2 (en) Heat treatment member made of zirconia sintered body
JP3368960B2 (en) SiC refractory
JP2001181024A (en) Ceramic member
Shariff et al. Effect of Different Firing Temperature on Thermal Conductivity of Ceramic Tiles
US2963377A (en) Insulating refractory
Markovska et al. Determination of the fractal dimension of porous ceramic materials
JPH06144946A (en) Magnesian porous compact and its production