JPH03220497A - Natural circulation typed boiling water nuclear reactor - Google Patents

Natural circulation typed boiling water nuclear reactor

Info

Publication number
JPH03220497A
JPH03220497A JP2013629A JP1362990A JPH03220497A JP H03220497 A JPH03220497 A JP H03220497A JP 2013629 A JP2013629 A JP 2013629A JP 1362990 A JP1362990 A JP 1362990A JP H03220497 A JPH03220497 A JP H03220497A
Authority
JP
Japan
Prior art keywords
shroud
reactor
coolant
flow rate
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013629A
Other languages
Japanese (ja)
Other versions
JP2835120B2 (en
Inventor
Hideo Konishi
小西 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013629A priority Critical patent/JP2835120B2/en
Publication of JPH03220497A publication Critical patent/JPH03220497A/en
Application granted granted Critical
Publication of JP2835120B2 publication Critical patent/JP2835120B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To intend improvement of safety at the time of reactor shut down by decreasing reactor core flow rate using a controlling device of the reactor core flow rate in case that an abnormality of a control rod or something like that occurs. CONSTITUTION:Coolant 14 heated at a reactor core 2 in a nuclear reactor pressure vessel 1, rises in a shroud 3, and steam separated by a separator 5 and dried up by a drier 6, performs work at a turbine 8 and then is condensated to be fed as the coolant 14. In this natural convection type nuclear reactor, a core flow controlling device 11 is provided at a main feed water pipe 10 from the turbine 8, and, in and out shroud feed water pipes 12 and 13, which lead the coolant 14 distributed on the inside and the outside of the shroud 3, are connected. In this situation, when the coolant 14 flowing into the shroud, is made to increase, flowing steam bubbles collapse and therewith density in the shroud, in-and outside density difference, driving force of the natural convection and the reactor core flow rate, all of them decrease. Consequently, by changing the flow rate of the coolant 14 distributed by the device 11, shut down of the nuclear reactor can be safely conducted.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は炉心内に流入する冷却材の流量を可変として原
子炉出力を変更できるように構成した自然循環式沸騰水
型原子炉に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is a natural circulation boiling water type reactor configured to change the reactor output by varying the flow rate of coolant flowing into the reactor core. Regarding nuclear reactors.

(従来の技術) 従来の沸騰水型原子炉は一般に第2図に示すように構成
されている。すなわち図中、符号1で示す原子炉圧力容
器内には中心部に炉心2が配置され、この炉心2を覆う
ように筒状のシュラウド3が配設されている。このシュ
ラウド3と原子炉圧力容器1との間隙の下部には複数の
再循環ポンプ4が配設されている。
(Prior Art) A conventional boiling water nuclear reactor is generally configured as shown in FIG. That is, in the figure, a reactor core 2 is disposed at the center within a reactor pressure vessel indicated by reference numeral 1, and a cylindrical shroud 3 is disposed so as to cover this reactor core 2. A plurality of recirculation pumps 4 are disposed below the gap between the shroud 3 and the reactor pressure vessel 1.

炉心2における核反応によって生成した熱エネルギーを
得て、冷却水は高温高圧の蒸気となってシュラウド3内
を上方向に流れる。水と蒸気との混合流は、セパレータ
5によって水分が分離された後に、さらにドライヤ6に
導入され、ここで湿分が除去された後に、主蒸気管7を
通り、タービン8に導かれる。タービン8を駆動し仕事
をしたのちの蒸気はコンデンサ9において復水とされ、
二の復水は主給水管lOを通り、再びシュラウド3の外
側の環状流路に流入する。
Obtaining thermal energy generated by the nuclear reaction in the reactor core 2, the cooling water turns into high-temperature, high-pressure steam and flows upward within the shroud 3. After moisture is separated from the mixed flow of water and steam by a separator 5, the mixed flow is further introduced into a dryer 6, where the moisture is removed, and then guided through a main steam pipe 7 to a turbine 8. After driving the turbine 8 and doing work, the steam is condensed in the condenser 9.
The second condensate passes through the main water supply pipe IO and flows into the annular flow path outside the shroud 3 again.

ところで第2図に示すような強制循環式沸騰水型原子炉
においては、大型の再循環ポンプ4およびそれに付属す
る補助発電設備および制御装置などを装備する必要があ
るため、原子炉のシステム構成が複雑化し、設備費およ
び運転コストも高騰する問題点がある。
By the way, in a forced circulation boiling water reactor as shown in Figure 2, it is necessary to equip a large recirculation pump 4 and its attached auxiliary power generation equipment and control equipment, so the system configuration of the reactor is There are problems in that the process becomes complicated and equipment costs and operating costs rise.

近年、システムの簡素化と設備コスト、運転コストの低
減とを図る目的で再循環ポンプ4を装備しない自然循環
式沸騰水型原子炉の開発が進められている。この形式の
沸騰水型原子炉は、冷却材を強制的に循環させる機器を
設けず、シュラウド3の内外を流れる冷却材の密度差に
基づく自然循環力によって冷却材を循環させるものであ
る。
In recent years, development of a natural circulation boiling water reactor that is not equipped with a recirculation pump 4 has been progressing in order to simplify the system and reduce equipment costs and operating costs. This type of boiling water reactor does not have any equipment for forcibly circulating the coolant, but instead circulates the coolant by natural circulation force based on the density difference between the coolant flowing inside and outside the shroud 3.

(発明が解決しようとする課題) しかしながら、上述した従来の自然循環式沸騰木型原子
炉においては、出力を変更する手段としては炉心の下部
から炉心に挿入される図示してない制御棒にのみ依存す
る事となる。一方、従来の強制循環式沸騰水型原子炉で
は再循環ポンプ4の回転数を変え、炉心流量を変更する
ことによっても容易に出力を変更させることができる0
例えば高出力運転中にタービントリップ等の異常現象が
発生した場合、制御棒を挿入して原子炉を停止するが、
何らかの異常によってこの制御棒の挿入が遅れたり、ま
たは挿入不能の場合、再循環ポンプ4を急速に停止する
ことによりバックアップの停止手段として用意されてい
るほう酸水注入系の作動を行うまでに原子炉出力を低下
させておくことができる。
(Problem to be Solved by the Invention) However, in the conventional natural circulation boiling wood reactor described above, the only means for changing the output is a control rod (not shown) that is inserted into the core from the bottom of the core. It will depend. On the other hand, in conventional forced circulation boiling water reactors, the output can be easily changed by changing the rotation speed of the recirculation pump 4 and changing the core flow rate.
For example, if an abnormal phenomenon such as a turbine trip occurs during high-output operation, control rods are inserted to shut down the reactor.
If the insertion of the control rods is delayed or impossible due to some abnormality, the recirculation pump 4 will be rapidly stopped, and the reactor will be shut down before the boric acid water injection system, which is prepared as a backup means of stopping, is activated. The output can be kept lower.

ところが、自然循環式沸騰水型原子炉では、再循環ポン
プが設けられてないので、炉心へ流入する冷却材の炉心
流量を制御することはできず、制御棒のみが出力を低下
させる手段となっている。
However, natural circulation boiling water reactors do not have recirculation pumps, so it is not possible to control the flow rate of coolant flowing into the reactor core, and the control rods are the only means to reduce power. ing.

このため、何らかの原因で制御棒の挿入が遅れたり挿入
不能の場合には高出力状態のままでほう酸水注入系作動
を待つため原子炉停止に要する時間が多く必要となる課
題がある。
For this reason, if the control rod insertion is delayed or cannot be inserted for some reason, the reactor remains in a high output state and waits for the boric acid water injection system to operate, which poses a problem in that it takes a long time to shut down the reactor.

本発明は上記IIMを解決するためになされたもので、
制御棒に異常が生じた場合等に、先ず出力を低下でき安
全性の高い自然循環式沸騰水型原子炉を提供することに
ある。
The present invention was made to solve the above-mentioned IIM,
The object of the present invention is to provide a highly safe natural circulation boiling water reactor that can reduce the output in the event of an abnormality in a control rod.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は原子炉圧力容器内に配置した炉心で冷却材を加
熱し、その加熱された冷却材を炉心の外側を包囲して設
けたシュラウド内を上昇させ、そのシュラウドの上部に
設けたセパレータで前記加熱された冷却材中の蒸気を分
離し、その蒸気をセパレータの上方に設けたドライヤを
通して乾燥し、その乾燥された蒸気を原子炉圧力容器内
から主蒸気管を通してタービンへ導き、タービンで仕事
をした蒸気を復水し、その復水を主給水管を通して原子
炉圧力容器内へ冷却材として給水する再循環ポンプを使
用しない自然循環式沸騰水型原子炉において、前記主給
水管に炉心流量制御装置を設けるとともに、この炉心流
量制御装置に前記シュラウド内 流入するシュラウド内給水管と、シュラウド外給水管と
を接続してなることを特徴とする。
(Means for Solving the Problems) The present invention heats a coolant in a reactor core placed in a reactor pressure vessel, raises the heated coolant in a shroud surrounding the outside of the reactor core, A separator installed at the top of the shroud separates the steam in the heated coolant, the steam is dried through a dryer installed above the separator, and the dried steam is transferred from the reactor pressure vessel to the main steam. A natural circulation boiling water nuclear reactor that does not use a recirculation pump, in which the steam that has been carried out through a pipe to the turbine, has done work in the turbine, is condensed, and the condensate is supplied as a coolant into the reactor pressure vessel through the main water supply pipe. The main water supply pipe is provided with a core flow rate control device, and an in-shroud water supply pipe that flows into the shroud and an external shroud water supply pipe are connected to the core flow rate control device.

(作用) 主給水管から炉心流量制御装置を通して流量配分された
冷却材は炉心を包囲するシュラウドの内側と外側にそれ
ぞれシュラウド内給水管と、シュラウド外給水管から流
入する。シュラウド内に流入される冷却材によってシュ
ラウド内に流れている蒸気泡がつぶれる。そのため、シ
ュラウド内の密度は低下し、シュラウド内外の密度差は
低下し、自然循環駆動力が低下し、炉心流量が低下する
ことになる。
(Operation) The coolant whose flow rate is distributed from the main water supply pipe through the core flow rate control device flows into the inside and outside of the shroud surrounding the core from the inner shroud water supply pipe and the outer shroud water supply pipe, respectively. The coolant flowing into the shroud collapses the steam bubbles flowing within the shroud. Therefore, the density inside the shroud decreases, the density difference between the inside and outside of the shroud decreases, the natural circulation driving force decreases, and the core flow rate decreases.

したがって、シュラウド内に流量配分した冷却材の流量
を変更することによって炉心流量を変え、原子炉出力を
低下させてほう酸水注入と併せて安全に原子炉の停止を
行うことができる。
Therefore, by changing the flow rate of the coolant distributed within the shroud, the core flow rate can be changed, the reactor output can be lowered, and the reactor can be safely shut down in conjunction with boric acid water injection.

(実施例) 第1図を参照しながら本発明に係る自然循環式沸騰水型
原子炉の一実施例を説明する。
(Example) An example of a natural circulation boiling water nuclear reactor according to the present invention will be described with reference to FIG.

第1図中、符号1は沸騰水型原子炉の原子炉圧力容器を
示しており、この原子炉圧力容器1内には炉心2が配置
されている。この炉心2は図示してない多数本の燃料集
合体が格子状にほぼ等間隔に炉心支持板によって林立さ
れてなるものである。
In FIG. 1, reference numeral 1 indicates a reactor pressure vessel of a boiling water reactor, and a reactor core 2 is disposed within this reactor pressure vessel 1. As shown in FIG. This core 2 is made up of a large number of fuel assemblies (not shown) arranged in a lattice shape at approximately equal intervals by core support plates.

炉心2の外側は下方から上方に沿って延在する筒状シュ
ラウド3で包囲されている。シュラウド3の上部にはこ
のシュラウド3内の沸騰水と蒸気とを分離するためのセ
パレータ5が設けられている。
The outside of the core 2 is surrounded by a cylindrical shroud 3 extending from below to above. A separator 5 is provided at the top of the shroud 3 to separate boiling water and steam within the shroud 3.

このセパレータ5の上方には、このセパレータ5で分離
された蒸気を乾燥するためのドライヤ6が設けられてい
る。ドライヤ6で乾燥された蒸気は主蒸気管7を通して
タービン8へ送られる。主蒸気管7は原子炉圧力容器1
とタービン8との間を連結している。タービン8で仕事
をした後の蒸気はタービン8の下流側に設けたコンデン
サ9で冷却されて復水となる。コンデンサ9の出口側に
は原子炉圧力容器1内に復水を冷却材として給水する主
給水管10が設けられている。この主給水管10には炉
心流量制御装置11が設けられている。この炉心流量制
御装置11の出口側にはシュラウド3の内側に冷却材を
流入するためのシュラウド内給水管12と、シュラウド
3の外側に冷却材を流入するためのシュラウド外給水管
13が接続されている。
A dryer 6 is provided above the separator 5 to dry the vapor separated by the separator 5. The steam dried in the dryer 6 is sent to the turbine 8 through the main steam pipe 7. The main steam pipe 7 is the reactor pressure vessel 1
and the turbine 8. After doing work in the turbine 8, the steam is cooled in a condenser 9 provided downstream of the turbine 8 and becomes condensed water. A main water supply pipe 10 is provided on the outlet side of the condenser 9 to supply water into the reactor pressure vessel 1 using condensate as a coolant. This main water supply pipe 10 is provided with a core flow rate control device 11 . An in-shroud water supply pipe 12 for flowing coolant into the inside of the shroud 3 and an outer shroud water supply pipe 13 for flowing coolant into the outside of the shroud 3 are connected to the outlet side of the core flow rate control device 11. ing.

なお、図中符号14は原子炉圧力容器1に流入された自
然循環する冷却材を示している。また、炉心■の下部か
ら図示してないが制御棒が挿抜自在に配設されている。
Note that the reference numeral 14 in the figure indicates the naturally circulating coolant that has flowed into the reactor pressure vessel 1. Further, although not shown, a control rod is installed from the bottom of the core (2) so that it can be inserted and removed.

しかして、上記実施例に係る原子炉においては従来シュ
ラウド3の外側にのみ流入していた冷却材の一部を炉心
流量制御装置11によってシュラウド3の内側に流入す
るように構成している。
Therefore, in the nuclear reactor according to the above embodiment, a part of the coolant, which conventionally flowed only to the outside of the shroud 3, is configured to flow into the inside of the shroud 3 by the core flow rate control device 11.

このため、炉心流量を低下させて出力を低下させたい場
合には、炉心流量制御装置11によってシュラウド3内
へ注入する冷却材の給水流量の割合を増加させる。これ
によって、シュラウド3内の気泡をつぶし、シュラウド
3内の密度を増加させ、シュラウド3の内外密度差を減
少させ、炉心流量を低下させることができ、原子炉出力
を低下させることができる。
Therefore, when it is desired to lower the core flow rate to lower the output, the core flow rate control device 11 increases the ratio of the feed water flow rate of the coolant injected into the shroud 3. As a result, the air bubbles in the shroud 3 are crushed, the density in the shroud 3 is increased, the difference in density between the inside and outside of the shroud 3 is reduced, the core flow rate can be reduced, and the reactor power can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、何らかの原因で制御棒の挿入が遅れた
り、挿入不能の場谷にあっても、炉心流量制御装置によ
って、炉心流量を低下させ、原子炉出力を低出力状態と
することができる。そしてこの後はう酸水注入系を作動
させて炉の停止を行うことができるので、原子炉の安全
上きわめて効果が大きい。
According to the present invention, even if control rod insertion is delayed or cannot be inserted for some reason, the core flow rate control device can reduce the core flow rate and reduce the reactor output to a low output state. can. Thereafter, the reactor can be shut down by operating the acid water injection system, which is extremely effective in terms of reactor safety.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る自然循環式沸騰水型原子炉の一実
施例を示す概略構成図、第2図は従来の強制循環式沸騰
水型原子炉を示す概略構成図である。 1・・原子炉圧力容器、 2・・・炉心。 3・・・シュラウド、   4・・・再循環ポンプ、5
 ・セパレータ、    6・・ドライヤ、7・・・主
蒸気管、    8・・タービン、9 ・コンデンサ、
   10・・・主給水管、11−炉心流量制御装置、 12・・・シュラウド内給水管、 13・・・シュラウド外給水管、 14・・・冷却材。 (8733)代理人 弁理士 猪 股 祥 晃(ほか1
名)
FIG. 1 is a schematic diagram showing an embodiment of a natural circulation boiling water reactor according to the present invention, and FIG. 2 is a schematic diagram showing a conventional forced circulation boiling water reactor. 1...Reactor pressure vessel, 2...Reactor core. 3...Shroud, 4...Recirculation pump, 5
- Separator, 6... Dryer, 7... Main steam pipe, 8... Turbine, 9 - Condenser,
DESCRIPTION OF SYMBOLS 10... Main water supply pipe, 11- Core flow rate control device, 12... Shroud water supply pipe, 13... Shroud outer water supply pipe, 14... Coolant. (8733) Agent: Yoshiaki Inomata, patent attorney (and 1 others)
given name)

Claims (1)

【特許請求の範囲】[Claims] 原子炉圧力容器内に配置した炉心で冷却材を加熱し、そ
の加熱された冷却材を炉心の外側を包囲して設けたシュ
ラウド内を上昇させ、そのシュラウドの上部に設けたセ
パレータで前記加熱された冷却材中の蒸気を分離し、そ
の蒸気をセパレータの上方に設けたドライヤを通して乾
燥し、その乾燥された蒸気を原子炉圧力容器内から主蒸
気管を通してタービンへ導き、タービンで仕事をした蒸
気を復水し、その復水を主給水管を通して原子炉圧力容
器内へ冷却材として給水する再循環ポンプを使用しない
自然循環式沸騰水型原子炉において、前記主給水管に炉
心流量制御装置を設けるとともに、この炉心流量制御装
置に前記シュラウドの内側と外側に流量配分された冷却
材を流入するシュラウド内給水管と、シュラウド外給水
管とを接続してなることを特徴とする自然循環式沸騰水
型原子炉。
Coolant is heated in a reactor core placed in a reactor pressure vessel, the heated coolant is raised inside a shroud that surrounds the outside of the reactor core, and the heated coolant is heated by a separator provided at the top of the shroud. The steam in the coolant is separated, the steam is dried through a dryer installed above the separator, the dried steam is led from inside the reactor pressure vessel through the main steam pipe to the turbine, and the steam that has done work in the turbine is In a natural circulation boiling water reactor that does not use a recirculation pump that condenses water and supplies the condensate as a coolant into the reactor pressure vessel through a main water supply pipe, a core flow rate control device is installed in the main water supply pipe. A natural circulation boiling system characterized in that the core flow rate control device is connected to an internal shroud water supply pipe through which coolant flows in a distributed flow rate to the inside and outside of the shroud, and an external shroud water supply pipe. Water reactor.
JP2013629A 1990-01-25 1990-01-25 Natural circulation boiling water reactor Expired - Lifetime JP2835120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013629A JP2835120B2 (en) 1990-01-25 1990-01-25 Natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013629A JP2835120B2 (en) 1990-01-25 1990-01-25 Natural circulation boiling water reactor

Publications (2)

Publication Number Publication Date
JPH03220497A true JPH03220497A (en) 1991-09-27
JP2835120B2 JP2835120B2 (en) 1998-12-14

Family

ID=11838529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013629A Expired - Lifetime JP2835120B2 (en) 1990-01-25 1990-01-25 Natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JP2835120B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165660A (en) * 2019-03-28 2020-10-08 日立Geニュークリア・エナジー株式会社 Atws countermeasure facility and natural circulation type boiling water reactor including the same
US11955248B2 (en) 2019-04-11 2024-04-09 Ge-Hitachi Nuclear Energy Americas Llc Use of isolation condenser and/or feedwater to limit core flow, core power, and pressure in a boiling water reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101588183B1 (en) * 2014-10-14 2016-01-28 한국원자력연구원 Dual mode circulation reactor and operating method for the reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165660A (en) * 2019-03-28 2020-10-08 日立Geニュークリア・エナジー株式会社 Atws countermeasure facility and natural circulation type boiling water reactor including the same
US11955248B2 (en) 2019-04-11 2024-04-09 Ge-Hitachi Nuclear Energy Americas Llc Use of isolation condenser and/or feedwater to limit core flow, core power, and pressure in a boiling water reactor

Also Published As

Publication number Publication date
JP2835120B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US9206978B2 (en) Pressurized water reactor compact steam generator
US9715948B2 (en) Reactor system with a lead-cooled fast reactor
CN104520939A (en) Small modular reactor safety systems
US9431136B2 (en) Stable startup system for nuclear reactor
US9523496B2 (en) Integral pressurized water reactor with external steam drum
JPH02268295A (en) Heat removing system for containment vessel
US20100124306A1 (en) Reactor vessel reflector with integrated flow-through
JP2012233698A (en) Nuclear power plant emergency cooling system
KR101250479B1 (en) Apparatus for safety improvement of passive type emergency core cooling system with a safeguard vessel and Method for heat transfer-function improvement using thereof
JPH0659076A (en) After-power removing apparatus for pressurized water reactor
JPH03220497A (en) Natural circulation typed boiling water nuclear reactor
JP2003344574A (en) Natural circulation nuclear reactor system and operation method therefor
US3249506A (en) Integral vapor generating and superheating neutronic reactor system
JP2521256B2 (en) Natural circulation boiling water reactor control method
KR101617299B1 (en) Fast nuclear reactor
JPH04230896A (en) Output adjustable natural-circulation type boiling water reactor
JPH04188096A (en) Boiling water reactor pressure vessel
US20050117689A1 (en) Reactor cooling system
JPH04244995A (en) Boiling water reactor
RU2450380C1 (en) Method of water supply
JPS58195190A (en) Reactor
JPS58195184A (en) Method of controlling output from nuclear reactor
JPH1039079A (en) Natural circulation structure for reactor water at inside of reactor pressure vessel
JPH05281380A (en) Nuclear fuel channel and inherent safety water cooling tube reactor
JPS62129790A (en) Decay-heat removing operating method