JPH03218944A - Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof - Google Patents

Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof

Info

Publication number
JPH03218944A
JPH03218944A JP1578390A JP1578390A JPH03218944A JP H03218944 A JPH03218944 A JP H03218944A JP 1578390 A JP1578390 A JP 1578390A JP 1578390 A JP1578390 A JP 1578390A JP H03218944 A JPH03218944 A JP H03218944A
Authority
JP
Japan
Prior art keywords
crystallized glass
weight
glass
silver
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1578390A
Other languages
Japanese (ja)
Inventor
Yuji Umeda
勇治 梅田
Shinsuke Yano
信介 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1578390A priority Critical patent/JPH03218944A/en
Publication of JPH03218944A publication Critical patent/JPH03218944A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To obtain a crystallized glass body capable of being densely fired together with a low resistance conductor without causing warp and having a low dielectric constant and an expansion coefft. close to that of a silicon semiconductor device by incorporating SiO2, Al2O3, MgO and B2O3 in a specified ratio. CONSTITUTION:A crystallized glass body is obtd. by incorporating 37-63wt.% Si2, 18-43wt.% Al2O3, 7-25wt.% MgO and 1-20wt.% B2O3 basing on 100wt.% SiO2+Al2O3+MgO. A crystallized glass-ceramic body is composed of 70-95wt.% glass compsn. having the above-mentioned compsn. and 2-30wt.% filler such as quartz or alumina. A circuit hoard is composed of an insulator using the crystallized glass body or the crystallized glass-ceramic body and a conductor formed by metallizing such an insulator with Au, AG, Cu, Ag-Pd, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結晶化ガラス体および結晶化ガラセラミック
体並びにこれを用いた回路基板ス に関し、一層詳細には、高集積化したLSIや半導体素
子を搭載する配線基板、パッケージ等を構成する絶縁体
を製造する際に用いられる結晶化ガラス体および結晶化
ガラス−セラミック体並びにこれを用いた回路基板に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a crystallized glass body, a crystallized glass ceramic body, and a circuit board using the same, and more particularly, to highly integrated LSIs and semiconductors. The present invention relates to a crystallized glass body and a crystallized glass-ceramic body used in manufacturing wiring boards on which elements are mounted, insulators constituting packages, etc., and circuit boards using the same.

[従来の技術] 従来より高集積化したLSIや各種の素子を多数搭載す
る配線基板においては小型化と信頼性の向上とが希求さ
れており、その要求に応じてセラミック材を用いた配線
基板の改良が常時試みられている。
[Prior Art] There has been a demand for smaller size and improved reliability in wiring boards that are equipped with highly integrated LSIs and a large number of various elements, and in response to these demands, wiring boards using ceramic materials have been developed. Improvements are constantly being attempted.

初期の段階において、セラミック材を用いた配線基板は
、先ず、基板の主材料としてアルミナを用いたグリーン
シ一トを作製し、グリーンシ一ト上に導体として高融点
のモリブデン、タングステンを印刷形成し、このように
作製されたグリーンシ一トを2以上積層した後に約15
00〜1600℃で焼成することにより製造していた。
At the initial stage, wiring boards using ceramic materials were created by first creating a green sheet using alumina as the main material of the board, and then printing high melting point molybdenum and tungsten as conductors on the green sheet. After stacking two or more green sheets produced in this way, about 15
It was manufactured by firing at 00 to 1600°C.

[発明が解決しようとする課題] 然しなから、前記方法で得られる配線基板は、アルミナ
の有する高1ヒ誘電率と、導体として形成されたモリブ
デン、タングステンの高い導通抵抗とにより、電気信号
の伝達速度の遅延化が生じ、また導体幅の微細化が難し
く高速化、高密度化の目的に応えられていない。
[Problems to be Solved by the Invention] However, the wiring board obtained by the above method has a high dielectric constant of alumina and high conduction resistance of molybdenum and tungsten formed as conductors, making it difficult to transmit electrical signals. This causes a delay in the transmission speed, and it is difficult to miniaturize the conductor width, making it impossible to meet the objectives of increasing speed and density.

この目的を達成するために、配線導体として高い抵抗値
を有するモリブデン、タングステンを排除し、低い抵抗
値を有する金、銀、銅、銀パラジウム合金を導体材料と
して用いることが試みられたが、金、銀、銅、銀−パラ
ジウム合金からなる低抵抗導体の融点は約1000℃付
近に存在するため、1000℃よりはるかに高い焼結温
度を有するアルミナ基板との同時焼成を行うことは不可
能であった。
To achieve this objective, attempts were made to eliminate molybdenum and tungsten, which have high resistance values, as conductor materials and to use gold, silver, copper, and silver-palladium alloys, which have low resistance values, as conductor materials. Since the melting point of low-resistance conductors made of silver, copper, and silver-palladium alloys is around 1000°C, it is impossible to co-fire them with an alumina substrate, which has a sintering temperature much higher than 1000°C. there were.

そして、基板の主材料として、高融点のアルミナに代替
して前記低抵抗導体と同時焼成可能な結晶化ガラス、特
に低誘電率を有し且つ再結晶後にコージエライト結晶本
目を生じる結晶化ガラスを用いる技術的思想に到達した
。この種の従来技術は、例えば、特開昭51−3765
5号、特公・昭59−46900号、特公昭63−64
99号、特公昭6331420号、特公昭63−314
22号に開示されている。
As the main material of the substrate, instead of high melting point alumina, a crystallized glass that can be co-fired with the low resistance conductor, especially a crystallized glass that has a low dielectric constant and produces cordierite crystals after recrystallization, is used. Achieved a technical idea. This type of prior art is known, for example, from Japanese Patent Application Laid-Open No. 51-3765.
No. 5, Special Publication No. 59-46900, Special Publication No. 1983-64
No. 99, Special Publication No. 6331420, Special Publication No. 63-314
It is disclosed in No. 22.

一般的に、これらコージェライト結晶相を生じる結晶化
ガラスは、750℃〜900℃の狭い温度域で焼結およ
び結晶化が急激に生じる。
Generally, these crystallized glasses that produce a cordierite crystal phase rapidly undergo sintering and crystallization in a narrow temperature range of 750°C to 900°C.

これに対し、金、銀、銅、銀−パラジウム合金の導体は
、これより低温の約400℃付近より緩やかに焼結する
ため、前記結晶化ガラスとこれらの導体との同時焼成の
際に、両者の収縮特性の不整合により、反り(変形)が
生じ易いという問題があった。
On the other hand, conductors of gold, silver, copper, and silver-palladium alloys sinter slowly at lower temperatures around 400°C, so when the crystallized glass and these conductors are fired simultaneously, There was a problem in that warping (deformation) was likely to occur due to the mismatch in the shrinkage characteristics of the two.

また、前記の開示されているコージェライト結晶相を生
じる結晶化ガラスを用いた基板は、ZnO,P’aOs
、Tl02、Sn○2、ZrO.等の核発生剤を含むた
め、結晶化が必要以上に促進され、ガラスが軟化し、焼
結される以前に結晶相が析出するに至る。
Further, the substrate using the crystallized glass that produces the cordierite crystal phase disclosed above has ZnO, P'aOs
, Tl02, Sn○2, ZrO. Since the glass contains nucleating agents such as nucleating agents, crystallization is promoted more than necessary, the glass becomes softer, and a crystal phase is precipitated before sintering.

そのため、導体との同時焼成時に素地と導体との収縮特
性の不整合により生じる反り(変形)に対し、焼結段階
でのガラスの軟化による修復が困難となり、さらに反り
(変形)が生じ易いという不都合が露呈している。
Therefore, it is difficult to repair the warpage (deformation) caused by mismatching shrinkage characteristics between the base material and the conductor during co-firing with the conductor due to the softening of the glass during the sintering stage, and further warpage (deformation) is likely to occur. The inconvenience is obvious.

また、導体として銅が用いられる場合は、脱バインダの
目的で非酸化的雰囲気において焼成時間を長くしなけれ
ばならないので反り(変形)を生ずるばかりか、緻密に
焼結しないことも判明した。
It has also been found that when copper is used as a conductor, the firing time must be prolonged in a non-oxidizing atmosphere for the purpose of removing the binder, which not only causes warping (deformation) but also prevents dense sintering.

さらにまた、前記の結晶化ガラスと導体との収縮による
不整合を阻止すべく、結晶化ガラスにアルミナ等をフィ
ラーとして添加し、焼成による収縮を導体の収縮特性に
近づける方法が特開昭62−252004号、特開昭6
2−252340号、特開昭62−278145号に開
示されている。
Furthermore, in order to prevent the above-mentioned mismatch due to shrinkage between the crystallized glass and the conductor, there is a method in which alumina or the like is added to the crystallized glass as a filler so that the shrinkage due to firing approaches the shrinkage characteristics of the conductor. No. 252004, JP-A-6
2-252340 and Japanese Patent Application Laid-Open No. 62-278145.

しかしながら、前記の開示された従来技術では、結晶化
ガラス中に核発生剤を含み、さらに結晶化ガラスの組成
(5102、Al2O3、MgO)が適正でなく、しか
も導体との同時焼成において焼成収縮と結晶化との時期
の差が適正でないため、前記の欠点を解決するには至っ
ていない。
However, in the disclosed prior art, the crystallized glass contains a nucleating agent, the composition of the crystallized glass (5102, Al2O3, MgO) is not appropriate, and moreover, firing shrinkage occurs during co-firing with the conductor. Since the timing difference with crystallization is not appropriate, the above-mentioned drawbacks have not yet been solved.

すなわち、従来技術では配線基板等の絶縁材として用い
られる結晶化ガラス等の素地と低抵抗導体とを同時焼成
する際に結晶化ガラス等の素地と低抵抗導体との間の収
縮、不整合および結晶化の時期の不適合により生ずる反
り(変形)が生じてしまう。
That is, in the conventional technology, when a low-resistance conductor and a base material such as crystallized glass used as an insulating material for wiring boards are simultaneously fired, shrinkage, mismatch, and Warpage (deformation) occurs due to mismatched crystallization times.

従って、本発明の目的は、導体として低抵抗材料(例え
ば、金、銀、銅、銀−パラジウム合金等)を用い、且つ
基板の絶縁材として結晶化ガラス(例えば、誘電率の低
いコージェライト系結晶ガラス)を用いる結晶化ガラス
において、1000℃以下の低い温度で前記低抵抗材と
の反り(変形)を生じることなく、また十分緻密に同時
焼成可能であり、さらに誘電率も低く且つ熱膨張係数が
基板に搭載する半導体素子であるシリコンと整合する結
晶化ガラス体および結晶化力゛ラスーセラミック体並び
にこれを用いた回路基板を提供することにある。
Therefore, an object of the present invention is to use a low-resistance material (e.g., gold, silver, copper, silver-palladium alloy, etc.) as a conductor, and to use crystallized glass (e.g., cordierite-based material with a low dielectric constant) as an insulating material for the substrate. Crystallized glass using crystalline glass) can be co-fired with the low-resistance material without warping (deformation) at a low temperature of 1000°C or less, and is sufficiently dense, and has a low dielectric constant and low thermal expansion. The object of the present invention is to provide a crystallized glass body and a low crystallization ceramic body whose coefficients match those of silicon, which is a semiconductor element mounted on a substrate, and a circuit board using the same.

[課題を解決するための手段] 前記の課題を解決するために、本発明の目的は、 37〜63重量%のSi02と、 18〜43重量%のAl2O3と、 7〜25重量%のMgOと、 からなり、 SiO2とAl2O3とMgOとの合計100重量%に
対し1〜20重量%のB203を含有することを特徴と
する結晶化ガラス体を提供することにある。
[Means for Solving the Problems] In order to solve the above problems, the object of the present invention is to: 37 to 63% by weight of Si02, 18 to 43% by weight of Al2O3, and 7 to 25% by weight of MgO. , and contains 1 to 20% by weight of B203 based on the total of 100% by weight of SiO2, Al2O3, and MgO.

また、本発明の他の目的は、 37〜63重量%のSin2と、 18〜43重量%のAl2O3と、 7〜25重量%のMgOと、 からなり、 Si○2とA I20 3とMgOとの合計100重量
%に対し1〜20重量%のB203を含有してなる結晶
性ガラス組成物70〜95重量%と、フィラー2〜30
重量%と、 からなることを特徴とする結晶化ガラス−セラミック体
並びにこれを用いた回路基板を提供することにある。
Another object of the present invention is to contain 37 to 63% by weight of Sin2, 18 to 43% by weight of Al2O3, and 7 to 25% by weight of MgO; 70 to 95% by weight of a crystalline glass composition containing 1 to 20% by weight of B203 based on a total of 100% by weight, and 2 to 30% by weight of a filler.
% by weight, and a circuit board using the same.

また、本発明の他の目的は、 フィラーが石英およびアルミナよりなる群から選ばれた
少なくとも一種であることを特徴とする結晶化ガラス−
セラミック体を提供することにあるを提供することにあ
る。
Another object of the present invention is to provide a crystallized glass characterized in that the filler is at least one selected from the group consisting of quartz and alumina.
The purpose is to provide a ceramic body.

また、本発明の他の目的は、 結晶化ガラス体を用いた絶縁体と、この絶縁体上に金、
銀、銅、銀−パラジウム合金の少なくとも一種以上をメ
タライズした導体とを備えることを特徴とする回路基板
を提供することにある。
In addition, another object of the present invention is to provide an insulator using a crystallized glass body and gold on this insulator.
An object of the present invention is to provide a circuit board characterized by comprising a conductor metallized with at least one of silver, copper, and a silver-palladium alloy.

さらに、本発明の他の目的は、 結晶化ガラス−セラミック体を用いた絶縁体と、この絶
縁体上に金、銀、銅、銀−パラジウム合金の少なくとも
一種以上をメタライズした導体とを備えることを特徴と
する回路基板を提供することにある。
Furthermore, another object of the present invention is to provide an insulator using a crystallized glass-ceramic body, and a conductor in which at least one of gold, silver, copper, and a silver-palladium alloy is metalized on the insulator. An object of the present invention is to provide a circuit board having the following characteristics.

[作用] 本発明に係る結晶化ガラス体および結晶化ガラス−セラ
ミック体は、主材料として上記結晶化ガラス組成物の組
成を用いるとともに、利用される配線基板等の導体とし
て金、銀、銅、銀パラジウム合金等の抵抗値の低い材料
を用いるが、一方、核発生剤を用いることな< 100
0℃以下の低温で十分緻密に且つ反り(変形)を生じる
ことなく同時焼成が出来、誘電率が低く、利用される配
線基板等に搭載する汎用の半導体素子の熱膨張係数に整
合させることが出来る。
[Function] The crystallized glass body and the crystallized glass-ceramic body according to the present invention use the composition of the above-mentioned crystallized glass composition as the main material, and also contain gold, silver, copper, A material with a low resistance value such as a silver-palladium alloy is used, but on the other hand, a nucleating agent is not used.
It can be fired simultaneously at a low temperature of 0°C or lower to a sufficiently high density without warping (deformation), has a low dielectric constant, and can be matched to the coefficient of thermal expansion of general-purpose semiconductor elements mounted on wiring boards, etc. I can do it.

また、結晶化ガラス−セラミック体においては、再結晶
後にコージェライトが結晶相となる結果生ずる熱膨張係
数の低下という物理化学的特性を熱膨張係数の大きい石
英、アルミナから選択される少なくとも一種をフィラー
として添加することにより阻止し、シリコンにより近い
熱膨張係数で焼成することが出来る。
In addition, in the crystallized glass-ceramic body, at least one type selected from quartz and alumina, which have a large coefficient of thermal expansion, is used as a filler to suppress the physicochemical property of decreasing the coefficient of thermal expansion that occurs as a result of cordierite becoming a crystalline phase after recrystallization. It is possible to prevent this by adding as an additive, and it is possible to sinter with a coefficient of thermal expansion closer to that of silicon.

[構成の具体的説明] ?発明に係る結晶化ガラス体の製造に際し、原料の組成
は、SiO2:37〜63重量%、Δ1■03:18〜
43重量%、MgO : 7〜25重量%とし、B20
3をSiO2、Al2O3 、MgOの合計100重量
%に対しB203:1〜20重量%の重量比で前記三成
分に外配するように調合する。
[Specific explanation of the configuration]? When producing the crystallized glass body according to the invention, the composition of the raw materials is SiO2: 37-63% by weight, Δ1■03:18-
43% by weight, MgO: 7 to 25% by weight, B20
3 is added to the three components at a weight ratio of 1 to 20% by weight of B203 to a total of 100% by weight of SiO2, Al2O3, and MgO.

すなわち、SiO2については、37重量%より少ない
とスピネル相を生じるために焼成後の基板の誘電率およ
び熱膨張係数が大となる。一方、63重量%より多いと
1000℃以下の低温で緻密に焼結しなくなるからであ
る。
That is, if SiO2 is less than 37% by weight, a spinel phase is generated, and the dielectric constant and coefficient of thermal expansion of the substrate after firing become large. On the other hand, if the amount exceeds 63% by weight, dense sintering will not occur at a low temperature of 1000° C. or lower.

Al2O3については、18重量%より少なく、一方、
43重量%より多い場合にはガラスの製造が困難となる
からである。
For Al2O3, less than 18% by weight, while
This is because if the amount exceeds 43% by weight, it becomes difficult to manufacture glass.

また、MgOについては、7重量%より少ないとガラス
の製造が困難になる一方、25重量%より多いとコージ
エライトの結晶相の析出がガラスの軟化途中またはそれ
以前の温度で生じ、導体との同時焼成により反り(変形
)を生じるからである。
Regarding MgO, if it is less than 7% by weight, it will be difficult to manufacture glass, while if it is more than 25% by weight, the cordierite crystal phase will precipitate at a temperature during or before softening of the glass, resulting in simultaneous precipitation with the conductor. This is because firing causes warping (deformation).

さらに、B203については、1重量%より少ないとガ
ラスの製造が困難となる一方、20重量%より多いと再
結晶後の残存ガラスの量が多くなるため抗析強度が弱く
なり、また気孔率も犬となるため最終製品として用いる
ことが困難となるとの理由による。
Furthermore, with regard to B203, if it is less than 1% by weight, it becomes difficult to manufacture glass, while if it is more than 20% by weight, the amount of residual glass after recrystallization increases, which weakens the anti-destructive strength and also reduces the porosity. The reason is that it would be difficult to use it as a final product because it would be a dog.

なお、その他の原料の組成成分としてZnO、P205
、T102、Sn02、Zr02等の核発生剤は有効量
含んでいない。
In addition, ZnO, P205 are other constituents of raw materials.
, T102, Sn02, Zr02, and other nucleating agents are not contained in effective amounts.

ここで「有効量」とは、添加することにより、その添加
物の効果が顕著に発現し、あるいは影晋を生じる量を意
味し、不純物として微量含有される場合は除外される。
The term "effective amount" as used herein means an amount in which the effect of the additive is significantly expressed or adversely affected by its addition, and cases where the additive is contained in trace amounts as impurities are excluded.

つまり、核発生剤を含まないためにガラスの結晶化が必
要以上に早まることがないので、同時焼成時に発生する
反り(変形)が焼成過程のガスラの軟化により修復され
平坦化することが出来る。なお、この修復は基板自身の
重量によりなされるが、焼成の途中過程で重しをのせる
方法も可能である。
In other words, since the glass does not contain a nucleating agent, the glass does not crystallize more quickly than necessary, so that the warpage (deformation) that occurs during simultaneous firing can be repaired and flattened by the softening of the glass during the firing process. Note that this repair is performed using the weight of the substrate itself, but it is also possible to place a weight on the substrate during the firing process.

そして、前記組成によって配合された原料を溶融し、水
冷またはフレークローラーにより急冷しガラスを得る。
Then, the raw materials blended according to the above composition are melted and rapidly cooled by water cooling or a flake roller to obtain glass.

得られたガラスは、ロールクラッシャ、振勤ミル、ボー
ルミル等を用いて平均粒度1〜6μmの粒度に微粉砕さ
れる。
The obtained glass is finely pulverized to an average particle size of 1 to 6 μm using a roll crusher, shaking mill, ball mill, or the like.

前記原料粉末の粒度については、粒度が1μm以下では
必要以上に結晶化が促進され、前記と同様の理由により
前記低抵抗材を用いた導体との同時焼成により反り(変
形)を生じる一方、6μmでは焼成体の表面粗さが著し
い粗面を呈し、LSIや各種半導体素子を搭載する基板
として実用に供することが不可能となる。
Regarding the particle size of the raw material powder, if the particle size is 1 μm or less, crystallization will be promoted more than necessary, and for the same reason as above, warping (deformation) will occur when co-firing with the conductor using the low resistance material. In this case, the surface roughness of the fired body becomes extremely rough, making it impossible to put it to practical use as a substrate on which LSIs and various semiconductor elements are mounted.

また、本発明に係る結晶化ガラス−セラミック体の製造
に際し、本発明で使用されるガラス原料は結晶化後、コ
ージェライト相が主たる結晶相となるため熱膨張係数は
シリコンの持つ示性値よりも低くなる特性を有する場合
がある。
In addition, when manufacturing the crystallized glass-ceramic body according to the present invention, the glass raw material used in the present invention has a cordierite phase as the main crystal phase after crystallization, so the coefficient of thermal expansion is lower than the characteristic value of silicon. In some cases, it has the characteristic that it also becomes low.

従って、熱膨張係数をシリコンの持つ示性値に近づける
ために熱膨張係数の大きなアルミナおよび石英よりなる
群の少なくとも一種がフィラーとして選択添加される必
要がある。
Therefore, in order to bring the coefficient of thermal expansion close to the characteristic value of silicon, it is necessary to selectively add at least one member of the group consisting of alumina and quartz, which have a large coefficient of thermal expansion, as a filler.

また、フィラーとしてアルミナを選択添加した場合には
、アルミナは強度が大きく且つヤング率が大きいために
基板全体としての強度が向上する。さらに、導体として
銅、あるいは銅を主体とした金属を使用する場合、銅の
酸化を防ぐために非酸化的雰囲気で焼成する必要があり
、この結果、焼成以前の成形体に含まれる有機バインダ
を除去するために酸化的雰囲気で焼成するのに仕較して
長時間の焼成が必要となる。従って、この長時間の焼成
により導体と基板の焼成時に発生する収縮の不一致が顕
在化し、反り(変形)が生じ易くなる。フィラーの添加
は前記反り(変形)を阻止するので銅および銅を主体と
する金属を導体として用いる場合には特に好適である。
Further, when alumina is selectively added as a filler, the strength of the entire substrate is improved because alumina has high strength and a large Young's modulus. Furthermore, when copper or copper-based metal is used as a conductor, it is necessary to fire it in a non-oxidizing atmosphere to prevent oxidation of the copper, and as a result, the organic binder contained in the molded body is removed before firing. In order to achieve this, a longer firing time is required compared to firing in an oxidizing atmosphere. Therefore, due to this long firing time, the mismatch in shrinkage that occurs during firing of the conductor and the substrate becomes obvious, and warping (deformation) is likely to occur. Addition of a filler prevents the above-mentioned warping (deformation) and is therefore particularly suitable when copper or a metal mainly composed of copper is used as a conductor.

さらにまた、フィラーの粒径は、特に限定しないが、原
料のガラス粉末との混合能を高めるガラス粉末の粒径を
1〜6μmを平均粒径とする。
Furthermore, the particle size of the filler is not particularly limited, but the average particle size of the glass powder that enhances the mixing ability with the raw material glass powder is 1 to 6 μm.

また、本発明の回路基板としては、単層または多層配線
基板のいずれでもよい。
Further, the circuit board of the present invention may be either a single-layer wiring board or a multi-layer wiring board.

[実施例] 以下に、本発明の実施例を示し、本発明に係る結晶化ガ
ラス体および結晶化ガラス−セラミック体並びにこれを
用いた回路基板について詳細に説明する。
[Example] Examples of the present invention will be shown below, and a crystallized glass body, a crystallized glass-ceramic body, and a circuit board using the same according to the present invention will be described in detail.

なお、同時焼成の時に結晶化ガラス体および結晶化ガラ
ス−セラミック体と導体の収縮特性の不整合により生じ
る反り(変形)は第1図に示すように目視によっても明
らかに判定し得るものとし、表1、表2には、第1図(
a)のように反り(変形)のないものを○、第1図(l
))のように反り(変形)のあるものを×として記入し
た。
Note that warpage (deformation) caused by mismatching shrinkage characteristics of the crystallized glass body, the crystallized glass-ceramic body, and the conductor during co-firing can be clearly determined visually as shown in Figure 1. Tables 1 and 2 include Figure 1 (
As shown in a), those without warping (deformation) are marked as ○, and as shown in Figure 1 (l).
)) Items with warpage (deformation) are marked as ×.

実施例1 結晶化ガラス体の作製に際し、ガラス製造後に表1に示
す組成によって配合された原料を1450℃〜1550
℃で溶融し、水冷またはフレークローラーにより急冷し
ガラスとする。得られたガラスをロールクラッシャ、振
動ミル、ボールミルのいずれかを用いて平均粒度1〜6
μmに微粉砕し、原料粉末とした。
Example 1 When producing a crystallized glass body, raw materials blended according to the composition shown in Table 1 after glass production were heated at 1450°C to 1550°C.
Melt at ℃ and rapidly cool with water or flake rollers to form glass. The obtained glass is crushed to an average particle size of 1 to 6 using a roll crusher, vibration mill, or ball mill.
It was finely pulverized to μm size and used as a raw material powder.

次いで、前記原料粉末=100重量部に対し、アクリル
系パインダ:12重量部、可塑剤:2重量部、トルエン
:40重量部、エタノール=10重量部、分散剤:1重
量部を加え、ボールミルで24時間混合してスラリーと
なし、ドクターブレード法により厚さ0.4〜0.7m
mのグリーンシ一トを形成した。
Next, to 100 parts by weight of the raw material powder, 12 parts by weight of acrylic binder, 2 parts by weight of plasticizer, 40 parts by weight of toluene, 10 parts by weight of ethanol, and 1 part by weight of dispersant were added, and the mixture was milled in a ball mill. Mix for 24 hours to form a slurry, and use the doctor blade method to form a slurry with a thickness of 0.4 to 0.7 m.
A green sheet of m was formed.

さらに前記グリーンシ一トに金、銀、銅、銀パラジウム
合金等の金属粉末よりなる導体ペーストをスクリーン印
刷法を用いて塗布した。
Furthermore, a conductive paste made of metal powder such as gold, silver, copper, silver-palladium alloy, etc. was applied to the green sheet using a screen printing method.

なお、導体ペーストを塗布する方法は、スクリーン印刷
法を含め当業者に知られた任意の手段の全てを採用する
ことが可能である。
Note that as a method for applying the conductive paste, any method known to those skilled in the art, including screen printing, can be employed.

ここで導体ペーストは表1に示す実験例1、2、3、4
では銀−パラジウム合金を用い、実験例5、10、11
、12、13では銅を用い、実験例6、7、8、9では
銀を用いた。
Here, the conductor paste is experimental examples 1, 2, 3, and 4 shown in Table 1.
Using silver-palladium alloy, Experimental Examples 5, 10, and 11
, 12, and 13 used copper, and Experimental Examples 6, 7, 8, and 9 used silver.

また、焼成は、導体ペーストに銀、銀−パラジウム合金
を用いた場合には、500℃/11の速度で昇温し、表
1に示した温度で夫々30分から2吟間保持した。
Further, in the case of using silver or a silver-palladium alloy as the conductive paste, the temperature was raised at a rate of 500° C./11, and the temperature was maintained at the temperature shown in Table 1 for 30 minutes and 2 minutes, respectively.

さらにまた、導体ペーストに銅を用いた場合は窒素と水
蒸気の混合ガスの存在下に、200℃/Hの速度で75
0℃迄昇温し、750℃で4時間保持した後、再び20
0℃/Hの速度で表1に示した最高温度まで胃温し、夫
々30分から2時間保持した。そうすることにより銅が
酸化することなく焼成される。
Furthermore, when copper is used as the conductor paste, the conductor paste is heated at 75°C at a rate of 200°C/H in the presence of a mixed gas of nitrogen and water vapor.
The temperature was raised to 0℃, held at 750℃ for 4 hours, and then heated again to 20℃.
The stomach was warmed to the maximum temperature shown in Table 1 at a rate of 0° C./H and maintained for 30 minutes to 2 hours, respectively. By doing so, the copper is fired without being oxidized.

以上の工程により、本発明に係る結晶化ガラス体は、表
1に示す夫々の組成成分、換言すれば、本発明の範囲内
の組成成分によって構成される原料を用いれば、焼成に
より主結晶としてコージエライト相がガラス中より析出
し、表1に示される金、銀、銅、銀−パラジウム合金の
夫々の導体2と同時焼成しても反り(変形)が無く、緻
密で比誘電率が低く、且つシリコンの有する示性ビに近
い熱膨張係数を有する結晶化ガラス体4が得られた。
Through the above steps, the crystallized glass body according to the present invention can be produced by firing as a main crystal by using raw materials composed of the respective composition components shown in Table 1, in other words, the composition components within the scope of the present invention. The cordierite phase precipitates from the glass, and even when co-fired with the conductors 2 of gold, silver, copper, and silver-palladium alloy shown in Table 1, there is no warpage (deformation), it is dense, and has a low dielectric constant. In addition, a crystallized glass body 4 having a coefficient of thermal expansion close to that of silicon was obtained.

実施例2 結晶化ガラス−セラミック体の作製に際し、表1に示さ
れる夫々のガラス粉末に、平均粒径1〜6μmのフィラ
ーを表2に示すように所定量添加し、前記結晶化ガラス
体と同様の方法で混合粉末を形成した。
Example 2 When producing a crystallized glass-ceramic body, a predetermined amount of filler with an average particle size of 1 to 6 μm as shown in Table 2 was added to each of the glass powders shown in Table 1, and the crystallized glass-ceramic body and A mixed powder was formed in a similar manner.

次いで、表2に示される夫々の導体ペーストを前記結晶
化ガラス体と同様の方法で塗布し、表2に示すように9
00℃〜1000℃の夫々の温度で同時焼成することに
より、α−コージェライトを主結晶とし、残留ガラスか
らなるマトリックス中にフィラー粉末が分散する夫々の
導体と反り(変形)がない緻密で比誘電率が低く、且つ
シリコンの有する示性値に近い熱膨張係数を有する結晶
化ガラス−セラミック体を得た。
Next, each conductor paste shown in Table 2 was applied in the same manner as the crystallized glass body, and as shown in Table 2, 9
By simultaneously firing at temperatures between 00°C and 1000°C, the conductors are made of α-cordierite as the main crystal and filler powder is dispersed in a matrix of residual glass. A crystallized glass-ceramic body having a low dielectric constant and a coefficient of thermal expansion close to the characteristic value of silicon was obtained.

なお、比較例として、表1に示す比較例14、l5、1
6、17および表2に示す比較例32、33、34の成
分組成で実験を試みたが、焼成の際に緻密化することな
く、またはガラス化不能であることが判明した。
In addition, as comparative examples, Comparative Examples 14, l5, 1 shown in Table 1
Although experiments were attempted using the component compositions of Comparative Examples 32, 33, and 34 shown in Table 2, it was found that the compositions did not become densified during firing or could not be vitrified.

[発明の効果] 以上のように、本発明に係る結晶化ガラス体および結晶
化ガラス−セラミック体は、導体である導通抵抗の低い
金、銀、銅、銀−パラジウム合金と反り(変形)を生じ
ること無く緻密に同時焼成を行うことが出来、さらに誘
電率が低く、また半導体素子として使用されるシリコン
の示性値に近い熱膨張係数を有する。
[Effects of the Invention] As described above, the crystallized glass body and the crystallized glass-ceramic body according to the present invention are capable of warping (deforming) with conductors such as gold, silver, copper, and silver-palladium alloys having low conduction resistance. It is possible to perform precise co-firing without any formation of silicon, and furthermore, it has a low dielectric constant and a thermal expansion coefficient close to the characteristic value of silicon used as a semiconductor element.

従って、本発明に係る結晶化ガラス体および結晶化ガラ
ス−セラミック体は、電子回路における電気信号の伝達
の高速化および高密度化を必要とする回路基板の用途に
最適であり、またシリコン半導体チップと整合し、基板
とダイレクトにボンディングし易いため、高密度配線基
板や半導体パッケージ等の用途にも最適である。
Therefore, the crystallized glass body and the crystallized glass-ceramic body according to the present invention are ideal for use in circuit boards that require high-speed and high-density transmission of electrical signals in electronic circuits, and also for silicon semiconductor chips. It is suitable for applications such as high-density wiring boards and semiconductor packages, as it is compatible with the above and can be easily bonded directly to the substrate.

従って、本発明は高集積化したtsIや各種の素子を多
数搭載する回路基板の小型化と信頼性の向上に寄与する
ところも大である。
Therefore, the present invention greatly contributes to the miniaturization and improved reliability of circuit boards on which highly integrated tsIs and a large number of various elements are mounted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は同時焼成の際に結晶化ガラス体および結
晶化ガラス−セラミック体と導体の収縮特性の不整合に
より反り(変形)が生じなかったときの判定の基準とす
る状態を示す説明図、第1図ら〕は同時焼成の際に結晶
化ガラス体および結晶化ガラス−セラミック体と導体の
収縮特性の不整合により反り(変形)が生じたときの判
定の基準とする状態を示す説明図である。 2・・・導体 4・・・結晶化ガラスおよび結晶化ガラスセラミック体
Figure 1 (a) shows the condition used as a criterion for judgment when no warping (deformation) occurs due to mismatching shrinkage characteristics of the crystallized glass body, the crystallized glass-ceramic body, and the conductor during simultaneous firing. Explanatory drawings, Figure 1, etc.] show the conditions used as the criteria for judgment when warping (deformation) occurs due to mismatching shrinkage characteristics of the crystallized glass body, the crystallized glass-ceramic body, and the conductor during co-firing. It is an explanatory diagram. 2... Conductor 4... Crystallized glass and crystallized glass ceramic body

Claims (5)

【特許請求の範囲】[Claims] (1) 37〜63重量%のSiO_2と、18〜43
重量%のAl_2O_3と、 7〜25重量%のMgOと、 からなり、 SiO_2とAl_2O_3とMgOとの合計100重
量%に対し1〜20重量%のB_2O_3を含有するこ
とを特徴とする結晶化ガラス体。
(1) 37-63 wt% SiO_2 and 18-43 wt%
% by weight of Al_2O_3; 7 to 25% by weight of MgO; and a crystallized glass body characterized by containing 1 to 20% by weight of B_2O_3 based on 100% by weight of the total of SiO_2, Al_2O_3, and MgO. .
(2) 37〜63重量%のSiO_2と、18〜43
重量%のAl_2O_3と、 7〜25重量%のMgOと、 からなり、 SiO_2とAl_2O_3とMgOとの合計100重
量%に対し1〜20重量%のB_2O_3を含有してな
る結晶性ガラス組成物70〜95重量%と、 フィラー2〜30重量%と、 からなることを特徴とする結晶化ガラス−セラミック体
(2) 37-63 wt% SiO_2 and 18-43 wt%
Crystalline glass composition 70 consisting of % by weight of Al_2O_3 and 7 to 25% by weight of MgO, and containing 1 to 20% by weight of B_2O_3 to 100% by weight of the total of SiO_2, Al_2O_3 and MgO. A crystallized glass-ceramic body comprising: 95% by weight, and 2 to 30% by weight of filler.
(3) 請求項2記載の結晶化ガラス−セラミック体に
おいて、フィラーが石英およびアルミナよりなる群から
選ばれた少なくとも一種であることを特徴とする結晶化
ガラス−セラミック体。
(3) The crystallized glass-ceramic body according to claim 2, wherein the filler is at least one selected from the group consisting of quartz and alumina.
(4) 請求項1記載の結晶化ガラス体を用いた絶縁体
と、この絶縁体上に金、銀、銅、銀−パラジウム合金の
少なくとも一種以上をメタライズした導体とを備えるこ
とを特徴とする回路基板。
(4) It is characterized by comprising an insulator using the crystallized glass body according to claim 1, and a conductor in which at least one of gold, silver, copper, and a silver-palladium alloy is metalized on the insulator. circuit board.
(5) 請求項2または3記載の結晶化ガラス−セラミ
ック体を用いた絶縁体と、この絶縁体上に金、銀、銅、
銀−パラジウム合金の少なくとも一種以上をメタライズ
した導体とを備えることを特徴とする回路基板。
(5) An insulator using the crystallized glass-ceramic body according to claim 2 or 3, and gold, silver, copper,
1. A circuit board comprising a conductor metallized with at least one type of silver-palladium alloy.
JP1578390A 1990-01-25 1990-01-25 Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof Pending JPH03218944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1578390A JPH03218944A (en) 1990-01-25 1990-01-25 Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1578390A JPH03218944A (en) 1990-01-25 1990-01-25 Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof

Publications (1)

Publication Number Publication Date
JPH03218944A true JPH03218944A (en) 1991-09-26

Family

ID=11898425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1578390A Pending JPH03218944A (en) 1990-01-25 1990-01-25 Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof

Country Status (1)

Country Link
JP (1) JPH03218944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747396A (en) * 1996-02-29 1998-05-05 Tdk Corporation Glass and ceramic substrate using the same
US7034637B2 (en) * 2003-04-21 2006-04-25 Murata Manufacturing Co., Ltd. Electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747396A (en) * 1996-02-29 1998-05-05 Tdk Corporation Glass and ceramic substrate using the same
US7034637B2 (en) * 2003-04-21 2006-04-25 Murata Manufacturing Co., Ltd. Electronic component

Similar Documents

Publication Publication Date Title
US4749665A (en) Low temperature fired ceramics
US4621066A (en) Low temperature fired ceramics
US5958807A (en) Low dielectric loss glass ceramic compositions
US5468694A (en) Composition for producing low temperature co-fired substrate
US5206190A (en) Dielectric composition containing cordierite and glass
EP0552522B1 (en) Low dielectric, low temperature fired glass ceramics
JPH04243962A (en) Inorganic composition with low dielectric constant for multi-layered ceramic package and method for preparation thereof
US4764486A (en) Sintered glass-powder product
US5316985A (en) Suppression of crystal growth in low dielectric inorganic composition using ultrafine alumina
JPH05211005A (en) Dielectric composition
JPS62278145A (en) Sintered material of glass ceramic
US5118643A (en) Low dielectric inorganic composition for multilayer ceramic package containing titanium silicate glass
US4833104A (en) Glass-ceramic substrates for electronic packaging
JP2598872B2 (en) Glass ceramic multilayer substrate
US5177034A (en) Gallium crystal growth inhibitor for glassy low dielectric inorganic composition
JPH03218944A (en) Crystallized glass body, crystallized glass-ceramic body and circuit board using thereof
JP2695587B2 (en) Glass ceramics composition
JPH0617250B2 (en) Glass ceramic sintered body
JPS6350345A (en) Glass ceramic sintered body
JPH03141153A (en) Inorganic composition having low-temperature sintering property and low dielectric constant
JPS6374957A (en) Low temperature sinterable low dielectric constant inorganic composition
US5312784A (en) Devitrification inhibitor in low dielectric borosilicate glass
JPH0232587A (en) Composite for circuit substrate and electronic parts using composite therefor
JP3515867B2 (en) Low temperature firing ceramic composition
JP3336176B2 (en) Glass ceramic sintered body