JPH03218624A - Lamp annealing device - Google Patents

Lamp annealing device

Info

Publication number
JPH03218624A
JPH03218624A JP2687190A JP2687190A JPH03218624A JP H03218624 A JPH03218624 A JP H03218624A JP 2687190 A JP2687190 A JP 2687190A JP 2687190 A JP2687190 A JP 2687190A JP H03218624 A JPH03218624 A JP H03218624A
Authority
JP
Japan
Prior art keywords
lamp
temperature
halogen
wafer
respective parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2687190A
Other languages
Japanese (ja)
Other versions
JP2940047B2 (en
Inventor
Minoru Kimura
実 木村
Masaatsu Ito
正篤 伊東
Shigeru Takeda
滋 竹田
Shoji Hirose
廣瀬 祥司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12417531&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03218624(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Publication of JPH03218624A publication Critical patent/JPH03218624A/en
Application granted granted Critical
Publication of JP2940047B2 publication Critical patent/JP2940047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To minimize the distribution of temperature in respective parts of a heated material during the infrared ray lamp heating time by a method wherein a means of setting doses imparted by respective infrared ray lamps opposite to respective parts is provided so as to supplement the doeses corresponding to the heat dissipation characteristics of the respective parts of the heated material. CONSTITUTION:Respective halogen lamps 1 are fixed to differentiate the arrangement directions of filaments so that the illuminance distribution may be complemented by one another. The halogen lamps 1 arranged in such a mode are connected to an external does setting device 3 by wirings passing through the wall of the device housing H. Next, the device 3 is to set the does of the infrared ray lamps 1 oppositely arranged so that the heat dissipation level of respective parts of a heated material may be complemented corresponding to the heat dissipation characteristics of the respective parts. Through these procedures, the temperatures of the respective parts can be made uniform thereby enabling the resultant temperature difference to be minimized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はランプアニール装置に関し、特に半導体ウエハ
の熱処理に使用して好適なランプアニル装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lamp annealing apparatus, and more particularly to a lamp annealing apparatus suitable for use in heat treatment of semiconductor wafers.

[従来の技術] イオン注入後の結晶性回復やドーパント活性化等のため
に、半導体ウエハの表面をハロゲンランプ等の赤外線ラ
ンプで急加熱し、その後急冷するランプアニール装置が
使用されている。その一例を第30図で説明すると、装
置ハウジングH内には石英ガラスのチューブH1が配設
され、該ナユブH1内には一端の小径開口より半導体材
料ガスが供給される。そして、チューブH1他端の大径
開口からは支持腕42に支持されて被加熱材たるウエハ
2が装入されている。
[Prior Art] In order to recover crystallinity and activate dopants after ion implantation, a lamp annealing device is used that rapidly heats the surface of a semiconductor wafer with an infrared lamp such as a halogen lamp, and then rapidly cools the surface of the semiconductor wafer. An example of this will be explained with reference to FIG. 30. A quartz glass tube H1 is disposed within the device housing H, and a semiconductor material gas is supplied into the tube H1 through a small diameter opening at one end. A wafer 2, which is a material to be heated, is inserted into the large-diameter opening at the other end of the tube H1 while being supported by a support arm 42.

上記ハウジングH内には上記チューブH1を挟んで上下
位置に、チューブH1の長手方向へ等間隔でハロゲンラ
ンプ1が設けてある。これらハロゲンランプ1は第31
図に示す如く、反射板15を備えた棒状のものが一般に
使用されている。
Inside the housing H, halogen lamps 1 are provided at equal intervals in the longitudinal direction of the tube H1, above and below the tube H1. These halogen lamps 1 are the 31st
As shown in the figure, a rod-shaped device equipped with a reflecting plate 15 is generally used.

[発明が解決しようとする課題] ところで、上記従来のランブアニール装置でウエハ2を
加熱した場合、ウエハ表面を検査すると、第32図に示
す如く、ウエハ板面を横切ってハロゲンランプ1の長手
方向(図の上下方向)へ比較的大きな温度差(最大40
℃)が生じ、結晶のすべりや、歪みによるウエハ2のそ
りが問題となる。
[Problems to be Solved by the Invention] By the way, when the wafer 2 is heated with the conventional lamp annealing apparatus described above, when the wafer surface is inspected, as shown in FIG. (in the vertical direction of the figure) relatively large temperature difference (maximum 40
°C), causing problems such as crystal slippage and warpage of the wafer 2 due to distortion.

そこで、上下のランプ1を互いに直交方向へ配設するこ
とか考えられ、これによると第33図に示す如く、温度
分布は略四角形の同心状となり、かつ温度差も小さく(
最大20℃)はなるが、未だ十分ではない。
Therefore, it may be possible to arrange the upper and lower lamps 1 in directions orthogonal to each other. According to this, as shown in FIG. 33, the temperature distribution becomes approximately square concentric, and the temperature difference is small (
(up to 20°C), but it is still not sufficient.

本発明はかかる課題を解決するもので、ランプ加熱時に
被加熱材に生じる温度分布を十分に小さくすることが可
能なランプアニール装置を提供することを目的とする。
The present invention has been made to solve this problem, and an object of the present invention is to provide a lamp annealing device that can sufficiently reduce the temperature distribution that occurs in a heated material during lamp heating.

[課題を解決するための手段] 本発明の構成を第1図で説明すると、板状の被加熱材2
に赤外線ランプ1により赤外光を照射し加熱するランプ
アニール装置は、上記赤外線ランブ1を球形となし、か
かる赤外線ランプ1を、上記被加熱材2の少なくとも一
方の板面に対向せしめて複数設け、かつ、上記被加熱材
2の各部の放熱特性に応じ、その放熱量を補なうように
、上記各部に対向する上記各赤外線ランプ1の赤外光照
射量を設定する手段3を設けたものである。
[Means for Solving the Problems] The configuration of the present invention is explained with reference to FIG. 1. A plate-shaped heated material 2
The lamp annealing device heats the material by irradiating it with infrared light using an infrared lamp 1, the infrared lamp 1 is spherical, and a plurality of such infrared lamps 1 are provided facing at least one plate surface of the material to be heated 2. , and means 3 for setting the amount of infrared light irradiation of each of the infrared lamps 1 facing each part of the heated material 2 so as to compensate for the heat radiation amount according to the heat radiation characteristics of each part of the heated material 2. It is something.

[作用] 上記構成の装置において、照射量設定手段は、被加熱材
各部の放熱特性に応じてこの部分の放熱量を補うように
、対向設置した上記赤外線ランプの照射量を設定する。
[Operation] In the apparatus configured as described above, the irradiation amount setting means sets the irradiation amount of the infrared lamps disposed opposite each other in accordance with the heat radiation characteristics of each part of the heated material so as to compensate for the amount of heat radiation of this part.

しかして、被加熱材の各部の温度は均一化され、温度差
の発生が小さく抑えられる。
Therefore, the temperature of each part of the material to be heated is made uniform, and the occurrence of temperature differences is suppressed to a small level.

[第1実施例] 第1図において、装置ハウジングH内は平行に配設した
石英ガラス板41A、41Bにより上下に三室に区画さ
れており、上部室および下部室に赤外光を発する球状ハ
ロゲンランプ1が複数設けてある。中間室は熱処理室と
なっており、該熱処理室内には支持腕42に支持せしめ
て被加熱材たる半導体ウエハ2が装入してある。
[First Embodiment] In FIG. 1, the inside of the device housing H is vertically divided into three chambers by quartz glass plates 41A and 41B arranged in parallel, and a spherical halogen that emits infrared light is placed in the upper and lower chambers. A plurality of lamps 1 are provided. The intermediate chamber is a heat treatment chamber, and a semiconductor wafer 2, which is a material to be heated, is loaded into the heat treatment chamber while being supported by a support arm 42.

上記ウエハ2は円板形であり(第2図〉、上記ハロゲン
ランプ1は、上記ウエハの板面全体をカバーする領域に
、正六角形の同心状をなして上記板面に向け多数設けて
ある。ハロゲンランプ1は、不活性ガスとハロゲンガス
を封入したガラス球11(第3図(1)、(2〉〉内に
タングステンフィラメント12を設けたもので、その配
光分布は、第4図に示す如く、水平面内におけるフィラ
メントの延長方向で弱い。ここで、図中実線は垂直面内
の照度分布であり、鎖線は水平面内の照度分布である。
The wafer 2 is disk-shaped (Fig. 2), and a large number of the halogen lamps 1 are provided in a regular hexagonal concentric manner toward the plate surface in an area covering the entire plate surface of the wafer. The halogen lamp 1 has a tungsten filament 12 installed inside a glass bulb 11 (Fig. 3 (1), (2)) filled with inert gas and halogen gas, and its light distribution is shown in Fig. 4. As shown in , it is weak in the extending direction of the filament in the horizontal plane.Here, the solid line in the figure is the illuminance distribution in the vertical plane, and the chain line is the illuminance distribution in the horizontal plane.

そこで、上記各ハロゲンランプ1は、第5図ないし第6
図に示す如く、そのフィラメント12の配設方向を異な
らしめて、照度分布の強弱を互いに補完するようにして
ある。すなわち、第5図では各フィラメント12を同心
円に沿う方向へ配し、また、第6図では放射線に沿う方
向へ配設してある。
Therefore, each of the above halogen lamps 1 is shown in FIGS. 5 to 6.
As shown in the figure, the filaments 12 are arranged in different directions so that the strengths and weaknesses of the illuminance distribution complement each other. That is, in FIG. 5, the filaments 12 are arranged in a direction along concentric circles, and in FIG. 6, they are arranged in a direction along radial lines.

第1図において、上述の如く配設された各ハロゲンラン
プ1は装置ハウジングHの壁を貫通する配線により外部
の照射量設定装置3に接続されている。
In FIG. 1, each halogen lamp 1 arranged as described above is connected to an external irradiation amount setting device 3 by a wire passing through the wall of the device housing H.

照射量設定装置3は、通電回路31、通電制御回路32
、温度調節計33、および放射温度計34より構成され
ており、放射温度計34は上記ウエハ2の中心部温度を
測定するようにハウジング底壁に一台設置されている。
The irradiation amount setting device 3 includes an energization circuit 31 and an energization control circuit 32.
, a temperature controller 33, and a radiation thermometer 34. One radiation thermometer 34 is installed on the bottom wall of the housing so as to measure the temperature at the center of the wafer 2.

本実施例では上記上下の各ハロゲンランプ1はウエハ2
の板面に対してそれぞれ中心より同心状に3ゾーンに区
画され、その各ゾーンについて通電回路31と通電制御
回路32が設けてある(1ゾーンのみ図示)。
In this embodiment, each of the upper and lower halogen lamps 1 is connected to the wafer 2.
The plate surface is divided into three zones concentrically from the center, and an energization circuit 31 and an energization control circuit 32 are provided for each zone (only one zone is shown).

温度調節計33は、上記放射温度計34から得られる測
定温度を、中心ゾーンの設定温度(例えば1150℃)
と比較し、その偏差が零になるように、通電制御回路3
2中の増幅回路321およびゲートパルス回路322を
介して通電回路31に設けた電源ユニット311のサイ
リスタを駆動する。検出回路312からは、供給電流値
が通電制御回路32の変換回路323を経てフィードバ
ックされている。
The temperature controller 33 converts the measured temperature obtained from the radiation thermometer 34 into the set temperature of the central zone (for example, 1150°C).
The energization control circuit 3 is adjusted so that the deviation becomes zero.
The thyristor of the power supply unit 311 provided in the energizing circuit 31 is driven through the amplifier circuit 321 and gate pulse circuit 322 in 2. The supply current value is fed back from the detection circuit 312 via the conversion circuit 323 of the energization control circuit 32.

残る他のゾーンについても電力のフィードバック制御を
行っているが、その設定値は以下のように決定される。
Feedback control of power is also performed for the remaining zones, and the set values are determined as follows.

すなわち、ニッケル板やステンレス板で製作したダミー
ウエハ上の、上記各ゾーンに対応した所定位置に熱電対
を取付け、この状態でハロゲンランプを点灯して、各ゾ
ーンの温度が中心ゾーンとほぼ同一温度になるような電
力設定値の比を決定する。
That is, thermocouples are attached to predetermined positions corresponding to each zone on a dummy wafer made of nickel plate or stainless steel plate, and in this state, a halogen lamp is turned on to bring the temperature of each zone to almost the same temperature as the center zone. Determine the ratio of power settings such that:

ところで、円板状の被加熱材を一定温度に保持した場合
の、各部からの放射エネルギ密度を一定条件下で計算す
ると、第7図に示すように、中心から外周に向かうに従
って次第に増加する。したがって、これを補完するよう
に、円形ウエハに対する供給電力は一般に、中心部を小
さくし、周辺部に向けて大きくすると良い。
By the way, when the radiant energy density from each part is calculated under constant conditions when a disc-shaped heated material is held at a constant temperature, it gradually increases from the center to the outer periphery, as shown in FIG. Therefore, to compensate for this, it is generally recommended that the power supplied to a circular wafer be smaller at the center and larger toward the periphery.

しかして、本実施例では、かかる理論的背景も踏まえて
、上述の熱電対による測定結果より、周辺の各ゾーンの
ハロゲンランプ1への供給電力を一定の比で大きくし、
この結果、ウエハ2各部への入射エネルギ密度を、第8
図に示す如く、中心部より周辺部に向けて階段的に増加
せしめている。
Therefore, in this embodiment, based on the above-mentioned theoretical background, the power supplied to the halogen lamps 1 in each surrounding zone is increased by a certain ratio, based on the measurement results using the thermocouples described above.
As a result, the incident energy density to each part of the wafer 2 is
As shown in the figure, it increases stepwise from the center toward the periphery.

かかるランプ照射量の制御によりウエハ2上の温度分布
は、例えば第9図に示す如く、同心状の変化を残しつつ
もその温度差は小さなものとなる(最大10℃)。
By controlling the amount of lamp irradiation, the temperature distribution on the wafer 2, as shown in FIG. 9, for example, has a small temperature difference (maximum 10 DEG C.) while maintaining concentric variations.

なお、上記ハロゲンランプ1の照射量制御は、同心状の
ゾーン数を増すことにより、さらに高精度になすことが
可能であり、この場合はウエハの温度分布もさらに均一
化する。また、上下のランプ群を、中心回りに互いにず
らして配置することにより、ランプ境界部の温度分布の
変動を抑えることができる。
Note that the irradiation amount control of the halogen lamp 1 can be made more precise by increasing the number of concentric zones, and in this case, the temperature distribution of the wafer is also made more uniform. Further, by arranging the upper and lower lamp groups so as to be shifted from each other around the center, it is possible to suppress fluctuations in temperature distribution at the lamp boundary.

[第2〜第6実施例] ハロゲンランプ1の配置は、上記実施例の如き正六角形
の同心状にすると最も設置密度を大きくできるが、各ラ
ンプ1を第10図の如く同心円状に配置すれば、制御ゾ
ーンの区画が容易となる。
[Second to Sixth Embodiments] If the halogen lamps 1 are arranged concentrically in a regular hexagon as in the above embodiment, the installation density can be maximized. For example, control zones can be easily divided.

また、ウエハ2の形状に応じて、ランプ配置を第11図
の如き四角の同心状とすることも可能である。
Further, depending on the shape of the wafer 2, the lamps may be arranged in a concentric square shape as shown in FIG.

さらに、ハロゲンランプ1からの入射エネルギー密度を
大きくする必要があるウエハ2外周部で、これに対向す
るランプ位置をウエハ2に近接せしめ(第12図〉、こ
れより中心部に向けて漸次ウエハ2より遠ざかるように
配置すれば、階段的なゾーン制御の粗さを補うことがで
きる。同様の効果は、外周部より中心部に向けてハロゲ
ンランプ1のワット数を小さくすることによっても達成
される。
Further, at the outer periphery of the wafer 2, where it is necessary to increase the incident energy density from the halogen lamp 1, the lamp position facing the wafer 2 is brought closer to the wafer 2 (Fig. 12), and from this point the wafer 2 is gradually Placing them farther apart can compensate for the roughness of stepwise zone control.A similar effect can also be achieved by reducing the wattage of the halogen lamp 1 toward the center than at the periphery. .

ハロゲンランブ1は、照射効率を向上せしめるために、
第13図に示す如く、ガラス球11の後半部の内面ない
し外面に金、クロム、ジルコニア等のコーティング13
を施し、あるいは第14図に示す如く、反射傘14を設
ける構造としても良い。
In order to improve the irradiation efficiency, the halogen lamp 1
As shown in FIG. 13, a coating 13 of gold, chromium, zirconia, etc. is applied to the inner or outer surface of the rear half of the glass bulb 11.
Alternatively, as shown in FIG. 14, a structure may be provided in which a reflective umbrella 14 is provided.

上記横成のランプアニール装置において、ハロゲンラン
プは、ウエハの形状に応じて配設し、ウエハ各部の放射
熱量を補うように照射制御する。
In the above-described lamp annealing apparatus, the halogen lamps are arranged according to the shape of the wafer, and irradiation is controlled so as to supplement the amount of heat radiated from each part of the wafer.

したがって、必ずしも同心状配置される必要はなく、ま
た、ウエハ各部の放射熱量は、ウエハの形状により左右
されることはもちろん、熱処理室に導入したガスの流れ
によっても変動するから、これらを考慮する必要がある
Therefore, they do not necessarily need to be arranged concentrically, and the amount of heat radiated from each part of the wafer not only depends on the shape of the wafer, but also varies depending on the flow of gas introduced into the heat treatment chamber, so these should be taken into consideration. There is a need.

なお、ランプ群は上下のいずれか一方のみでも良い。Note that the lamp group may be provided in only one of the upper and lower groups.

[第7実施例] ところで、上記構成のランプアニール装置において、各
ハロゲンランプ1は、通常、第15図に示す如く、フィ
ラメント12を内包するガラス球11とガイシ等の絶縁
体よりなる口金部16からなり、口金部16をランプ受
金51に取付けて(第16図)、通電することによりフ
ィラメント12が加熱されるようになしてある。
[Seventh Embodiment] By the way, in the lamp annealing apparatus having the above configuration, each halogen lamp 1 normally includes a glass bulb 11 containing a filament 12 and a base portion 16 made of an insulator such as insulator, as shown in FIG. The cap 16 is attached to a lamp holder 51 (FIG. 16), and the filament 12 is heated by applying electricity.

フィラメント12の両端部には、第17図(1)(2〉
に示す如く、厚さ数10μmの金属箔を設けてあり、こ
れを、ガラス球11内に封入されたハロゲンガスと外気
を遮断するための壁111に貫通せしめて封止部17と
なしてある。
At both ends of the filament 12, there are marks shown in FIG. 17 (1) (2).
As shown in the figure, a metal foil with a thickness of several tens of micrometers is provided, and this is passed through the wall 111 for blocking the outside air from the halogen gas sealed in the glass bulb 11 to form the sealing part 17. .

この封止部17は、フィラメント12が加熱されるとそ
の熱が伝わって温度上昇するが、その温度が250〜3
50℃以上になると、封止部17が酸化して断線するお
それがある。あるいは封止部17の熱膨張によりガラス
球11内のハロゲンガスが洩れてハロゲンガスの減少お
よび大気のランプ内導入につながり、フィラメント12
の断線原因となる。そこで、封止部17が250℃以上
にならないように、第16図に示す如く、ガラス球11
周りに反射板6を設ける、またはハロゲンランプ11を
空冷することにより温度の上昇を防ぐことができる。
When the filament 12 is heated, the temperature of the sealing portion 17 increases as the heat is transmitted, and the temperature rises between 250 and 300℃.
If the temperature exceeds 50° C., there is a risk that the sealing portion 17 will be oxidized and disconnected. Alternatively, due to thermal expansion of the sealing part 17, halogen gas inside the glass bulb 11 leaks, leading to a decrease in halogen gas and introduction of atmospheric air into the lamp.
This may cause wire breakage. Therefore, in order to prevent the temperature of the sealing part 17 from exceeding 250°C, the glass bulb 11 is heated as shown in FIG.
A rise in temperature can be prevented by providing a reflective plate 6 around the lamp or cooling the halogen lamp 11 with air.

[第8実施例] 一方、ウエハ熱処理時には、ウエハ温度を250゜C/
秒の割合で急速に上昇させ、かつウエハの温度分布が±
5℃以内を達成することが望ましい。
[Eighth Example] On the other hand, during wafer heat treatment, the wafer temperature was increased to 250°C/
The temperature distribution of the wafer is ±
It is desirable to achieve a temperature of 5°C or less.

そのためにはハロゲンランプ1を、例えば第18図のよ
うに配列し、ハロゲンランプ1個あたり300Wの出力
でかつハロゲンランプの並びのピッチ9を最大25mm
程度とするのがよい。ところが、通常使用されるハロゲ
ンランプの直径は22rl1rI1程度であるので、ラ
ンプ周りに有効な反射板を設けるスペースがない、また
ハロゲンランプを空冷しようとすると、ランプが互いの
壁となって空気の流れが届かず、封止部の冷却が十分で
ないことがある。
For this purpose, halogen lamps 1 are arranged, for example, as shown in Fig. 18, with an output of 300 W per halogen lamp, and a pitch 9 of the halogen lamps arranged at a maximum of 25 mm.
It is better to set it as a degree. However, since the diameter of commonly used halogen lamps is approximately 22rl1rI1, there is no space to install an effective reflector around the lamp, and when trying to air-cool halogen lamps, the lamps become walls of each other and the airflow becomes difficult. may not reach the sealing area, and the sealing part may not be cooled enough.

第19図はこのようにスペースが限られる場合の封止部
の冷却構造を示す。本実施例では、第20図、第21図
に示す如く、ハロゲンランプ1の口金部を口金上部18
と口金下部19に分離して、口金上部18を熱伝導性の
良好な物質で構成するとともに、下方に向けて縮径する
テーパ状となしてある。ここでは(第19図)、テーバ
角θ=2゜20゛、直径C=16nwn、高さD”12
mmの銅製テーパ円筒とした。またハロゲンランプ1間
ピッチgは25mmとした。
FIG. 19 shows a cooling structure for the sealing part when space is limited in this way. In this embodiment, as shown in FIG. 20 and FIG.
Separated into a cap lower part 19, the cap upper part 18 is made of a material with good thermal conductivity and has a tapered shape whose diameter decreases downward. Here (Fig. 19), Taber angle θ=2°20°, diameter C=16nwn, height D”12
It was made into a taper cylinder made of copper. Further, the pitch g between the halogen lamps was 25 mm.

口金上部18の周囲には複数の水路71を有する水冷箱
7を配設してある(第19図)。水冷箱6は、ハロゲン
ランプ1設置位置に、口金上部18に対応するテーパ状
の穴72を有し(第22図)、該穴72にハロゲンラン
プ1を嵌合せしめて、口金上部18が水冷箱7に密着す
るようになしてある。このときハロゲンランプ1個あた
りの冷却水量は200cc/分とした。
A water cooling box 7 having a plurality of water channels 71 is disposed around the upper part 18 of the cap (FIG. 19). The water-cooled box 6 has a tapered hole 72 corresponding to the upper part 18 of the base at the position where the halogen lamp 1 is installed (FIG. 22), and the halogen lamp 1 is fitted into the hole 72 so that the upper part 18 of the base It is designed to be in close contact with 7. At this time, the amount of cooling water per halogen lamp was 200 cc/min.

口金下部19はガイシ等の絶縁体からなり、外周のネジ
部にてランプ受金51に装着固定されている。ランプ受
金51の下端面にはピン52が一体に設けてあり、ピン
52は受金ホルダ53にバネ54を介して支持されてい
る。
The lower part 19 of the cap is made of an insulator such as insulator, and is fixed to the lamp holder 51 by a threaded portion on the outer periphery. A pin 52 is integrally provided on the lower end surface of the lamp holder 51, and the pin 52 is supported by a holder holder 53 via a spring 54.

しかして、バネカによりピン52、ランプ受金51、ハ
ロゲンランプ1が一体となって第19図矢印方向に引張
られ、口金上部18と水冷箱7との密着性はより向上す
る。そして口金上部18からの熱放散がより良好に行な
われ、封止部の温度上昇を抑制することができる。
As a result, the pin 52, lamp holder 51, and halogen lamp 1 are pulled together in the direction of the arrow in FIG. 19 by the spring, and the close contact between the cap upper part 18 and the water-cooled box 7 is further improved. Heat dissipation from the upper part 18 of the cap is better performed, and a rise in temperature of the sealing portion can be suppressed.

ここで、封止部の温度が時間とともにどう変化するかを
調べた。第23図(a>はハロゲンランプ単独で点灯さ
せた場合、(b)は第24図に示す如く9個のハロゲン
ランプ1(直径d=22mm>をランプ間ピッチを25
mmとして配した場合で、いずれも水冷箱、反射板等は
設けず、風量2m3/分の条件で空冷しな。ハロゲンラ
ンプ1は色温度2700’C、交流100V、300W
の仕様で、また(b)は中心部に位置するハロゲンラン
プについて測定を行なった。
Here, we investigated how the temperature of the sealing part changes over time. Figure 23 (a) shows the case where a halogen lamp is used alone, and (b) shows the case where nine halogen lamps 1 (diameter d = 22 mm) are lit at a pitch of 25 mm as shown in Figure 24.
mm, no water cooling box, reflector, etc. are installed, and air cooling is performed at an air flow rate of 2 m3/min. Halogen lamp 1 has a color temperature of 2700'C, AC 100V, and 300W.
In (b), measurements were made for the halogen lamp located in the center.

図に明らかなように、(a)では封止部の温度が250
℃を越えて350℃前後まで上昇する。
As is clear from the figure, in (a) the temperature of the sealing part is 250
℃ and rises to around 350℃.

(b)ではランプ点灯から100秒で400℃を越えな
お上昇している。
In (b), the temperature still rises to over 400°C 100 seconds after the lamp is turned on.

次に、上記(b)の構成において、口金上部に密着させ
て水冷箱を設け、同様の実験を行なった。
Next, in the configuration of (b) above, a water-cooled box was provided in close contact with the upper part of the cap, and a similar experiment was conducted.

ハロゲンランプ1個あたりの冷却水量は200cc/分
とした。
The amount of cooling water per halogen lamp was 200 cc/min.

その結果、水冷箱を設けた本実施例の構成では、第25
図に示す如く、ランプ点灯後120秒で温度は定常状態
の150℃になった。このように本実施例の構成では、
封止部から奪える熱量が増大し、かつ各ハロゲンランプ
を均一に冷却し得るので、限られたスペース内で大きな
冷却効果が得られる。
As a result, in the configuration of this embodiment provided with a water cooling box, the 25th
As shown in the figure, the temperature reached the steady state of 150° C. 120 seconds after the lamp was turned on. In this way, in the configuration of this embodiment,
Since the amount of heat that can be removed from the sealing portion increases and each halogen lamp can be cooled uniformly, a large cooling effect can be obtained within a limited space.

[第9〜第10実施例] 上記第8実施例において、口金上部18の形状は円筒テ
ーパ形状に限らず、角筒(第26図)、円筒(第27図
)のような他形状とすることも可能である。また水冷箱
も口金形状に合わせて加工することが可能である。
[Ninth to Tenth Embodiments] In the eighth embodiment, the shape of the cap upper part 18 is not limited to the cylindrical tapered shape, but may have other shapes such as a rectangular tube (FIG. 26) or a cylindrical shape (FIG. 27). It is also possible. Furthermore, the water cooling box can also be processed to match the shape of the cap.

口金上部18の形状を第27図の円筒形とじた場合につ
いて、上記と同様の実験を行なった。ハロゲンランブ1
は、第28図に示す如く、口金上部18を直径B=16
mm、高さD=12mmの銅製円筒とした。
Experiments similar to those described above were conducted for the case where the shape of the upper part 18 of the cap was closed into a cylindrical shape as shown in FIG. halogen lamp 1
As shown in FIG. 28, the upper part 18 of the cap has a diameter B=16
mm, and the height D was a copper cylinder of 12 mm.

ただしこの場合、口金上部18と水冷箱7が密着せず、
水冷箱7との間にギャップGが生ずる。
However, in this case, the upper part 18 of the cap and the water cooling box 7 do not come into close contact with each other.
A gap G is created between the water cooling box 7 and the water cooling box 7.

そこで、十分な冷却効果を得るためのギャップGを、下
記の熱通過の式により求めた。
Therefore, the gap G for obtaining a sufficient cooling effect was determined using the following heat passage equation.

Q=K (t,−tB )2πL・・・・・・(1)L
;管長 K:熱通過率 Q:通過熱量 1 / K= 1/ ( a r ・) + #,(1
0g6 /’III/λm)■ ・・・・・・(2) α:流体の熱伝達率 r・ :管の最外半径 ρ :r/r(rIIl:各管半径) …  m   m−i λ:各管の熱伝導率 上記(1)、(2)式より、封止部が250℃以下にな
るためのギャップGを計算で求めたところ、ギャップG
は0.02mm以下であればよいことがわかった。
Q=K (t, -tB)2πL...(1)L
; Pipe length K: Heat passing rate Q: Passing heat amount 1 / K = 1/ ( a r ・) + #, (1
0g6 /'III/λm) ■ ・・・・・・(2) α: Heat transfer coefficient of fluid r・: Outermost radius of tube ρ: r/r (rIIl: radius of each tube) ... m m−i λ : Thermal conductivity of each tube. From equations (1) and (2) above, we calculated the gap G required for the sealing part to be below 250°C.
It was found that it is sufficient if the value is 0.02 mm or less.

ギャップGを0.02mm以下とし、冷却水量、ランプ
仕様は上記実施例と同様にして実験を行なった。その結
果、第29図に示す如く、ランプ点灯後18秒で定常温
度の220℃となり、十分な冷却効果が得られることが
わかる。
The experiment was conducted with the gap G being 0.02 mm or less, the amount of cooling water, and the lamp specifications being the same as in the above example. As a result, as shown in FIG. 29, the steady temperature reached 220° C. 18 seconds after the lamp was turned on, indicating that a sufficient cooling effect could be obtained.

[発明の効果] 以上の如く、本発明のランプアニール装置によれば、種
々の形状の板状被加熱材を均一に加熱することができ、
特に半導体ウエハの種々の熱処理に使用して大きな効果
を奏するものである。
[Effects of the Invention] As described above, according to the lamp annealing apparatus of the present invention, plate-shaped materials to be heated of various shapes can be heated uniformly,
It is particularly effective when used in various heat treatments of semiconductor wafers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第14図は本発明の第1実施例に係り、第
1図は装置の全体構成図、第2図はハロゲンランプの配
置を示す平面図、第3図はハロゲンランプの側面図、第
4図はハロゲンランプの配光特性を示す図、第5図およ
び第6図はハロゲンランプのフィラメント方向を示す図
、第7図は円板ウエハの放射エネルギ密度を示す図、第
8図は円板ウエハに対する入射エネルギ密度を示す図、
第9図は円板ウエハの温度分布を示す平面図、第10図
および第11図はそれぞれ本発明の第2実施例および第
3実施例のハロゲンランプの配置を示す平面図、第12
図は本発明の第4実施例でハロゲンランプのさらに他の
配置を示す装置本体の断面図、第13図および第14図
はそれぞれ本発明の第5実施例および第6実施例を示す
ハロゲンランプの側面図および斜視図、第15図〜第1
7図は本発明の第7実施例を示し、第15図はハロゲン
ランプの分解図、第16図はハロゲンランプの側面図、
第17図はガラス球の拡大図であり、第18図〜第25
図は本発明の第8実施例を示し、第18図はハロゲンラ
ンプの配置例を示す図、第19図はランプアニール装置
の部分断面図、第20図はハロゲンランプの分解図、第
21図はハロゲンランプの斜視図、第22図は水冷箱の
部分断面図、第23図(a>(b)は封止部の温度変化
を示す図、第23図は封止部の温度変化を測定するため
に使用した装置の構成を示す図、第24図は封止部の温
度変化を示す図であり、第26図は本発明の第9実施例
を示すハロゲンランプの斜視図、第27図〜第29図は
本発明の第10実施例を示し第27図および第28図は
それぞれハロゲンランプの斜視図および側面図、第29
図は封止部の温度変化を示す図であり、第30図ないし
第33図は従来例に係り、第30図は装置本体の断面図
、第31図はハロゲンランプの斜視図、第32図および
第33図は円板ウエハの温度分布を示す平面図である。 1・・・ハロゲンランプ(赤外線ランプ)2・・・ウエ
ハ(被加熱材) 3・・・照射量設定回路(赤外線照射量設定手段)31
・・・通電回路 32・・・通電制御回路 33・・・温度調節計 34・・・放射温度計 第 2 図 第 3 図 (1) (2) 第 4 図 30゛ 中心からの距離 (mm) 中心からの距離 (mm) 第15図 第16図 第17図 (1) (2) 第18図 第19図 第20図 第21図 第22図 第23図 (a) 第23閃 (b) 時 間(sec) 第24図 第25図 時 問(sec) 第26図 第27図 第28図 第29図 100 200 300 時 間 ( sec ) 暑 30 図 第31 図
1 to 14 relate to the first embodiment of the present invention, in which FIG. 1 is an overall configuration diagram of the device, FIG. 2 is a plan view showing the arrangement of the halogen lamp, and FIG. 3 is a side view of the halogen lamp. , FIG. 4 is a diagram showing the light distribution characteristics of a halogen lamp, FIGS. 5 and 6 are diagrams showing the filament direction of a halogen lamp, FIG. 7 is a diagram showing the radiant energy density of a disk wafer, and FIG. is a diagram showing the incident energy density on a disk wafer,
FIG. 9 is a plan view showing the temperature distribution of a disk wafer, FIGS. 10 and 11 are plan views showing the arrangement of halogen lamps in the second and third embodiments of the present invention, respectively.
The figure is a sectional view of the main body of the device showing still another arrangement of the halogen lamp according to the fourth embodiment of the present invention, and FIGS. 13 and 14 are halogen lamps showing the fifth and sixth embodiments of the present invention, respectively. Side view and perspective view of FIGS. 15-1
7 shows a seventh embodiment of the present invention, FIG. 15 is an exploded view of the halogen lamp, and FIG. 16 is a side view of the halogen lamp.
Figure 17 is an enlarged view of the glass bulb, and Figures 18 to 25
The figures show an eighth embodiment of the present invention, FIG. 18 is a diagram showing an example of the arrangement of halogen lamps, FIG. 19 is a partial sectional view of the lamp annealing device, FIG. 20 is an exploded view of the halogen lamp, and FIG. 21 is a perspective view of a halogen lamp, Fig. 22 is a partial sectional view of a water-cooled box, Fig. 23 (a>(b) is a diagram showing temperature changes in the sealing part, Fig. 23 is a measurement of temperature changes in the sealing part) FIG. 24 is a diagram showing the temperature change of the sealing part, FIG. 26 is a perspective view of a halogen lamp showing the ninth embodiment of the present invention, and FIG. 29 shows a tenth embodiment of the present invention, and FIGS. 27 and 28 are respectively a perspective view and a side view of a halogen lamp, and FIG.
30 to 33 are diagrams showing temperature changes in the sealing part, FIGS. 30 to 33 relate to the conventional example, FIG. 30 is a cross-sectional view of the main body of the device, FIG. 31 is a perspective view of the halogen lamp, and FIG. 32 and FIG. 33 is a plan view showing the temperature distribution of the disk wafer. 1... Halogen lamp (infrared lamp) 2... Wafer (material to be heated) 3... Irradiation amount setting circuit (infrared irradiation amount setting means) 31
... Energizing circuit 32... Energizing control circuit 33... Temperature controller 34... Radiation thermometer 2nd figure 3rd figure (1) (2) 4th figure 30゛Distance from center (mm) Distance from center (mm) Figure 15 Figure 16 Figure 17 (1) (2) Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 (a) Figure 23 (b) Time (sec) Fig. 24 Fig. 25 Time (sec) Fig. 26 Fig. 27 Fig. 28 Fig. 29 Fig. 100 200 300 Hours (sec) Heat 30 Fig. 31 Fig.

Claims (1)

【特許請求の範囲】[Claims] 板状の被加熱材に赤外線ランプにより赤外光を照射し加
熱するランプアニール装置において、上記赤外線ランプ
を球形となし、かかる赤外線ランプを、上記被加熱材の
少なくとも一方の板面に対向せしめて複数設け、かつ、
上記被加熱材の各部の放熱特性に応じ、その放熱量を補
うように、上記各部に対向する上記各赤外線ランプの赤
外光照射量を設定する手段を設けたことを特徴とするラ
ンプアニール装置。
In a lamp annealing device that heats a plate-shaped material to be heated by irradiating infrared light with an infrared lamp, the infrared lamp is spherical, and the infrared lamp is arranged to face at least one plate surface of the material to be heated. Provide multiple, and
A lamp annealing apparatus characterized in that a means is provided for setting the amount of infrared light irradiation of each of the infrared lamps facing each part of the material to be heated so as to compensate for the amount of heat radiation according to the heat radiation characteristics of each part of the material to be heated. .
JP2687190A 1989-02-14 1990-02-06 Heat treatment apparatus and heat treatment method Expired - Lifetime JP2940047B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-34554 1989-02-14
JP3455489 1989-02-14

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP29399298A Division JPH11214319A (en) 1989-02-14 1998-10-15 Heat treatment apparatus and method
JP29399398A Division JP3206565B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399198A Division JP3206564B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399498A Division JP3206566B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method

Publications (2)

Publication Number Publication Date
JPH03218624A true JPH03218624A (en) 1991-09-26
JP2940047B2 JP2940047B2 (en) 1999-08-25

Family

ID=12417531

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2687190A Expired - Lifetime JP2940047B2 (en) 1989-02-14 1990-02-06 Heat treatment apparatus and heat treatment method
JP29399398A Expired - Lifetime JP3206565B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399498A Expired - Lifetime JP3206566B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399198A Expired - Lifetime JP3206564B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399298A Pending JPH11214319A (en) 1989-02-14 1998-10-15 Heat treatment apparatus and method

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP29399398A Expired - Lifetime JP3206565B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399498A Expired - Lifetime JP3206566B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399198A Expired - Lifetime JP3206564B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399298A Pending JPH11214319A (en) 1989-02-14 1998-10-15 Heat treatment apparatus and method

Country Status (1)

Country Link
JP (5) JP2940047B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167742A (en) * 1995-12-14 1997-06-24 Shin Etsu Handotai Co Ltd Heating furnace
JPH09237764A (en) * 1996-02-28 1997-09-09 Shin Etsu Handotai Co Ltd Radiation heating apparatus and method
WO2001082349A1 (en) * 2000-04-20 2001-11-01 Tokyo Electron Limited Thermal processing system and thermal processing method
JP2002514008A (en) * 1998-04-30 2002-05-14 アプライド マテリアルズ インコーポレイテッド Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
JP2002208466A (en) * 2001-01-05 2002-07-26 Tokyo Electron Ltd Heating lamp and heat treatment device
WO2002065521A1 (en) * 2001-02-16 2002-08-22 Tokyo Electron Limited Sheet-type treating device
JP2002246318A (en) * 2001-02-16 2002-08-30 Tokyo Electron Ltd Heat treating method and heat treating device
JP2002270532A (en) * 2001-03-14 2002-09-20 Tokyo Electron Ltd Heating device and thermal treatment apparatus
JP2004514269A (en) * 2000-04-20 2004-05-13 東京エレクトロン株式会社 Heat treatment system
JP2007073636A (en) * 2005-09-05 2007-03-22 Hamamatsu Photonics Kk Laser device and laser system
KR100858439B1 (en) * 2007-02-20 2008-09-12 (주)앤피에스 Tungsten halogen lamp which possessed a sealing flange
US7540002B2 (en) 2003-10-16 2009-05-26 Panasonic Corporation Disc loading device with separate conveying units for the disc and the disc cartridge containing the disc
JP2009277868A (en) * 2008-05-14 2009-11-26 Sumitomo Electric Ind Ltd Heating device and method of manufacturing semiconductor substrate
JP2015226069A (en) * 2014-05-29 2015-12-14 エーピー システムズ インコーポレイテッド Heater block and substrate heat treatment apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008410A (en) * 2000-06-20 2002-01-11 Ccs Inc Lighting equipment
JP2003059853A (en) * 2001-08-08 2003-02-28 Tokyo Electron Ltd Lamp heater and heat treatment apparatus
JP2007095889A (en) 2005-09-28 2007-04-12 Ushio Inc Light irradiation heating method
US9536728B2 (en) * 2007-02-15 2017-01-03 Applied Material, Inc. Lamp for rapid thermal processing chamber
US7612491B2 (en) * 2007-02-15 2009-11-03 Applied Materials, Inc. Lamp for rapid thermal processing chamber
JP5228495B2 (en) 2008-01-11 2013-07-03 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
KR100974018B1 (en) * 2008-12-05 2010-08-05 에이피시스템 주식회사 Apparatus and method for controlling heat lamp of rapid thermal processor
KR101626505B1 (en) * 2015-01-16 2016-06-01 주식회사 하나 Lamp for rapid thermal processing
JP6624876B2 (en) * 2015-10-15 2019-12-25 ルネサスエレクトロニクス株式会社 Monitoring method and method of manufacturing semiconductor device
KR102197206B1 (en) * 2018-02-19 2021-01-04 주식회사 지아이엘 The pet water bottle
KR102384203B1 (en) * 2019-04-10 2022-04-08 최고은 Dog handy cup

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167742A (en) * 1995-12-14 1997-06-24 Shin Etsu Handotai Co Ltd Heating furnace
JPH09237764A (en) * 1996-02-28 1997-09-09 Shin Etsu Handotai Co Ltd Radiation heating apparatus and method
JP2002514008A (en) * 1998-04-30 2002-05-14 アプライド マテリアルズ インコーポレイテッド Method and apparatus for controlling radial temperature gradient of wafer during wafer temperature ramping
WO2001082349A1 (en) * 2000-04-20 2001-11-01 Tokyo Electron Limited Thermal processing system and thermal processing method
JP2004514269A (en) * 2000-04-20 2004-05-13 東京エレクトロン株式会社 Heat treatment system
JP2002208466A (en) * 2001-01-05 2002-07-26 Tokyo Electron Ltd Heating lamp and heat treatment device
JP2002246318A (en) * 2001-02-16 2002-08-30 Tokyo Electron Ltd Heat treating method and heat treating device
WO2002065521A1 (en) * 2001-02-16 2002-08-22 Tokyo Electron Limited Sheet-type treating device
JP2002270532A (en) * 2001-03-14 2002-09-20 Tokyo Electron Ltd Heating device and thermal treatment apparatus
US7540002B2 (en) 2003-10-16 2009-05-26 Panasonic Corporation Disc loading device with separate conveying units for the disc and the disc cartridge containing the disc
JP2007073636A (en) * 2005-09-05 2007-03-22 Hamamatsu Photonics Kk Laser device and laser system
KR100858439B1 (en) * 2007-02-20 2008-09-12 (주)앤피에스 Tungsten halogen lamp which possessed a sealing flange
JP2009277868A (en) * 2008-05-14 2009-11-26 Sumitomo Electric Ind Ltd Heating device and method of manufacturing semiconductor substrate
JP2015226069A (en) * 2014-05-29 2015-12-14 エーピー システムズ インコーポレイテッド Heater block and substrate heat treatment apparatus

Also Published As

Publication number Publication date
JP3206566B2 (en) 2001-09-10
JP2940047B2 (en) 1999-08-25
JP3206564B2 (en) 2001-09-10
JPH11195614A (en) 1999-07-21
JP3206565B2 (en) 2001-09-10
JPH11214319A (en) 1999-08-06
JPH11195615A (en) 1999-07-21
JPH11195616A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JPH03218624A (en) Lamp annealing device
US6222990B1 (en) Heating element for heating the edges of wafers in thermal processing chambers
EP0848575B1 (en) Heating device, assembly and method
US6717158B1 (en) Heating device for heating semiconductor wafers in thermal processing chambers
US11337277B2 (en) Circular lamp arrays
US7860379B2 (en) Temperature measurement and control of wafer support in thermal processing chamber
TWI601233B (en) Minimal contact edge ring for rapid thermal processing
US8987123B2 (en) Heat treatment apparatus and heat treatment method for heating substrate by irradiating substrate with flash of light
CN100394544C (en) Luminous heat treatment device
WO2017059645A1 (en) Heating device and heating chamber
TWI512884B (en) Improved edge ring lip
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
JPH0845863A (en) Single wafer semiconductor substrate heat treatment device
JP5267765B2 (en) Filament lamp and light irradiation type heat treatment equipment
JP2001156008A (en) Heat treatment equipment for semiconductor wafer
JPH0729843A (en) Heat treatment system
JP2012074540A (en) Heat treatment apparatus
JPH04713A (en) Heating apparatus for substrate
JPS60247934A (en) Heat treatment device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11