JPH03218054A - Substrate for heater element - Google Patents

Substrate for heater element

Info

Publication number
JPH03218054A
JPH03218054A JP1441090A JP1441090A JPH03218054A JP H03218054 A JPH03218054 A JP H03218054A JP 1441090 A JP1441090 A JP 1441090A JP 1441090 A JP1441090 A JP 1441090A JP H03218054 A JPH03218054 A JP H03218054A
Authority
JP
Japan
Prior art keywords
copper
members
thickness
restraining
molybdenum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1441090A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kashiba
良裕 加柴
Masaru Okada
勝 岡田
Tetsuji Yamaguchi
哲司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1441090A priority Critical patent/JPH03218054A/en
Publication of JPH03218054A publication Critical patent/JPH03218054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To form the title substrate for heater element in high reliability by a method wherein said substrate is provided with restraining members not to be broken down by the decline in thermal stress in ceramic substrate, etc. While ensuring heat dissipation characteristics meeting severe operational requirements. CONSTITUTION:Flat plate type alumina members 2Aa, 2Ab are directly junctioned with one surface of the other alumina members 1a, 1b to be fixed, and restraining members 3Aa, 3Ab comprising either one out of Mo, W and alloy thereof are junctioned between members 2Aa, 2Ca and 2Ab, 2Cb to be fixed where the thickness of the restraining members is 1/20-1/3 of the thickness of respective copper members for example. Besides, a similar restraining member 3B is junctioned between the copper members 2B and 2D on the other surface of the alumina members 1a, 1b while the thickness of restraining member 3B is 1/20-1/3 of the thickness of the copper members 2B, 2D, for example. In such a constitution, much stress is imposed on the junction boundary surface between Mo and copper members during heating and cooling down processes however, the yield strength of Mo is much higher than that of copper and the copper may be plastic-deformed with Mo working as the restraining members thereby preventing a high stress from being imposed on the alumina members 1a, 1b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 木発明は、例えば半導体の実装に用いられるセラミック
と金属を接合することにより製造されろ発熱素子用基板
に関し、特に大電力半導体の放熱特性を良くかつ半導体
やセラミックの破壊を防止する基板構造に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The invention relates to a substrate for a heating element, which is manufactured by bonding a ceramic and a metal, which are used, for example, to package semiconductors. The present invention relates to a substrate structure that is effective and prevents destruction of semiconductors and ceramics.

〔従来の技術〕[Conventional technology]

エ5図は例えは特開昭60−155580号公報に示さ
れタ従来のセラミック基材と金属部材が直接接合された
半導体実装用の複合基板の断面図であり、図において、
(1冫はセラミック基材のアルミナ部材、(2Al,(
2B)はアルミナ部材(1月こ形成された金属部材で、
wi回路を形成するためなどの例えば々フビツチ電解銅
板、(7A) , (7B)はアルミナ部材(1)と銅
板(2A).(2B)を直接接合した接合面である。
Fig. 5 is a cross-sectional view of a conventional composite board for semiconductor mounting in which a ceramic base material and a metal member are directly bonded, as shown in Japanese Patent Laid-Open No. 60-155580.
(1 冫 is a ceramic-based alumina member, (2Al, (
2B) is an alumina member (a metal member formed in January,
For example, Fubitch electrolytic copper plates (7A) and (7B) are used to form a Wi circuit, and (7A) and (7B) are an alumina member (1) and a copper plate (2A). (2B) This is the joint surface where the parts were directly joined.

第6図(mlは上記従来の半導体実装用の複合基板を用
いた電力半導体モジュールの斜視図、第6図(blは放
熱部材との接合状態を拡大して示す断面図である。図に
おいて、(2℃は熱容量増加のための銅放熱部材、(4
m)(4b)は半導体、(5Aa).(5Ab)は半導
体(4m),(4b)を例えば銅板(2Aal,(2A
blに実装するためのはんrご、(5Bm),(5Eb
3は例えば銅板(2Bm).(2Bb)を銅放熱部材(
2X)ニ接続ずろためのはんrご、(6mm),(6b
alおよび(6mb),(6bb)はそれぞれ半導体(
4a).(4b)を動作させるために銅板(2Aa),
(2Ab)とはそれぞれ電気的に絶縁された別の銅板(
21a),(2ea)および(2ab), (2eb)
に接続しfコ、例エばアルミニウム製のボンデイングワ
イヤである。
FIG. 6 (ml is a perspective view of a power semiconductor module using the above-mentioned conventional composite substrate for semiconductor mounting, and FIG. 6 (bl is an enlarged sectional view showing the state of connection with a heat dissipation member. In the figure, (2℃ is a copper heat dissipation member to increase heat capacity, (4
m) (4b) is a semiconductor, (5Aa). (5Ab) is a semiconductor (4m), (4b), for example, a copper plate (2Aal, (2A
Hangar to implement in bl, (5Bm), (5Eb
3 is a copper plate (2Bm), for example. (2Bb) is a copper heat dissipation member (
2X) 2 connection screws, (6mm), (6b
al, (6mb), (6bb) are semiconductors (
4a). Copper plate (2Aa) to operate (4b),
(2Ab) are different electrically insulated copper plates (
21a), (2ea) and (2ab), (2eb)
For example, it is a bonding wire made of aluminum.

上記のように構成されたモジュールの半導体(4a).
(4b)を動作させると、半導体(4m).(4b)は
大量の熱を発生する。また、当然のことながら上記モジ
ュールは繰り返し使用される。従って、例えは電力半導
体等発熱素子用基板としては以下のことが要求されろ。
Semiconductor module (4a) configured as above.
When (4b) is operated, semiconductor (4m). (4b) generates a large amount of heat. Also, as a matter of course, the above module is used repeatedly. Therefore, for example, the following requirements are required for a substrate for a heating element such as a power semiconductor.

半導体(4a) .(4b)から発生する熱を十分逃が
すことができること、半導体(4m),(4b)(7)
動作・非動作に伴うビートサイクルによって発生する基
板の熱膨張・収縮により半導体(4a),(4b)を破
壊しないこと、さらに、このヒートサイクルによりアル
ミナ部材自体が破壊しないことである。
Semiconductor (4a). The heat generated from (4b) can be sufficiently released, semiconductor (4m), (4b) (7)
The semiconductors (4a) and (4b) must not be destroyed due to thermal expansion and contraction of the substrate caused by the beat cycle associated with operation and non-operation, and furthermore, the alumina member itself must not be destroyed due to this heat cycle.

〔発明が解決しようとする:lIA題〕しかるに、上記
のような基板構造では、セラミック基板(1).(lm
),<Ibrは一般的に熱膨張係数が小さく、上記実施
例のアルミナ士ラミツクでは7x10−6であるため、
熱膨張係数が17X10−6 の銅板(2A) (2B
) (2Aa ) (2Abl (2Bm ) (2B
b)  と直接接合した場合、熱膨張係数差により接合
面(7A)(7B)の近傍に四力を発生しrこ。このよ
うな接合体がヒートサイクルを受11ると上記接合面(
7A)(7B)近傍には大きな応力が繰り返し発生し、
硬いが脆いアル主ナ部材(1μlaHlb)はその応力
に耐えられず割れが発生し、ついには分離してしまうこ
とがあった。
[Problem to be solved by the invention: IIA] However, in the above substrate structure, the ceramic substrate (1). (lm
), <Ibr generally has a small coefficient of thermal expansion, which is 7x10-6 for the alumina lamic in the above example, so
Copper plate (2A) (2B) with a coefficient of thermal expansion of 17X10-6
) (2Aa) (2Abl (2Bm) (2B
b) When directly joined, four forces are generated near the joint surfaces (7A) and (7B) due to the difference in thermal expansion coefficients. When such a bonded body undergoes a heat cycle 11, the bonded surface (
7A) Large stress repeatedly occurs near (7B),
The hard but brittle aluminum core member (1 μlaHlb) could not withstand the stress and cracked, eventually separating.

即ち、第7図はヒートサイクルを受けた上記従来の電力
半導体モジュールの断面図であり、図は典型的な割れ形
状を示す。図Eこおいて、(8A)(8B)(8C)(
8D)は割れであり、このように割れ(8人)〜(8D
)は応力が集中するセラミック基材(1)(lm)(l
b)と銅板(2Al(2fN(2Aa)(2Abl(2
Bm)(2Bb)  の角部から発生した。
That is, FIG. 7 is a cross-sectional view of the above-mentioned conventional power semiconductor module subjected to a heat cycle, and the figure shows a typical crack shape. In Figure E, (8A) (8B) (8C) (
8D) is a crack, and like this crack (8 people) ~ (8D
) is a ceramic base material (1) (lm) (l
b) and copper plate (2Al(2fN(2Aa)(2Abl(2
Bm) (2Bb) It occurred from the corner.

また、銅板(2Al (2B) (2Aa ) (2A
b) (2111a ) (2Bb)  はアルミナ部
材(1) ( 1 m ) ( 1 b )に強固に接
合されているため、その熱膨張係数は銅単体の場合に比
べ小さくなってはいるものの、熱膨張係数が5×10−
6と小さいシリコン半導体(4m)(4b)を例えばは
んだ付により実装すると、半導体(4m1 ) (4b
月こも割れが発生才ろということがあった。これらは、
半導体(4m)(4blの動作軍流を上げるために、銅
板(2人)(2B)(2Aa)(2Ab)(2Bml(
2Bbl  を厚くしたときや、大面積の半導体(4m
l(4b)を実装したと上に顕著に現われた。
In addition, copper plate (2Al (2B) (2Aa) (2A
b) (2111a) (2Bb) is firmly bonded to the alumina member (1) (1m) (1b), so although its coefficient of thermal expansion is smaller than that of copper alone, The expansion coefficient is 5×10−
For example, when a small silicon semiconductor (4m) (4b) is mounted by soldering, the semiconductor (4m1) (4b
There were times when the moon cracking occurred. these are,
Semiconductor (4m) (In order to improve the operation flow of 4bl, copper plate (2 people) (2B) (2Aa) (2Ab) (2Bml (
When increasing the thickness of 2Bbl and large area semiconductors (4m
When l(4b) was implemented, it appeared clearly above.

上記割れの発生はアルミナ部材(1)(1aH1b)を
厚くすることにより若干の改善は図れるものの、半導体
(4a)(4b)からの放熱特性はアルミナ部材(1)
(lml(lb)の熱抵抗が高いため劣化してしまう。
Although the occurrence of the above cracks can be slightly improved by making the alumina members (1) (1aH1b) thicker, the heat dissipation characteristics from the semiconductors (4a) (4b) are lower than that of the alumina members (1).
(It deteriorates due to the high thermal resistance of lml (lb).

例えば、Q,4mmの板厚のアルミナ部材(1)(lm
l(lb)を0.63tnm  に増,Ill]させる
ことにより−40℃〜150℃の耐ヒートサイクル特性
は1.2倍程度向上する力ζ逆に熱の逃げを妨げる熱抵
抗値は約1.6倍高くなり、半導体(4m)(4b)の
機能やセラミック部材(1)(lm)(lb)のコスト
等を考慮した場合有効な方法ではない。
For example, Q, alumina member (1) with a plate thickness of 4 mm (lm
By increasing l (lb) to 0.63 tnm, the heat cycle resistance from -40°C to 150°C is improved by about 1.2 times. Conversely, the thermal resistance value that prevents heat escape is approximately 1 .6 times higher, and is not an effective method when considering the functions of the semiconductors (4m) (4b) and the cost of the ceramic members (1) (lm) (lb).

さらに半導体(4m)(4b)からの放熱特性を考えた
場合、構成材料の熱伝導率を比較すると、銅400w/
m−k,はんだ40W/m−k、アルミナ2Qw/m−
kの順となり、はんだとアルミナを極力減らすことが有
効となる。特に、ヒートサイクル後、第7図の典型的な
はんだ付状態に示丁ボイド(2泡) (9A)(9B)
(9C1が残存しやすいため熱伝導が著しくばらりよ、
その結果製品の性能もはらついてしまうという問題を有
していたが、第5図に示した基板構造では熱容量が不足
するため、どうしても第6図、第7図に示したように銅
放熱部材(2X》をはんだ付により接合する必要があつ
tコ。
Furthermore, when considering the heat dissipation characteristics from the semiconductors (4m) (4b), comparing the thermal conductivity of the constituent materials, copper 400w/
m-k, solder 40W/m-k, alumina 2Qw/m-
k, and it is effective to reduce the amount of solder and alumina as much as possible. In particular, after the heat cycle, the typical soldering condition shown in Figure 7 shows voids (2 bubbles) (9A) (9B).
(Because 9C1 tends to remain, heat conduction varies greatly,
As a result, there was a problem in that the performance of the product varied, but since the board structure shown in Figure 5 lacks heat capacity, it was necessary to use copper heat dissipation members as shown in Figures 6 and 7. 2X》 must be joined by soldering.

従って、これらの問題を避けるためには、半導体(4m
)(4b)のパワーや形状を制限する、銅板(2A)(
2B+(2Aa)(2Ab)(28al(2Bb)を薄
く、幅広くして実装密度を下げるなどの対策か必要であ
り、モジュールの高機能化、高密度化lことって大六な
障害となっていた。
Therefore, in order to avoid these problems, semiconductors (4m
)(4b) Copper plate (2A)(
It is necessary to take measures such as making 2B+ (2Aa) (2Ab) (28al (2Bb) thinner and wider to lower the mounting density, and increasing the functionality and density of modules has become a major obstacle. Ta.

なお、他にセラミックと銅を接合した構造材において、
熱膨張差による内部応力を緩和させる方法として、両者
の接合面の闇に、例えばアルミニウム、銅などの比較的
柔らかい金属層、二オブ、あるいはニオブ/モリブデン
、ニオブ/タングステンの積層中間層を数鵬設けろ方法
が提案されている。(雑誌:金属1986年5月号45
〜5o頁)ところか、半導体実装用の基板としては上述
したように、数一もの中間層を設けることは熱放散性が
非常に悪くなり、大容量、高機能化でぎないために問題
であった。
In addition, in other structural materials made by bonding ceramic and copper,
As a method to alleviate the internal stress caused by the difference in thermal expansion, a relatively soft metal layer such as aluminum or copper, a laminated intermediate layer of niobium, niobium/molybdenum, or niobium/tungsten is placed between the bonding surfaces of the two. A method has been proposed to set this up. (Magazine: Metal May 1986 issue 45
(Page 5o) However, as mentioned above, providing several intermediate layers as a substrate for semiconductor mounting is problematic because it results in extremely poor heat dissipation, making it difficult to achieve large capacity and high functionality. Ta.

本発明はかかる課癲を解決するためになされたもので、
過酷な使用環境下においても、放熱板を厚くてることが
できるので放熱特性を確保しつつかつセラミック基材等
に発生する熱応力を低下させ破壊が生じるのを防止する
信頼性の高い発熱素子用基板を得ることを目的とする。
The present invention was made to solve such problems,
Even under harsh operating environments, the heat dissipation plate can be thickened to ensure heat dissipation properties while reducing thermal stress generated in ceramic base materials and preventing breakage.For highly reliable heating elements. The purpose is to obtain a substrate.

本発明の別の発明は、さらに放熱板を厚くすることがで
きるので、放熱特性がさらに向上した発熱素子用基板を
得ることを目的とする。
Another object of the present invention is to obtain a substrate for a heat generating element whose heat dissipation characteristics are further improved since the heat dissipation plate can be made thicker.

本発明のさらに別の発明は、さらに外部への熱伝達が安
定確保された発熱素子用基板を得ることを目的とする。
Still another object of the present invention is to obtain a substrate for a heating element in which stable heat transfer to the outside is ensured.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の発熱素子用基板は、銅又は銅合金部材と、これ
に固着し厚さがこの銅又は銅合金部材のl/20〜1/
3のモリブデン、タングステンおよびその合金のいずれ
かから成り、上記銅又は銅合金部材の熱膨張を拘束する
第2拘束部材とで構成され、上記セラミック基材に固着
した導体を備えたものである。
The heat generating element substrate of the present invention includes a copper or copper alloy member, which is fixed to the copper or copper alloy member, and has a thickness of 1/20 to 1/2 of the copper or copper alloy member.
The second restraining member is made of molybdenum, tungsten, or an alloy thereof, and restrains the thermal expansion of the copper or copper alloy member, and includes a conductor fixed to the ceramic base material.

本発明の別の発明の発熱素子用基板は、セラミック基材
、銅又は銅合金部材と、モリブデン,タングステンおよ
びその合金のいずれかから成り、上記銅又は銅合金部材
の熱膨張を拘束する第1拘束部材と、空孔を有し、銅又
は銅合金部材から成り、上記銅又は銅合金部材の変形の
上記セラミック基材への伝達を緩和する緩和部材とを固
着して構成され、上記セラミック基材に固着した放熱板
、並びに銅又は銅合金部材と、これに固着し厚さがこの
銅又は銅合金部材の1720〜1/3のモリブデン、ク
ングステンおよびその合金のいずれかから成り、上記銅
又は銅合金部材の熱膨張を拘束する第2拘束部材とで構
成され、上記セラミック基材に固着した導体を備えたも
のである。
A heating element substrate according to another aspect of the present invention includes a ceramic base material, a copper or copper alloy member, and any one of molybdenum, tungsten, and an alloy thereof, and a first substrate that restricts thermal expansion of the copper or copper alloy member. A restraining member and a relaxation member having holes and made of a copper or copper alloy member to alleviate transmission of deformation of the copper or copper alloy member to the ceramic base material are fixedly attached to each other, It consists of a heat dissipation plate fixed to a material, a copper or copper alloy member, and one of molybdenum, kungsten, and their alloys fixed to this and having a thickness of 1720 to 1/3 of the copper or copper alloy member, and the above-mentioned copper or and a second restraining member that restrains thermal expansion of the copper alloy member, and includes a conductor fixed to the ceramic base material.

本発明のさらに別の発明の発熱素子用基板は、上紀本発
明および本発明の別の発明の発熱素子用基板において、
上記導体の熱膨張係数が、上記放熱板の熱膨張係数以下
のものである。
A heating element substrate according to still another invention of the present invention is a heating element substrate according to the present invention and another invention of the present invention, comprising:
The thermal expansion coefficient of the conductor is less than or equal to the thermal expansion coefficient of the heat sink.

〔作用〕[Effect]

本発明において、導体および放熱板に銅または銅合金部
材の厚さの1720〜1/3の厚さの拘束部材を設けろ
ことにより、基板の熱伝導や電気伝導特性放熱性を確保
するとともに、セラミック基材や例えば実装される半導
体に加わる応力を低減させ、セラミック基材や半導体が
破壊するのを防止する。
In the present invention, by providing a restraining member with a thickness of 1720 to 1/3 of the thickness of the copper or copper alloy member on the conductor and heat sink, the heat conduction and electrical conduction characteristics of the board and the heat dissipation properties are ensured. It reduces the stress applied to the base material or, for example, the semiconductor to be mounted, and prevents the ceramic base material or the semiconductor from being destroyed.

本発明の別の発明において、放熱板にさらに緩和部材を
設けることにより、放熱板の熱変形を吸収することがで
きるので、放熱板をより厚くすることができろ。
In another aspect of the present invention, by further providing a relaxation member on the heat sink, thermal deformation of the heat sink can be absorbed, so that the heat sink can be made thicker.

本発明のさらに別の発明において、導体の熱膨張係数を
放熱板の熱膨張係数以下にすることにより、例えば架台
等外部との接触が保たれるので、外部への熱伝達が安定
確保される。
In still another aspect of the present invention, by setting the thermal expansion coefficient of the conductor to be equal to or lower than that of the heat sink, contact with the outside, such as the pedestal, is maintained, so that stable heat transfer to the outside is ensured. .

〔実施例〕〔Example〕

!!l図は本発明の一実施例の発熱素子用基板の断面図
で、図において、(la),(lb)はセラミック基材
で、この場合は平板状のアルミナ部材、( 2Aa )
 .(2Ab)はアルミナ部材(la),(lb)の一
面に直接接合し固着された第1銅部材、(2Cm),(
2Cblは半導体の大容量化のためにアルミナ部材(l
a).(lb)の一面側に追刀口した第3銅部材で、半
導体(図示せず)は上記従米基板と同様、この第3銅部
材(2Ca),(2Cb)上に実装されろ。(3Aa)
,(3Ab)は第1拘束部材で、この場合はそれぞれ第
1、第3銅部材(2Aa),(2Ca)および(2Ab
).(2Cb)間に接合し固着され、第1,第3銅部材
(2Aa),(2Ca)又は(2Ab),〔2Cb》の
総厚さの1/20〜1/3の厚さのモリブデン部材であ
り、上記銅部材の熱膨張を拘束し、第1、第3銅部材(
2Aa).(2Ca)又は(2Ab),(2Cb)と第
1拘束部材(3Aa).(3Ab)とで導体mを形成す
る。
! ! Figure l is a cross-sectional view of a heating element substrate according to an embodiment of the present invention. In the figure, (la) and (lb) are ceramic base materials, in this case a flat alumina member, (2Aa)
.. (2Ab) is a first copper member, (2Cm), (
2Cbl is an alumina material (l) for increasing the capacity of semiconductors.
a). A semiconductor (not shown) is mounted on the third copper member (2Ca) and (2Cb) in the same manner as the secondary board described above. (3Aa)
, (3Ab) are the first restraining members, in this case, the first and third copper members (2Aa), (2Ca) and (2Ab
). A molybdenum member bonded and fixed between (2Cb) and having a thickness of 1/20 to 1/3 of the total thickness of the first and third copper members (2Aa), (2Ca) or (2Ab), [2Cb] The thermal expansion of the copper member is restrained, and the first and third copper members (
2Aa). (2Ca) or (2Ab), (2Cb) and the first restraining member (3Aa). (3Ab) to form a conductor m.

又、(2B)はア7L7 Zナ部材(lml,(lb)
の他面に直接接合固着された第2銅部材、〔2D)は銅
部材のヒートシンクの熱容量増加のために追加した第4
銅部材、(3B》は第2、第4銅部材(2B].(2D
)間に接合し固着された第2、第4銅部材(2B).(
2D)の総厚さの1/20−1/3の厚さの第2拘束部
材であり、上記銅部材の熱膨張を拘束し、第2、第4銅
部材(2B).(2D) オヨohm 2 拘束部材(
3B)ハ放熱板(Zle形成する。
Also, (2B) is the A7L7 Z member (lml, (lb)
The second copper member directly bonded and fixed to the other surface, [2D], is the fourth copper member added to increase the heat capacity of the heat sink of the copper member.
Copper member, (3B) is the second and fourth copper member (2B]. (2D
) the second and fourth copper members (2B) joined and fixed between them. (
The second restraining member has a thickness of 1/20 to 1/3 of the total thickness of the copper members (2D), and restrains the thermal expansion of the copper members. (2D) oyoohm 2 restraint member (
3B) Form a heat sink (Zle).

上記のよう番こ構成された基板が、温度環境の変化や半
導体の動作により、ヒートサイクルを受けろと、従米基
板と同様熱膨張係数の差により、熱膨張係数の大h f
x銅部材(2Aa)(2Abl(2B)(2Ca)(2
Cbl〔2D)はアルiナ部材(la),(lb)より
も膨張・収縮しようとする。しかし、この実施例では膨
張係数が低く、高強度で、熱抵抗が低く、かつ他の部材
と一体化できろ材料である薄いモリブデン部材(3Aa
),(3Ab),(3B)  を拘束部材として追加し
た構造をとっている。モリブデンは熱膨張係数が約5X
10 ’(/’C)であり、銅の約17xlO  ’(
/C)との差は大きく、加熱冷却中には両者の接合界面
には大きな応力が発生するが、モリブデンの耐カ、特に
薄い圧延材の耐力は50 kg /mm’以上もあるた
め、銅(耐力約10kg/mm” )の方がすぐに塑性
変形し、モリブデンが拘束部材(3Aa) , (3A
b) , (3B)としてsき、アルミナ部材(lml
,(lb)へ大きな応力か[0わろのを防止できる。な
お、モリブデンと銅の接合固着界面に加わる応力は従来
例以上となるが、両者が延性材料の金属材料であること
から割れは発生しない。
If the board configured as described above is subjected to heat cycles due to changes in the temperature environment or the operation of the semiconductor, the coefficient of thermal expansion will be large due to the difference in coefficient of thermal expansion, similar to the conventional board.
x Copper member (2Aa) (2Abl (2B) (2Ca) (2
Cbl [2D] tends to expand and contract more than the alumina members (la) and (lb). However, in this example, a thin molybdenum member (3Aa
), (3Ab), and (3B) are added as restraining members. Molybdenum has a coefficient of thermal expansion of approximately 5X
10'(/'C), and about 17xlO'(/'C) of copper.
/C) is large, and a large stress is generated at the bonding interface between the two during heating and cooling, but since the stress resistance of molybdenum, especially the yield strength of thin rolled material, is more than 50 kg/mm', (proof stress approximately 10 kg/mm”) undergoes plastic deformation more quickly, and molybdenum is used as the restraining member (3Aa) and (3A
b) , (3B) and alumina member (lml
, (lb) can be prevented from being subjected to large stress. Although the stress applied to the bonded interface between molybdenum and copper is greater than that of the conventional example, cracks do not occur because both are ductile metal materials.

モリブデン部材(3Aa) , (3Abl, (3B
)  を基板構成材料として強固に一体化するためには
、例えば、予めモリブデン部材(3A畠),(3Ab)
,(3B)  とモリブデン部材の両側に位置するm1
、第3銅部材(2Am 入(2Ca),(2Ab).(
2Cb)および!!2、第4銅部材(2B),〔2D》
をそれぞれ爆発圧接等の方法を用いて接合した後、上記
複合材料をアルミナ部材(1畠),(lb) lこ特開
昭60−155580号公報に示された例えばDBC法
等を用いて接合する方法がとられろ。
Molybdenum members (3Aa), (3Abl, (3B)
) as a substrate constituent material, for example, molybdenum members (3A Hatake), (3Ab)
, (3B) and m1 located on both sides of the molybdenum member
, tertiary copper member (2Am included (2Ca), (2Ab).(
2Cb) and! ! 2. Fourth copper member (2B), [2D]
After joining each using a method such as explosive welding, the above composite materials are joined using a method such as the DBC method described in JP-A No. 60-155580. Please find a way to do so.

銅部材の厚さは各々トータルとしてQ,3mm以上必要
とされ、5mm以下が適当で、Q,3mm % lmm
の範囲が望ましい。
The total thickness of each copper member is required to be at least Q, 3 mm, and suitably at most 5 mm, Q, 3 mm % lmm
A range of is desirable.

第2図は、本発明の実施例の発熱素子用基板に用いたモ
リブデン部材の厚さと耐ヒートサイクル回数との関係を
示す特性図である。横軸にモリブデン部材の厚さを、縦
軸に耐ヒートサイクル回数(アルミナ部材が割れるまで
のヒートサイクルの回数》をとった。対称構造のセラミ
ックー金属複合基板のヒートサイクル試験の結果を示す
もので、モリブデン部材か介在される2層からなる銅部
材の総厚さはl,Qmm、アルミナ部材の厚さは0.6
3mm.ヒートサイクルの条件は−40℃〜150℃で
ある。
FIG. 2 is a characteristic diagram showing the relationship between the thickness of the molybdenum member used in the heat generating element substrate of the embodiment of the present invention and the number of heat cycles. The horizontal axis is the thickness of the molybdenum member, and the vertical axis is the number of heat cycles (the number of heat cycles until the alumina member cracks).This shows the results of a heat cycle test on a ceramic-metal composite substrate with a symmetrical structure. , the total thickness of the copper member consisting of two layers with a molybdenum member interposed is l, Q mm, and the thickness of the alumina member is 0.6
3mm. Heat cycle conditions are -40°C to 150°C.

第2図からモリブデン部材の厚さを0.0 5 mm 
以上にすることにより、耐ヒートサイクル特性が急激に
改善されていることがわかる。
From Figure 2, the thickness of the molybdenum member is set to 0.05 mm.
It can be seen that by doing the above, the heat cycle resistance characteristics are rapidly improved.

このように、モリブデン・銅閲で発生する応力を銅の変
形により吸収させることにより、銅・アルミナ間の応力
を低下させ、銅部材の厚さの1710程度の薄いモリブ
デン部材を追加するだけで、耐ヒートサイクル特性をl
O倍以上向上できることが実証できた。この効果は銅部
材の厚さがl.Qmmの時のみに成立するものではない
ことはいう才でもない。
In this way, by absorbing the stress generated between molybdenum and copper through the deformation of the copper, the stress between the copper and alumina can be reduced, and by simply adding a thin molybdenum member that is approximately 1710 times the thickness of the copper member, Heat cycle resistance
We were able to demonstrate that it could be improved by more than 0 times. This effect occurs when the thickness of the copper member is 1. It is no secret that this does not hold true only when Qmm.

第1拘束部材および第2拘束部材の各々のモリブデン部
材の厚さとしては、導体および放熱板の銅部材の各々の
トー女ル厚さのi /20 − 1/3 b; M 当
であり、この範囲内でモリブデン厚さを変化させろこと
により、耐ヒートサイクル特性、熱批抗、基板コストを
変化させることがでλる。1720以下の厚さのモリブ
デン部材では耐ヒートサイクル特性の改善が十分図れず
、】/3以上の厚さのモリブデン部材では熱抵抗が高く
なる結果、半導体からの熱放散が不十分となるので、高
機能化にとって不都合であり、また基板のコストも高く
なるため工業的利用価値が低下する。
The thickness of the molybdenum member of each of the first restraining member and the second restraining member is i/20 − 1/3 b; M of the total thickness of each of the copper members of the conductor and heat sink, By varying the molybdenum thickness within this range, heat cycle resistance, thermal resistance, and substrate cost can be varied. Molybdenum members with a thickness of 1720 or less cannot sufficiently improve heat cycle resistance characteristics, and molybdenum members with a thickness of ]/3 or more have high thermal resistance, resulting in insufficient heat dissipation from the semiconductor. This is inconvenient for achieving high functionality, and also increases the cost of the substrate, reducing its industrial value.

なお、上記実施例では放熱板として板状のものを示して
いるが、熱容量の増強やモジュールの機械的強度の向上
のため、銅部材や拘束部材を追加しても同様の効果を期
待できる。その一例を以下に示す。
Although a plate-shaped heat sink is shown in the above embodiment, the same effect can be expected even if a copper member or a restraining member is added in order to increase the heat capacity and improve the mechanical strength of the module. An example is shown below.

第3図は銅部材(3E》を銅部材(2B)上に環状に配
置した場合の本発明の他の実施例の発熱素子用基板の断
面図である。この実施例においては、銅部材(2B)か
らの熱を逃がし、かつ半導体(図示せず)やセラミック
基材(lm),(lb)を外力から保護できる効果があ
る。なお、このような追加部材は環状である必要かない
ことは言うまでもなく、要はアルミナ部材へ加わる応力
が大きく変化してしまう板厚方向に位置しないように追
那丁れば良い。
FIG. 3 is a cross-sectional view of a heating element substrate according to another embodiment of the present invention in which a copper member (3E) is arranged annularly on a copper member (2B). It has the effect of dissipating heat from 2B) and protecting the semiconductor (not shown) and ceramic substrates (lm) and (lb) from external forces.Note that such additional members do not need to be annular. Needless to say, the important thing is to avoid positioning the alumina member in the thickness direction where the stress applied to the alumina member changes greatly.

第4図は本発明の別の発明の一実施例の発熱素子用基板
の断面図で、図において、(2F)は空孔を有する銅ま
たは銅合金からなる緩和部材であり、この場合は空孔率
が50qbの網目状の銅板、(2D)は上記本発明の一
実施例に用いた放熱部材(2x》より厚くさらに熱容量
を増加させた銅部材である。
FIG. 4 is a sectional view of a heating element substrate according to another embodiment of the present invention. In the figure, (2F) is a relaxation member made of copper or copper alloy having holes; The mesh copper plate (2D) with a porosity of 50 qb is a copper member that is thicker and has an increased heat capacity than the heat dissipation member (2x) used in the embodiment of the present invention.

上記のように構成された基板では、上記本発明の一実施
例とほぼ同一の効果が期待できるが、より大電流対応の
半導体へも対応が可能となる効果がある。即ち銅部材(
2B),(2D)と緩和部材〔2F)の伸びをモリブデ
ン材(3B)で拘束すると共に、銅部材(2B).(2
D)の板厚が厚くなることによる大基な応力を緩和部材
(2F】の塑性変形により吸収し、銅部材(2B)(2
D)の変形の上記士ラミツク基材(lm).(1b)へ
の伝達を緩和するのである。緩和部材(2F)としては
単に塑性変形が容易となるだけでなく熱の逃げも確保す
る必要があるため、むやみに空孔を増すことは好ましく
ない。また塑性変形量が極端に大ぎくなるとクうツクが
発生するなど問題となるので、むやみに薄くしないこと
が望ましい。
With the substrate configured as described above, substantially the same effects as those of the embodiment of the present invention described above can be expected, but there is an effect that it can also be applied to semiconductors that can handle larger currents. In other words, copper members (
2B), (2D) and the relaxation member [2F) are restrained by the molybdenum material (3B), and the copper member (2B). (2
The basic stress caused by the thickening of the plate D) is absorbed by the plastic deformation of the relaxation member (2F), and the copper member (2B) (2
D) Modification of the above-mentioned lamic base material (lm). This alleviates the transmission to (1b). The relaxation member (2F) needs to not only facilitate plastic deformation but also ensure heat escape, so it is not preferable to increase the number of pores unnecessarily. Furthermore, if the amount of plastic deformation becomes extremely large, problems such as cracks may occur, so it is desirable not to make the film unnecessarily thin.

たとえば、一例として空孔率50%、厚さ300μmの
網目銅板を用いた場合、変形能ははんだ並びに熱批抗は
はんだより5割程度低く(はんだの厚さを100μm、
ボイドなしと仮定》、緩和層として有効に働く。
For example, when a mesh copper plate with a porosity of 50% and a thickness of 300 μm is used, the deformability and thermal resistance are about 50% lower than that of solder (if the thickness of the solder is 100 μm,
Assuming no voids, it works effectively as a relaxation layer.

なお、本発明の別の発明においては、第2拘束部材のモ
リブデン部材(3B》の厚さは導体側の第1拘束部材の
モリブデン部材(3Aa),(3Ab)のように銅部材
(2B),(2F),(2D)に対する厚さの制限はな
いがセラミック基材(lm),(lb)への応力や材料
コスト、熱抵抗などを考慮すると、導体側のモリブデン
部材(3Aa).(3Ab)と同程度が望ましい。また
、セラミック基材(lm),(lb)とモリブデン部材
(3B)の間に第3銅部材(2B)を配置する本発明の
別の発明の一実施例のような場合は、銅部材(2B》の
厚さは銅部材(2F) , (2D)からモリブデン部
材(3B】に伝わる力が最も極端な例として零としたと
しても、導体側の制限からも明らかなように、セラミッ
ク基材(lm) ,(lb)への応力@減の観点から、
モリブデン部材(3B)の厚さの20倍を越えることは
望ましくない。また、銅部材(2Ca l(2Aa )
 (2Cb) (2Ab) (2B)(2F)(2D)
やモリブデン部材(3Aa) (3Ab) (3B) 
 の配置は上記実施例に限られることはなく、半導体の
特性セラミック部材の特性に応じて配置すれば良く、モ
リブデン部材(3Am) (3Ab)(3B)を多層と
しても良い。
In addition, in another invention of the present invention, the thickness of the molybdenum member (3B) of the second restraining member is the same as that of the copper member (2B) like the molybdenum members (3Aa) and (3Ab) of the first restraining member on the conductor side. , (2F), (2D), but considering the stress on the ceramic base materials (lm), (lb), material cost, thermal resistance, etc., the molybdenum member (3Aa) on the conductor side. 3Ab).Also, in another embodiment of the present invention, a third copper member (2B) is arranged between the ceramic substrates (lm), (lb) and the molybdenum member (3B). In such a case, the thickness of the copper member (2B) should be determined by the limitations of the conductor, even if the force transmitted from the copper member (2F), (2D) to the molybdenum member (3B) is zero in the most extreme example. As is clear, from the viewpoint of reducing the stress on the ceramic base materials (lm) and (lb),
It is not desirable for the thickness to exceed 20 times the thickness of the molybdenum member (3B). In addition, copper members (2Cal (2Aa)
(2Cb) (2Ab) (2B) (2F) (2D)
and molybdenum parts (3Aa) (3Ab) (3B)
The arrangement is not limited to the above embodiment, and may be arranged according to the characteristics of the semiconductor and the characteristics of the ceramic member, and a multilayer structure of molybdenum members (3Am) (3Ab) (3B) may be used.

さらにまた、緩和部材(2F》は網目状である必要はな
く平行みぞを切った平板でも良く、銅部材(2B),(
2D)に上記加工を施すことによって緩和部材(2F】
を兼ねさせても良いロ 又、本発明のさらに別の発明に示したように、導体側と
放熱板側の構造に関して、モジュール内の熱を効率良く
、さらにモジュール取付架台側へ熱伝達させるよう構成
することを必要とする場合がある。即ち、モジュールを
架台にたとえばネジ止めした場合に、モジュールと架台
はなるべく全面で接触していろことが好ましく、この接
触状態は取付時はもちろんのこと、モジュールの動作時
にも確保する蚤こは、モジュールの温度が上昇した場合
に導体のモジュール装着側が凸に変形しないよう、導体
の熱膨張係数が放熱板のそれ以下になるよう構成する必
要がある。具体的にはたとえば放熱板側の総銅厚さを導
体側の総銅厚さより厚くする方法や放熱板側のモリブデ
ン厚さを導体側のモリブデン厚さより薄くする方法など
が有効であるが、接合時の歪の抑制の観点からは銅厚さ
を変化させる方がより好ましい。
Furthermore, the relaxation member (2F) does not need to be mesh-like, and may be a flat plate with parallel grooves, and the copper member (2B), (
By applying the above processing to 2D), the relaxation member (2F)
Also, as shown in yet another aspect of the present invention, the structure of the conductor side and the heat sink side is designed to efficiently transfer the heat inside the module to the module mounting frame side. may need to be configured. In other words, when a module is screwed to a pedestal, for example, it is preferable that the module and pedestal be in contact with each other over the entire surface. In order to prevent the module mounting side of the conductor from deforming convexly when the temperature of the module rises, it is necessary to configure the conductor so that the coefficient of thermal expansion is less than that of the heat sink. Specifically, effective methods include, for example, making the total copper thickness on the heat sink side thicker than the total copper thickness on the conductor side, or making the molybdenum thickness on the heat sink side thinner than the molybdenum thickness on the conductor side. It is more preferable to vary the copper thickness from the viewpoint of suppressing distortion during the process.

さらに、本発明の発熱素子用基板を得る場合、各部材を
接合し固着する方法としては、上述したように、例えば
爆発圧接、DBC法等の従来の方法が利用できるが,本
発明における部材が強固に接合し固着され、拘束しあう
ことが必要であるため、融点が低く、柔らかい、例えば
共晶はんだのような軟ろうEこよる接合方法は避けた方
がよい。
Furthermore, when obtaining the heating element substrate of the present invention, conventional methods such as explosion pressure welding and DBC method can be used to join and fix each member, as described above, but the members of the present invention Since it is necessary to firmly join, fix, and restrain each other, it is better to avoid joining methods that rely on soft solder E, such as eutectic solder, which has a low melting point and is soft.

さらにまた、上記実施例ではセラミック基材としてアル
ミナ部材、拘束部材としてモリブデン部材を利用する場
合について述べたが、アルミナ部材の代わりに窒化アル
ミニウム部材やシリコンカーバイト部材などの熱膨張係
数が小さく、かつ胤性な絶縁基板材料においても、同様
の効果が期待できる。また、モリブデン部材の代わりに
、ほぼ同程度の熱膨張係数、耐力、熱伝導率を有するタ
ングステン部材を利用することもできる。また、セラミ
ック部材、銅部材、拘束部材はそれぞれ100%同一の
材料から作られている必要もなく、特に銅部材、拘束部
材は熱膨張係数、電気伝導度、耐力などの物性値が大幅
に変化しない限り上記成分を主成分とする合成物質、例
えば銅合金、モリブデン合金、タングステン合金であっ
てもよい。
Furthermore, in the above embodiment, a case was described in which an alumina member was used as the ceramic base material and a molybdenum member was used as the restraining member. A similar effect can be expected with conventional insulating substrate materials. Further, instead of the molybdenum member, a tungsten member having approximately the same coefficient of thermal expansion, yield strength, and thermal conductivity may be used. In addition, ceramic members, copper members, and restraint members do not need to be made from 100% the same material, and physical properties such as coefficient of thermal expansion, electrical conductivity, and yield strength of copper members and restraint members in particular vary significantly. Unless otherwise specified, synthetic materials containing the above-mentioned components as main components, such as copper alloys, molybdenum alloys, and tungsten alloys, may also be used.

なお、上記実施例ではモリブデン部材を同一厚さの第1
、第3銅部材(2Am)(2Cs)、(2Ab)(2C
b)および第2、第4銅部材(2B)(2D)の間に設
けているが、第1、第3銅部材r2Aa)(2Ca)、
(2Ab)(2Cb)および第2、第4銅部材(2B)
(2D)の厚さが異なっていても同様の効果を期待でき
る。またml、箇3銅部材(2Aa)(2Ca)、(2
Ab)(2Cb)または第2、第4銅部材(2B)(2
D)を一体化して、モリブデン部材(3Aa)(3Ab
l(3B)を単一の銅部材の表面あるいは銅部材とアル
ミナ部材の間に配置しても同様の効果を期待でとる。
In addition, in the above embodiment, the molybdenum member is made of a first material having the same thickness.
, tertiary copper member (2Am) (2Cs), (2Ab) (2C
b) and the second and fourth copper members (2B) (2D), but the first and third copper members r2Aa) (2Ca),
(2Ab) (2Cb) and second and fourth copper members (2B)
Similar effects can be expected even if the thickness of (2D) is different. In addition, ml, 3 copper members (2Aa) (2Ca), (2
Ab) (2Cb) or second and fourth copper members (2B) (2
D) to form a molybdenum member (3Aa) (3Ab
A similar effect can be expected even if 1 (3B) is placed on the surface of a single copper member or between a copper member and an alumina member.

また、拘束部材は一層である必要はなく、要は第1およ
び第2拘束部材の各々の総厚さが導体および放熱板の各
々の銅部材の1720〜1/3となるように、半導体の
特性、セラミック部材の特性に応じて配置すればよい。
In addition, the restraining member does not need to be one layer, and the point is that the total thickness of each of the first and second restraining members is 1720 to 1/3 of the copper member of the conductor and the heat sink. What is necessary is just to arrange|position according to the characteristic and the characteristic of a ceramic member.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明は銅又は銅合金部材と、こ
れに固着し厚さがこの銅又は銅合金部材の1720〜1
/3のモリブデン、タングステンおよびその合金のいず
れかから成り、上記銅又は銅合金部材の熱膨張を拘束才
ろ第1拘束部材とで構成された放熱板、この放熱板に固
着したセラミック基材、並びに銅又は銅合金部材と、こ
れに固着し厚さがこの銅又は銅合金部材の1720〜1
/3のモリブデン、タングステンおよびその合金のいず
れかから成り、と記銅又は銅合金部材の熱膨張を拘束す
ろ第2拘束部材で構成され、上記セラミック基材に固着
した導体を備えたものを用いろことにより、過酷な使用
環境下においても、放熱板を厚くすることができるので
、放熱特性を確保しつつ、かつセラミック基材に発生す
る熱応力を低下させ破壊が生じるのを防止でる発熱素子
用基板を得ることができる。
As explained above, the present invention is directed to a copper or copper alloy member, which is fixed to the copper or copper alloy member, and has a thickness of 1720 to 1
/3 of molybdenum, tungsten, and their alloys, and a first restraining member that restrains the thermal expansion of the copper or copper alloy member; a ceramic substrate fixed to the heat sink; and a copper or copper alloy member, which is fixed to the copper or copper alloy member and has a thickness of 1720 to 1
/3 made of molybdenum, tungsten, or their alloys, and comprising a second restraining member for restraining the thermal expansion of the copper or copper alloy member, and equipped with a conductor fixed to the ceramic base material. As a result, the heat dissipation plate can be made thicker even under harsh usage environments, so it is a heat generating element that maintains heat dissipation properties while reducing the thermal stress generated in the ceramic base material and preventing breakage. A substrate for use can be obtained.

本発明の別の発明は、セラiツク基材、銅又は銅合金部
材と、モリブデン、タングステンおよびその合金のいず
れかから成り、上記銅又は銅合金部材の熱膨張を拘束す
る第1拘束部材と、空孔を有し、銅又は銅合金部材から
成り、上記銅又は銅合金部材の変形の上記ナラiツク基
材への伝達を緩和する緩和部材とを固着して構成され、
上記セラミック基材に固着した放熱板、並びに銅又は銅
合金部材と、これに固着し厚さがこの銅又は銅合金部材
の1720〜1/3のモリブデン、タングステンおよび
その合金のいずれかから成り、上記銅又は銅合金部材の
熱膨張を拘束する第2拘束部材とで構成され、上記セラ
ミック基材に固着した導体を備えたものを用いることに
より、さら6こ放熱板を厚くすることがで〜るので、放
熱特性かさらに向上しfこ発熱素子用基板を得ろことが
で≧ろ。
Another aspect of the present invention is a ceramic base material, a copper or copper alloy member, and a first restraining member made of molybdenum, tungsten or an alloy thereof, for restraining thermal expansion of the copper or copper alloy member. , which has holes and is made of a copper or copper alloy member, and is configured by fixing a relaxation member that alleviates the transmission of deformation of the copper or copper alloy member to the hollow base material,
A heat dissipation plate fixed to the ceramic base material, and a copper or copper alloy member, made of molybdenum, tungsten, or an alloy thereof fixed to the same and having a thickness of 1720 to 1/3 of the copper or copper alloy member, By using a second restraining member that restrains the thermal expansion of the copper or copper alloy member, and a conductor fixed to the ceramic base material, it is possible to make the heat sink 6 times thicker. Therefore, it is possible to further improve the heat dissipation characteristics and obtain a substrate for a heating element.

本発明のさらに別の発明は、上記本発明および木発明の
別の発明において、上記導体の熱膨張係数が上記放熱板
の熱膨張係数以下であるものを用いろことにより、さら
に外部への熱伝達が安定確保された発熱素子用基板を得
ろことができる。
Still another invention of the present invention is that in the above-mentioned present invention and another invention of the wood invention, by using a conductor whose thermal expansion coefficient is equal to or lower than that of the heat sink, heat can be further transmitted to the outside. It is possible to obtain a heating element substrate with stable transmission.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の発熱素子用基板の断面図、
第2図は本発明の実施例の発熱素子用基板に用いた拘束
部材の厚さと耐ヒートサイクル回数との関係を示す特性
図、第3図は本発明の他の実施例の発熱素子用基板の断
面図、第4図は本発明の別の発明の一実施例の発熱素子
用基板の断面図、第5図は従来の半導体実装用複合基板
の断面図、第6図(4)は従来の電力半導体モジュール
の斜視図、第6図(blは放熱部材との接合状態を示す
断面図、第7図はヒートサイクルを受けた従来の電力半
導体モジュールの断面図である。 図番こおいて、(1畠),(lb)はセ−75ック基材
、r2Aa)(2Ab)(2B)(2Cal(2Cb)
(2DJ  は銅または銅合金部材、(2F)は緩和部
材、(3Aal(3Ab+ (3Blは拘束部材、mは
導体、2)は放熱板である。 なお、各図中、同一符号は同一又は相当部分をボす。
FIG. 1 is a sectional view of a heating element substrate according to an embodiment of the present invention;
FIG. 2 is a characteristic diagram showing the relationship between the thickness of the restraining member used in the heat generating element substrate of the embodiment of the present invention and the number of heat cycles, and FIG. 3 is a characteristic diagram showing the relationship between the heat cycle resistance and the heat generating element substrate of another embodiment of the present invention. 4 is a sectional view of a heating element substrate according to another embodiment of the present invention, FIG. 5 is a sectional view of a conventional composite substrate for semiconductor mounting, and FIG. 6 (4) is a sectional view of a conventional composite substrate. FIG. 6 is a sectional view showing a state of connection with a heat dissipating member, and FIG. 7 is a sectional view of a conventional power semiconductor module subjected to a heat cycle. , (1 field), (lb) are Sek-75 base materials, r2Aa) (2Ab) (2B) (2Cal (2Cb)
(2DJ is a copper or copper alloy member, (2F) is a relaxation member, (3Aal (3Ab+ (3Bl is a restraining member, m is a conductor, 2) is a heat sink. In each figure, the same symbols are the same or equivalent. Leave out the part.

Claims (3)

【特許請求の範囲】[Claims] (1)銅又は銅合金部材と、これに固着し厚さがこの銅
又は銅合金部材の1/20〜1/3のモリブデン、タン
グステンおよびその合金のいずれかから成り、上記銅又
は銅合金部材の熱膨張を拘束する第1拘束部材とで構成
された放熱板、この放熱板に固着したセラミック基材、
並びに銅又は銅合金部材と、これに固着し厚さがこの銅
又は銅合金部材の1/20〜1/3のモリブデン、タン
グステンおよびその合金のいずれかから成り、上記銅又
は銅合金部材の熱膨張を拘束する第2拘束部材とで構成
され、上記セラミック基材に固着した導体を備えた発熱
素子用基板。
(1) Consisting of a copper or copper alloy member, and one of molybdenum, tungsten, and their alloys, which is fixed to the copper or copper alloy member and has a thickness of 1/20 to 1/3 of the copper or copper alloy member, and the copper or copper alloy member is a first restraining member that restrains the thermal expansion of the heat sink; a ceramic base material fixed to the heat sink;
and a copper or copper alloy member, and one of molybdenum, tungsten, and their alloys, which is fixed to the copper or copper alloy member and has a thickness of 1/20 to 1/3 of the copper or copper alloy member, and the heat of the copper or copper alloy member is A substrate for a heating element, comprising a second restraining member for restraining expansion, and a conductor fixed to the ceramic base material.
(2)セラミック基材、銅又は銅合金部材と、モリブデ
ン、タングステンおよびその合金のいずれかから成り、
上記銅又は銅合金部材の熱膨張を拘束する第1拘束部材
と、空孔を有し、銅又は銅合金部材から成り、上記銅又
は銅合金部材の変形の上記セラミツク基材への伝達を緩
和する緩和部材とを固着して構成され、上記セラミック
基材に固着した放熱板並びに銅又は銅合金部材と、これ
に固着し厚さがこの銅又は銅合金部材の1/20〜1/
3のモリブデン、タングステン及びその合金のいずれか
から成り、上記銅又は銅合金部材の熱膨張を拘束する第
2拘束部材とで構成され、上記セラミック基材に固着し
た導体を備えた発熱素子用基板。
(2) consisting of a ceramic base material, a copper or copper alloy member, and one of molybdenum, tungsten and its alloys,
a first restraining member for restraining thermal expansion of the copper or copper alloy member; and a first restraining member having holes and made of the copper or copper alloy member, and mitigating the transmission of deformation of the copper or copper alloy member to the ceramic base material. a heat dissipation plate and a copper or copper alloy member fixed to the ceramic base material, and a thickness of the copper or copper alloy member fixed to the ceramic base material is 1/20 to 1/20 of the thickness of the copper or copper alloy member.
a second restraining member made of molybdenum, tungsten, or an alloy thereof as described in No. 3, and restraining thermal expansion of the copper or copper alloy member, and comprising a conductor fixed to the ceramic base material. .
(3)請求項第1項又は第2項記載のものにおいて、上
記導体の熱膨張係数が上記放熱板の熱膨張係数以下であ
る発熱素子用基板。
(3) The heating element substrate according to claim 1 or 2, wherein the thermal expansion coefficient of the conductor is equal to or lower than the thermal expansion coefficient of the heat sink.
JP1441090A 1990-01-23 1990-01-23 Substrate for heater element Pending JPH03218054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1441090A JPH03218054A (en) 1990-01-23 1990-01-23 Substrate for heater element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1441090A JPH03218054A (en) 1990-01-23 1990-01-23 Substrate for heater element

Publications (1)

Publication Number Publication Date
JPH03218054A true JPH03218054A (en) 1991-09-25

Family

ID=11860274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1441090A Pending JPH03218054A (en) 1990-01-23 1990-01-23 Substrate for heater element

Country Status (1)

Country Link
JP (1) JPH03218054A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008013279A1 (en) 2006-07-28 2008-01-31 Kyocera Corporation Electronic component storing package and electronic device
EP1944116A1 (en) * 2005-10-18 2008-07-16 Eiki Tsushima Cladding material and its fabrication method, method for molding cladding material, and heat sink using cladding material
WO2011102059A1 (en) * 2010-02-19 2011-08-25 住友電気工業株式会社 Metal laminate structure and production method for same
JP2013149912A (en) * 2012-01-23 2013-08-01 Kyocera Corp Wiring board and electronic apparatus
US9199433B2 (en) 2009-06-30 2015-12-01 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the metal laminated structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944116A1 (en) * 2005-10-18 2008-07-16 Eiki Tsushima Cladding material and its fabrication method, method for molding cladding material, and heat sink using cladding material
EP1944116A4 (en) * 2005-10-18 2009-05-13 Eiki Tsushima Cladding material and its fabrication method, method for molding cladding material, and heat sink using cladding material
US7951467B2 (en) 2005-10-18 2011-05-31 Eiki Tsushima Cladding material and its manufacturing method, press-forming method, and heat sink using cladding material
WO2008013279A1 (en) 2006-07-28 2008-01-31 Kyocera Corporation Electronic component storing package and electronic device
US8242387B2 (en) 2006-07-28 2012-08-14 Kyocera Corporation Electronic component storing package and electronic apparatus
US9199433B2 (en) 2009-06-30 2015-12-01 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the metal laminated structure
WO2011102059A1 (en) * 2010-02-19 2011-08-25 住友電気工業株式会社 Metal laminate structure and production method for same
JP2011171564A (en) * 2010-02-19 2011-09-01 Sumitomo Electric Ind Ltd Metal laminate structure and method of manufacturing metal laminate structure
US8993121B2 (en) 2010-02-19 2015-03-31 Sumitomo Electric Industries, Ltd. Metal laminated structure and method for producing the same
JP2013149912A (en) * 2012-01-23 2013-08-01 Kyocera Corp Wiring board and electronic apparatus

Similar Documents

Publication Publication Date Title
JP4969738B2 (en) Ceramic circuit board and semiconductor module using the same
US4556899A (en) Insulated type semiconductor devices
JP2566341B2 (en) Semiconductor device
JP2005011922A (en) Double-sided copper clad substrate equipped with heat sink, and semiconductor device using it
JPH03218054A (en) Substrate for heater element
JP2009059821A (en) Semiconductor device
JP2738840B2 (en) Ceramic-metal composite substrate
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
JP3250635B2 (en) Semiconductor device
JPH0815189B2 (en) Method for manufacturing semiconductor device
JPS63224242A (en) Heat transfer device
JP2558574B2 (en) Semiconductor device
JPS6281047A (en) Semiconductor device
JP2008135516A (en) Bonded structure of thermoelectric conversion module
JP2001135789A (en) Stacked ceramic substrata and power module substrate using the same
JP2689687B2 (en) IC mounting substrate
KR102564818B1 (en) Power module and manufacturing method thereof
JP2005285885A (en) Semiconductor device
JP2619155B2 (en) Hybrid integrated circuit device
JP2010219215A (en) Heat dissipation structure
JPH09331150A (en) Semiconductor device
JPH02117157A (en) Semiconductor device
JPH0621287A (en) Package for electronic parts
JPS5946051A (en) Insulated type semiconductor device
JPH04186869A (en) Metal plate base circuit board