JPH03216915A - Compound superconducting wire material - Google Patents

Compound superconducting wire material

Info

Publication number
JPH03216915A
JPH03216915A JP2012886A JP1288690A JPH03216915A JP H03216915 A JPH03216915 A JP H03216915A JP 2012886 A JP2012886 A JP 2012886A JP 1288690 A JP1288690 A JP 1288690A JP H03216915 A JPH03216915 A JP H03216915A
Authority
JP
Japan
Prior art keywords
magnetic field
wire
hot extrusion
superconducting
sliver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012886A
Other languages
Japanese (ja)
Inventor
Daisuke Miura
大介 三浦
Kaname Matsumoto
要 松本
Yasuzo Tanaka
田中 靖三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2012886A priority Critical patent/JPH03216915A/en
Priority to DE69022972T priority patent/DE69022972T2/en
Priority to CA002033325A priority patent/CA2033325C/en
Priority to PCT/JP1990/000680 priority patent/WO1991003060A1/en
Priority to KR1019910700286A priority patent/KR0158459B1/en
Priority to EP90907477A priority patent/EP0440799B1/en
Priority to FI911966A priority patent/FI103222B1/en
Publication of JPH03216915A publication Critical patent/JPH03216915A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve critical current density especially in an intense magnetic field by arranging a pinning center made of non-superconducting material within a compound superconducting filament. CONSTITUTION:A hole is made through an NbTi billet 1, a Ta bar 2 is embedded in the hole, and a Cu sheath 3 is placed to cover them. The product is then wire-drawn through hot extrusion process, and the Cu sheath 3 is removed to make a primary sliver 4. The primary sliver 4 is inserted into a bronze billet with a Cu barrier 6 arranged therein. It is then subjected to hot extrusion at about 650 deg.C after evacuating and subjected to repeated hot extrusion, intermediate annealing and wire drawing to make a secondary sliver 7. The secondary sliver 7 is further inserted into a bronze billet 8, which is subjected to repeated hot extrusion, intermediate annealing, wire drawing process and diffusion heat treatment to make an Nb3Sn superconductor wire material 9. The element Ta in the Nb3Sn filament of the superconductive wire material 9 works effectively as a pinning center. This increases the critical current density in an intense magnetic field which is close to the critical magnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導電磁石に使用する化合物8l電導線材に
関し、特に臨界電流密度を向上させたものである. 〔従来の技術〕 現在超電導線材の実用化は盛んであるあるが、これをさ
らに進めるうえで線材に流しうる電流の大きさを高める
こと、即ち臨界電流密度J,を」一げることは1つの重
要な課題となっている.現在趙電導線材を電磁石として
使用する場合に上記の高J,化を図る1つの方法として
は、超電導線材のコイルにより発生する磁場内で該超電
導線材中に侵入する磁束を線材内で捕らえる方法がある
.なおこのように線材中に侵入する磁束を捕らえること
をピン止めといい、ビン止めの効果を有するものをピン
ニングセンターと呼んでいる.ところで、化合物超電導
線材におけるピンニングセンターは通常結晶粒界である
ことが知られている,NbsSn線材では、Nbコアあ
るいはマトリソクス中にTa,Ti,Hf,Gaなどを
添加して粒界をよりダーティにし、量子化された磁束を
対象として働く要素的ビンニングカを増大させ、Jcを
向上させてきた. 〔発明が解決しようとする課題〕 上述のように、化合物超電導線において粒界をピンニン
グセンターとすると、ビンニングカFPは印加磁場Bと
の間にFP oc(l  B/Bc)”の関係を有する
ことが知られている.ここでBcは臨界磁場である.従
って、印加磁場の強さが臨界磁場に近づくと、ビンニン
グカは象.激に小さくなり、Jcは高磁場で減少すると
いう問題があった.〔課題を解決するための手段と作用
〕 本発明は上記問題点を解決した化合物超電導線材を提供
するもので、化合物超電導フィラメントを有する化合物
超電導線材において、線化合物超電導フィラメント内部
に非超電導物質からなるピンニングセンターを有するこ
とを特徴とするものである. 本発明は、化合物超電導フィラメント内に導入された非
8l電導物質あるいは超電導物質であってもHCXの差
があるものは押出し、伸線加工により引き伸ばされ、ピ
ンニングセンターとして有効に働き、要素的ビンニング
カを増加させて臨界磁場に近い高磁場においてJ,を増
加させるという新しい知見に基づくものである.本発明
において前記非超電導物質としては、加工が容易なCu
,Ta等を用いるのが望ましい. 〔実施例〕 以下、実施例に基づいて本発明を説明する.第1図は本
発明にかかる化合物超電導線材の製造工程における断面
図を示し、径40■の7−t%のTiを含むNbTiビ
レット(1)に径2.OMの穴を85本あけ、それらの
穴の中にTa棒(2)を埋め込み、外側にCuシース(
3)をかぶせ、熱間押出しをおこない、伸線し、Cuシ
ース(3)を除去して対面間隔2−の六角一次素線(4
)を製作した.次いで、外径45閣、内径33閣の13
.5wt%のSnを含むブロンズビレット(5)の内側
に肉厚l閣のCuバリア(6)を配したものに190本
の前記一次素線(4)を挿入し、真空引きの後650゜
Cにて熱間押出しをおこない、中間焼鈍と伸線工程を繰
り返して対面間隔2mの二次素綿(7)を製作した.さ
らに、外径67閣、内径50閣のブロンズビレット(8
)に380本の二次素線(7)を挿入し、熱間押出し、
中間焼鈍、伸線工程を繰返し、拡散熱処理を経て外径0
. 15−のN b z S n超電導線材(9)を得
た.このようにして得られた超電導線材(9)のN b
.S nフィラメント径は3−であり、フィラメント中
のTaの体積比率は17.5%であった.上記実施例の
サンプルと、上記実施例でTaを含まない従来例のサン
プルを比較サンプルとして用意し印加磁場と臨界電流密
度の関係を測定し、その結果を第1表に示した. 第 l 表 この結果より、Nb,Snフィラメント中にTaを有す
る本実施例のサンプルは、Taを含まない従来例に比較
して高いjcを有し、高磁場になるほどj,の従来例に
対する増加割合は大きくなり、高磁場における超電導特
性は格段に改善された.これはTaがビン止め点として
有効であることを意味するものである.なお、本発明は
Nb3Sn以外のA15型構造を有する化合物趙電導線
にも通用できることはいうまでもない。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a compound 8l conductive wire used in superconducting electromagnets, and in particular has improved critical current density. [Prior art] Superconducting wires are currently being put into practical use, but in order to further advance this, it is necessary to increase the magnitude of the current that can be passed through the wires, that is, to increase the critical current density J. This has become one of the most important issues. Currently, one method for achieving the above-mentioned high J when using a Zhao conducting wire as an electromagnet is to capture the magnetic flux that enters the superconducting wire within the magnetic field generated by the coil of the superconducting wire. be. Capturing the magnetic flux that enters the wire in this way is called pinning, and a device that has the effect of pinning is called a pinning center. By the way, it is known that the pinning centers in compound superconducting wires are usually grain boundaries.In NbsSn wires, Ta, Ti, Hf, Ga, etc. are added to the Nb core or matrix to make the grain boundaries dirtier. , the elemental binning force that acts on the quantized magnetic flux has been increased, and Jc has been improved. [Problem to be solved by the invention] As mentioned above, if grain boundaries are used as pinning centers in compound superconducting wires, the pinning force FP has a relationship with the applied magnetic field B of FP oc(l B/Bc). is known. Here, Bc is the critical magnetic field. Therefore, when the strength of the applied magnetic field approaches the critical magnetic field, the binning force becomes extremely small, and there is a problem that Jc decreases at high magnetic fields. [Means and effects for solving the problems] The present invention provides a compound superconducting wire that solves the above problems, and in which the compound superconducting wire has a compound superconducting filament, a non-superconducting substance is added to the inside of the compound superconducting filament. According to the present invention, non-8L conductive substances or superconducting substances introduced into a compound superconducting filament with a difference in HCX can be treated by extrusion or wire drawing. This is based on the new finding that the non-superconducting material is elongated and acts effectively as a pinning center, increasing the elemental binning force and increasing J in a high magnetic field close to the critical magnetic field.In the present invention, the non-superconducting material is Easy Cu
, Ta, etc. are preferably used. [Examples] The present invention will be explained below based on Examples. FIG. 1 shows a cross-sectional view of the manufacturing process of a compound superconducting wire according to the present invention. 85 holes were drilled in the OM, Ta rods (2) were embedded in these holes, and a Cu sheath (
3), hot extrusion, wire drawing, removing the Cu sheath (3), and forming a hexagonal primary wire (4) with a facing distance of 2−.
) was produced. Next, 13 of the outer diameters are 45 and the inner diameters are 33.
.. The 190 primary wires (4) were inserted into a bronze billet (5) containing 5 wt% Sn with a thick Cu barrier (6) placed inside it, and heated to 650°C after being evacuated. Hot extrusion was carried out at the same time, and intermediate annealing and wire drawing processes were repeated to produce secondary cotton (7) with a face-to-face distance of 2 m. In addition, a bronze billet with an outer diameter of 67 and an inner diameter of 50 (8
), 380 secondary strands (7) were inserted into the tube, hot extruded,
The intermediate annealing and wire drawing processes are repeated, and the outer diameter is reduced to 0 through diffusion heat treatment.
.. A 15-NbzSn superconducting wire (9) was obtained. Nb of the superconducting wire (9) thus obtained
.. The Sn filament diameter was 3-, and the volume ratio of Ta in the filament was 17.5%. The sample of the above example and the conventional sample of the above example which does not contain Ta were prepared as comparative samples, and the relationship between the applied magnetic field and the critical current density was measured, and the results are shown in Table 1. Table I From the results, the sample of this example with Ta in the Nb, Sn filament has a higher jc than the conventional example that does not contain Ta, and the higher the magnetic field, the more j increases compared to the conventional example. The ratio has increased, and the superconducting properties in high magnetic fields have been significantly improved. This means that Ta is effective as a stopper point. It goes without saying that the present invention can also be applied to conductive wires made of compounds having an A15 type structure other than Nb3Sn.

(発明の効果) 以上説明したように本発明によれば、化合物超電導フィ
ラメントはその内部に非超電導物質からなるピンニング
センターを有するため、臨界電流密度が増加し、特に高
磁場における0=界iit流密度が著しく増加するとい
う優れた効果がある。
(Effects of the Invention) As explained above, according to the present invention, since the compound superconducting filament has a pinning center made of a non-superconducting material inside thereof, the critical current density increases, especially in a high magnetic field. It has the excellent effect of significantly increasing density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる化合物起電導線材の一実施例の
各製造工程における断面図である。
FIG. 1 is a cross-sectional view of an embodiment of the compound electromotive conductive wire according to the present invention at various manufacturing steps.

Claims (1)

【特許請求の範囲】[Claims] 化合物超電導フィラメントを有する化合物超電導線材に
おいて、線化合物超電導フィラメント内部に非超電導物
質からなるピンニングセンターを有することを特徴とす
る化合物超電導線材。
A compound superconducting wire having a compound superconducting filament, the compound superconducting wire having a pinning center made of a non-superconducting substance inside the compound superconducting filament.
JP2012886A 1989-08-25 1990-01-23 Compound superconducting wire material Pending JPH03216915A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012886A JPH03216915A (en) 1990-01-23 1990-01-23 Compound superconducting wire material
DE69022972T DE69022972T2 (en) 1989-08-25 1990-05-28 SUPRAL-CONDUCTIVE WIRE MATERIAL AND METHOD FOR PRODUCING IT.
CA002033325A CA2033325C (en) 1989-08-25 1990-05-28 Superconducting wire and method of manufacturing the same
PCT/JP1990/000680 WO1991003060A1 (en) 1989-08-25 1990-05-28 Superconductive wire material and method of producing the same
KR1019910700286A KR0158459B1 (en) 1989-08-25 1990-05-28 Superconductive wire material and method of producing the same
EP90907477A EP0440799B1 (en) 1989-08-25 1990-05-28 Superconductive wire material and method of producing the same
FI911966A FI103222B1 (en) 1989-08-25 1991-04-23 Superconducting conductor and method for manufacturing a superconducting conductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012886A JPH03216915A (en) 1990-01-23 1990-01-23 Compound superconducting wire material

Publications (1)

Publication Number Publication Date
JPH03216915A true JPH03216915A (en) 1991-09-24

Family

ID=11817888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012886A Pending JPH03216915A (en) 1989-08-25 1990-01-23 Compound superconducting wire material

Country Status (1)

Country Link
JP (1) JPH03216915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027089A (en) * 2005-07-19 2007-02-01 Bruker Biospin Ag Superconductive element containing copper inclusion, complex material, and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027089A (en) * 2005-07-19 2007-02-01 Bruker Biospin Ag Superconductive element containing copper inclusion, complex material, and manufacturing method of the same

Similar Documents

Publication Publication Date Title
Suenaga et al. Superconducting properties of multifilamentary Nb3Sn made by a new process
US4988669A (en) Electrical conductor in wire or cable form composed of a sheathed wire or of a multiple-filament conductor based on a ceramic high-temperature superconductor
RU2403643C1 (en) Superconducting wire and method of making said wire
Inoue et al. Superconducting properties of Nb3Al multifilamentary wire
Scanlan et al. Fabrication and test results for Rutherford-type cables made from BSCCO strands
Pyon et al. Nb/sub 3/Sn conductors for high energy physics and fusion applications
KR0158459B1 (en) Superconductive wire material and method of producing the same
JPH03216915A (en) Compound superconducting wire material
Ozeryansky et al. A new internal tin Nb/sub 3/Sn conductor made by a novel manufacturing process
Fukuzaki et al. Development of a superconducting joint for high field NMR
JPH1050153A (en) Oxide supreconductive wire for alternating current, and cable
Tachikawa et al. Material and electro-magnetic aspects of newly developed Nb-Ti wires for AC Use with Cu-Si alloy matrix
Soika et al. Fixture for short sample testing of modern high energy physics Nb3Sn strands
Peter Superconductor: Wires and cables: Materials and processes
Malachevsky et al. Metal–ceramics interface response to bending and fatigue cycles in superconducting Ag-Bi2223 composites
Inoue et al. New superconducting Nb3Al MF wire made by Nb/Al Mg composite process
US11777269B2 (en) Connection body of high-temperature superconducting wire materials and connecting method
Shikov et al. Improvements of (NbTi)/sub 3/Sn bronze processed superconductor performance
Hong et al. High current density of NbTi composite
Akihama et al. Preparation of Nb 3 (Sn-In) wires by a ductile fabrication process
JPH063691B2 (en) Copper-coated ΝbTi superconducting wire
JPH0384815A (en) Nb3 sn multicore superconductive wire for alternating current
Gregory et al. THE DEVELOPMENT OF AN INTERNAL-TIN NB3SN STRAND FOR FUSION APPLICATIONS
Zhang et al. Tin core processing of powder metallurgy Cu-Nb-Sn
JPS6034762B2 (en) Multicore superconducting cable