JPH03215812A - Matrix optical switch - Google Patents

Matrix optical switch

Info

Publication number
JPH03215812A
JPH03215812A JP1052290A JP1052290A JPH03215812A JP H03215812 A JPH03215812 A JP H03215812A JP 1052290 A JP1052290 A JP 1052290A JP 1052290 A JP1052290 A JP 1052290A JP H03215812 A JPH03215812 A JP H03215812A
Authority
JP
Japan
Prior art keywords
mirror
waveguide
elastically deformable
matrix
optical switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1052290A
Other languages
Japanese (ja)
Inventor
Toshiaki Katagiri
片桐 敏昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1052290A priority Critical patent/JPH03215812A/en
Publication of JPH03215812A publication Critical patent/JPH03215812A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To provide the matrix optical switch of multiple terminals having a low loss, small size and high density by providing actuator which defect elastically deformable beams and slightly move the mirrors mounted thereon. CONSTITUTION:The elastically deformable beam 10 which supports the mirror 4 deflects just before the contact of the central part of the elastically deformable beam 10 with the lower part of a waveguide 7 and the mirror 4 moves toward the interior of a gap 8 for a mirror inserting space when a voltage is impressed between electrodes of Al layers 11-1, 11-2 to bend a piezoelectric ZnO layer 12 by a driving adjusting device 14 for the piezoelectric ZnO layer 12. The mirror 4 is thereby positioned with respect to the waveguide 7. The propagated light transmitted through the silicone oil 13 in the gap 8 part for the mirror inserting space is reflected at the intersected point of the waveguide 7 by the mirror 4 and is switched to the orthogonal waveguide. Conversely, the mirror 4 moves toward the outside of the gap 8 for the mirror insertion space and the switching is released when the voltage impression is ceased by the driving adjusting device 14 for the piezoelectric ZnO layer 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、マトリクス状に配列された光路のおのおのの
途中に設置したミラーで光を反射させ、光路を切り替え
ることにより、自由にかつ低損失に接続・切替できる多
端子マトリクス光スイッチに関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention reflects light with mirrors installed in the middle of each optical path arranged in a matrix, and switches the optical path freely and with low loss. This invention relates to a multi-terminal matrix optical switch that can be connected to and switched over.

(従来の技術) 第4図は、文献rNONBLOcKING 8 x 8
 0PTICALMATRIX SWITCH FOR
 FIBER−OPTIC COMMUNICATIO
N,ELECTRONICS LETTERS, VO
L.16,NO.lL, pp.422−423(19
80)Jなどにみられるような、従来のこの種の71・
リクス光スイッチの基本構成を示した平面図である。第
4図に示す光スイッチは、光ファイバ1−1.1−2の
端部とレンズ2−1.1−2の相対位置を固定して、ビ
ームコリメータ3−1,3−2を作り、その光路の途中
にマトリクス状に配設したミラー4を介して、レンズ2
−1.  22が対向するように設置して、ミラー4を
ソレノイドアクチュエー夕で紙面に垂直に上/下動させ
ることによって、光ビーム5を反射/通過させ、光ビー
ム5を任意の光ファイバ1−1.1−2に接続・切替す
るように構成したマトリクス光スイッチである。
(Prior art) Figure 4 shows the document rNONBLOcKING 8 x 8
0PTICAL MATRIX SWITCH FOR
FIBER-OPTIC COMMUNICATION
N, ELECTRONICS LETTERS, VO
L. 16, NO. LL, pp. 422-423 (19
80) Conventional 71・ of this type as seen in J.
1 is a plan view showing the basic configuration of an optical switch. The optical switch shown in FIG. 4 fixes the relative position of the end of the optical fiber 1-1.1-2 and the lens 2-1.1-2 to form beam collimators 3-1 and 3-2. The lens 2
-1. 22 facing each other, and by moving the mirror 4 up and down perpendicular to the plane of the paper using a solenoid actuator, the light beam 5 is reflected/passed, and the light beam 5 is connected to any optical fiber 1-1. This is a matrix optical switch configured to connect and switch between .1 and 2.

(発明が解決しようとする課題) しかし、第4図の構成によるマトリクス光スイッチには
、以下の課題があり、低損失化、小型高密度化、かつ多
端子化が難しかった。すなわち(1)損失は、ビームコ
リメータ3−1を構成する光ファイバ1−1とレンズ2
−1の各軸間の軸ずれ・角度ずれ、ビームコリメータ3
−1とビームコリメータ3−2との軸ずれ・角度ずれ、
およびミラー4自体の製作精度(角度など)とミラー4
の設置精度(角度など)などで決定される。現状の機構
・部品の製作技術では、光ビーム入射角度誤差を可成り
吸収できる五角プリズムを用いても、損失が大きくなる
問題がある。たとえば、ビームコリメータ3−1.3−
2を構成する光ファイバ1−1 (1−2)とレンズl
−1 (1−2)の各軸間の軸ずれ2μm1レンズ2−
1.2−2間の一3 角度ずれ10−3ラジアン、およびミラー4の角度誤差
2X10−”ラジアンという機構・部品精度で、スポッ
トサイズ5μmの単一モードファイバと焦点距離1.5
mmのレンズを用いて平行ビーム系を構成する場合、光
ファイバ1−1.1−2間の損失は、回折損失OdBの
条件で計算すると、約10dBと大きくなる場合が出て
くる。損失を低減するため、軸ずれ・角度ずれをすべて
の行または列について人手で最適に調整することは極め
て困難であり、結局、損失が大きくなる場合が相当数出
てくる問題がある。
(Problems to be Solved by the Invention) However, the matrix optical switch having the configuration shown in FIG. 4 has the following problems, and it is difficult to reduce loss, increase the size and density, and increase the number of terminals. In other words, (1) the loss is caused by the optical fiber 1-1 and lens 2 that constitute the beam collimator 3-1.
-Axis misalignment/angular misalignment between each axis of -1, beam collimator 3
-1 and beam collimator 3-2 axis misalignment/angular misalignment,
and the manufacturing accuracy (angle, etc.) of the mirror 4 itself and the mirror 4
Determined by installation accuracy (angle, etc.). With the current manufacturing technology for mechanisms and parts, even if a pentagonal prism that can absorb a considerable amount of the error in the angle of incidence of the light beam is used, there is a problem in that the loss becomes large. For example, beam collimator 3-1.3-
Optical fiber 1-1 (1-2) and lens l constituting 2
-1 Axis deviation between each axis of (1-2) 2 μm 1 lens 2-
1.3 between 2 and 2 With mechanical and component accuracy of an angular deviation of 10-3 radians and an angular error of mirror 4 of 2 x 10-'' radians, a single mode fiber with a spot size of 5 μm and a focal length of 1.5
When a parallel beam system is constructed using a lens of mm, the loss between the optical fibers 1-1, 1-2 may be as large as about 10 dB when calculated under the condition of diffraction loss O dB. In order to reduce loss, it is extremely difficult to manually optimally adjust the axis misalignment and angular misalignment for all rows or columns, and as a result, there are many cases where the loss becomes large.

(2)回折損失OdBとなる最大光路長はレンズの焦点
距離で決定されること、また、光ビーム5は、ビームウ
エストを越えると、回折により光路長とともに立体的に
広がって行くことのため、光路長が受光レンズ径や損失
から制限され、多端子化には限度がある。たとえば上記
(1)の計算例の場合、レンズとして球レンズを用い、
行間または列間のピッチがレンズ径で決まるとした場合
、約10dBの損失を許容しても、マトリクス光スイッ
チの端子=4 数が10×IOに制限される問題がある。
(2) The maximum optical path length resulting in diffraction loss OdB is determined by the focal length of the lens, and the light beam 5 expands three-dimensionally with the optical path length due to diffraction once it exceeds the beam waist. The optical path length is limited by the diameter of the light receiving lens and loss, and there is a limit to the number of terminals. For example, in the case of calculation example (1) above, using a spherical lens as the lens,
If the pitch between rows or columns is determined by the lens diameter, there is a problem that even if a loss of about 10 dB is allowed, the number of terminals of the matrix optical switch is limited to 10×IO.

(3)マトリクス状に設置する光学部品や機構部品を、
小型かつ高精度に製作するには限度があり、光スイッチ
を小型高密度化できない問題がある。
(3) Optical and mechanical parts installed in a matrix,
There is a limit to the ability to manufacture small and highly accurate optical switches, and there is a problem in that optical switches cannot be made smaller and more dense.

特に、長期的に損失再現性を確保するため機構部品の摩
擦による劣化を小さくするように製作する場合、寸法が
大きくなる問題がある。また、ミラー4を移動させるた
め、各切替・接続点ごとにソレノイドアクチュエータを
用いる場合、行間または列間のピッチを小さくしてソレ
ノイドアクチュエータを高密度配置にすると、磁気が隣
接するソレノイドアクチュエー夕に漏れ、接続・切替に
誤動作を発生し、マトリクス光スイッチの小型高密度化
できない問題がある。
Particularly, when manufacturing mechanical components to reduce deterioration due to friction in order to ensure long-term loss reproducibility, there is a problem in that the dimensions become large. In addition, when using a solenoid actuator at each switching/connection point to move the mirror 4, if the pitch between rows or columns is reduced and the solenoid actuators are arranged in high density, the magnetic field will be applied to the adjacent solenoid actuators. This causes problems such as leakage and connection/switching malfunctions, making it impossible to make matrix optical switches smaller and more dense.

(4)  ソレノイドアクチュエー夕とミラー4の必要
個数は、ともに、行数と列数の積となり、たとえば端子
数100 XIOOのマトリクス光スイッチでも、必要
部品が各1万個となり、加工精度や組立精度のばらつき
による光損失、および量的に経済性が問題である。これ
に対して、ミラーを行または列5一 ごとに移動させるミラー1軸移動機構を導入して経済化
しようとすると、ミラー1軸移動機構の寸法が大きくな
り、その結果、行間または列間のピッチが大きくなり、
高密度化できなかったり、ミラー設定位置精度がばらつ
き、損失が大きくばらつく場合がでてきたり、切替時間
が少なくともミラー移動時間の分だけ長くなる問題があ
る。
(4) The required number of solenoid actuators and mirrors 4 are both the product of the number of rows and the number of columns. For example, even for a XIOO matrix optical switch with 100 terminals, the required parts are 10,000 each, and processing accuracy and assembly are required. Problems include optical loss due to variations in accuracy and economical efficiency in terms of quantity. On the other hand, if an attempt is made to save money by introducing a mirror 1-axis moving mechanism that moves the mirror row by row or column by column, the dimensions of the mirror 1-axis moving mechanism become large, and as a result, the distance between rows or columns increases. The pitch increases,
There are problems in that high density cannot be achieved, mirror setting position accuracy varies, loss may vary greatly, and switching time becomes longer by at least the mirror moving time.

本発明の課題は、上記問題点に鑑み、大規模マトリクス
で任意の光ファイバ間において、ミラーの反射により切
替・接続でき、低損失で、かつ小型高密度で、かつ多端
子のマトリクス光スイッチを提供することにある。
In view of the above-mentioned problems, an object of the present invention is to provide a low-loss, compact, high-density, multi-terminal matrix optical switch that can be switched and connected between arbitrary optical fibers in a large-scale matrix by mirror reflection. It is about providing.

(課題を解決するための手段) 本発明のマトリクス光スイッチには、格子状に形成した
導波路、導波路の交差部に形成したミラー挿入空間用ギ
ャップ、ミラーを支持する弾性変形梁、弾性変形梁上に
形成した導波路内伝搬光を反射させるミラー、弾性変形
梁上に形成した弾性変形梁を撓ませミラーを微小移動さ
せるアクチュエー夕、およびアクチュエー夕用電極を半
導体プ6− ロセス技術でマトリクス状に形成したマトリクス板と、
導波路交差部で対向しているコア端面間とミラー部に充
満したマッチングオイルと、アクチュエータ駆動装置と
を備えた。
(Means for Solving the Problems) The matrix optical switch of the present invention includes waveguides formed in a lattice shape, gaps for mirror insertion spaces formed at intersections of the waveguides, elastically deformable beams that support the mirrors, and elastically deformable beams. A mirror formed on the beam that reflects the light propagating in the waveguide, an actuator that bends the elastically deformable beam formed on the elastically deformable beam and moves the mirror minutely, and electrodes for the actuator are matrix-formed using semiconductor processing technology. A matrix plate formed in the shape of
The device includes matching oil filled between the core end faces facing each other at the waveguide intersection and the mirror portion, and an actuator drive device.

(作 用) 光は空間伝搬から導波路伝搬となり、導波路交差部に設
けるミラー挿入空間用ギャップを除いて、常に導波路内
に閉じ込められ、光路長の制限が大幅に緩和され、光ス
イッチを多端子化できる。また、マッチングオイルによ
りフレネル損失がなく、導波路部で軸ずれ・角度ずれが
なく、かつ導波路の光軸に対するミラー角度を高精度に
設定でき、損失が小さい。また、導波路交差部にミラー
、ミラー支持用弾性変形梁、およびアクチュエー夕を小
型高密度に作製できる。また、ミラーは、機械的に摺動
することなく、弾性変形梁の撓みによってコア端面間に
移動し、ミラーの設定位置精度が劣化せず、接続・切替
による損失のばらつきが長期的に少ない。
(Function) Light changes from spatial propagation to waveguide propagation, and is always confined within the waveguide, except for the mirror insertion space gap provided at the waveguide intersection, which greatly eases the restriction on optical path length and allows optical switches to be Can have multiple terminals. Further, due to the matching oil, there is no Fresnel loss, there is no axis deviation or angular deviation in the waveguide section, and the mirror angle with respect to the optical axis of the waveguide can be set with high precision, resulting in small loss. Moreover, the mirror, the elastically deformable beam for supporting the mirror, and the actuator can be fabricated in a small size and with high density at the waveguide intersection. In addition, the mirror moves between the core end faces by the deflection of the elastically deformable beam without mechanically sliding, so the precision of the mirror setting position does not deteriorate, and variations in loss due to connection and switching are small over the long term.

(実施例) 第1図は、本発明のマトリクス光スイ・ソチのスイッチ
ング部の一実施例の断面図である。第1図において、S
i基板6上に作られた導波路7 Ci、ミラー挿入空間
用ギャップ8(たとえば、幅10μm)を挟んで、コア
9−1.9−2の軸が一致するように対向している。ミ
ラー4がミラー挿入空間用ギャップ8内に移動できるよ
うに、かつコア9−1.9−2の軸とミラー4の面が4
5度をなすように、Si基板6、ミラー4 (たとえば
、厚さ4μm)と弾性変形粱10(たとえば、1400
μmX200μm×5μm)を形成している。弾性変形
粱10の」二番こCよ、Aβ(たとえば、厚さ0.5μ
m)を蒸着L,A1層11−1の上に(ユニモルフ)圧
電素子となるZnOをスパッタリングで付け、ZnO層
12(たとえ(よ、厚さ10μm)の上にAnを蒸着し
てΔβ層11−2を形成する。二つのAAの層11−1
. 11−24よ、圧電素子ZnO層l2の電極となる
。また、少なくとも、コア9−1.9−2の間とミラー
4部は、屈折率かコア9−1.9−2と同等のシリコー
ンオイノレ13で満たし、フレネル損失が発生しないよ
うにしている。圧電素子ZnO層l2の駆動調節装置1
4は、Al層11−1. 11−2の電極間に印加する
電圧の大きさを調節して弾性変形粱10の歪量を、すな
わち、ミラー4がミラー挿入空間用ギャップ8内に移動
し、コア9−1または9−2内伝搬光を反射させるに必
要なミラー移動量(たとえば、数十μm程度)を調節す
る。ただし、弾性変形粱10とZnO層12およびAj
l’層11−1. 11−2の寸法、さらに圧電素子Z
nO層12に印加する電圧の大きさは、ミラー移動量に
応じて決める。第2図は、第1図の平面図で、スイッチ
ング部をマトリクス状に形成した場合の説明図である。
(Embodiment) FIG. 1 is a sectional view of an embodiment of a switching section of a matrix optical switch according to the present invention. In Figure 1, S
The waveguide 7 Ci formed on the i-substrate 6 faces the cores 9-1 and 9-2 with their axes aligned across the mirror insertion space gap 8 (for example, width 10 μm). The axis of the core 9-1, 9-2 and the surface of the mirror 4 are aligned with
Si substrate 6, mirror 4 (for example, 4 μm thick) and elastically deformable wire 10 (for example, 1400
200 μm×5 μm). The second part of the elastically deformed tube 10 is Aβ (for example, 0.5μ thick).
ZnO, which will become a (unimorph) piezoelectric element, is deposited on the L and A1 layers 11-1 by sputtering, and An is deposited on the ZnO layer 12 (for example, 10 μm thick) to form the Δβ layer 11. -2.Two AA layers 11-1
.. 11-24 becomes the electrode of the piezoelectric element ZnO layer 12. In addition, at least the space between the cores 9-1.9-2 and the mirror 4 are filled with silicone oil 13 whose refractive index is equivalent to that of the core 9-1.9-2 to prevent Fresnel loss from occurring. . Drive adjustment device 1 for piezoelectric element ZnO layer 12
4 is an Al layer 11-1. By adjusting the magnitude of the voltage applied between the electrodes 11-2, the amount of strain of the elastically deformable coil 10 can be adjusted so that the mirror 4 moves into the mirror insertion space gap 8, and the core 9-1 or 9-2 The amount of mirror movement required to reflect internally propagating light (for example, about several tens of μm) is adjusted. However, the elastic deformation layer 10, the ZnO layer 12 and Aj
l' layer 11-1. Dimensions of 11-2, and piezoelectric element Z
The magnitude of the voltage applied to the nO layer 12 is determined depending on the amount of mirror movement. FIG. 2 is a plan view of FIG. 1, and is an explanatory diagram when the switching parts are formed in a matrix.

第2図において、弾性変形粱10は、隣接する弾性変形
粱10と互いに直交するように配設することにより、弾
性変形粱10を長くして、塑性変形させることなく、ミ
ラー移動量を確保できる構造にしている。また導波路7
に隣接して、AA層11L 11−2の電極への配線孔
15を設け、電極と圧電素子ZnO層12の駆動調節装
置l4を結線する構造にしている。第3図は、第9− 1図の導波路を除いて、Si基板を上方からみたときの
ミラー移動機構の平面図である。第3図において、弾性
変形梁10の両側面は、Si基板6を貫通する通し穴I
6にし、第1図示すマトリクス板17の表面と裏面は、
ミラー挿入空間用ギャップ8と配線穴15を介して連通
し、シリコーンオイル13が自在に移動できる構造にし
ている。これにより、弾性変形梁10の導波路7側とS
i基板6側の圧力差によって、弾性変形梁lOが撓まな
い構造にしている。
In FIG. 2, by arranging the elastically deformable casing 10 so as to be perpendicular to the adjacent elastically deformable casing 10, the elastically deformable casing 10 can be lengthened and the amount of mirror movement can be ensured without plastic deformation. It has a structure. In addition, the waveguide 7
A wiring hole 15 to the electrode of the AA layer 11L 11-2 is provided adjacent to the wiring hole 15 to connect the electrode to the drive adjustment device 14 of the piezoelectric element ZnO layer 12. FIG. 3 is a plan view of the mirror moving mechanism when the Si substrate is viewed from above, excluding the waveguide shown in FIG. 9-1. In FIG. 3, both sides of the elastically deformable beam 10 have through holes I penetrating the Si substrate 6.
6, and the front and back surfaces of the matrix plate 17 shown in FIG.
It communicates with the mirror insertion space gap 8 through the wiring hole 15, and has a structure that allows the silicone oil 13 to move freely. As a result, the waveguide 7 side of the elastically deformable beam 10 and the S
The structure is such that the elastically deformable beam 1O does not bend due to the pressure difference on the i-board 6 side.

次に、上記構成による導波路内伝搬光のスイッチング動
作を説明する。第1図において、圧電素子ZnO層12
の駆動調節装置14によって、電圧をl層11−1. 
11−2の電極間に印加し圧電素子ZnO層l2を屈曲
させると、ミラー4を支持している弾性変形梁10の中
央部が導波路7の下部に接触する直前まで、弾性変形梁
10が撓み、ミラー4がミラー挿入空間用ギャップ8内
に向かって移動し、ミラー4は導波路7に対して位置決
めされる。このとき、導波路7の交差部において、ミラ
ー挿入空間用ギャップ8部のシリコーンオイル13を透
過し10 ていた伝搬光はミラー4で反射し、直交した導波路にス
イッチングされる。逆に、圧電素子ZnO層12の駆動
調節装置l4で、電圧印加をやめると、圧電素子ZnO
層12の歪(屈曲)がなくなり、したがって、弾性変形
梁10の撓みが元に戻り、ミラー4はミラー挿入空間用
ギャップ8の外へ向かって移動する。このとき、導波路
交差部において、ミラー4で反射していた伝搬光は、ミ
ラー挿入空間用ギャップ8のシリコーンオイル13を透
過し、直進するようになり、スイッチングが解除される
Next, the switching operation of the light propagating in the waveguide with the above configuration will be explained. In FIG. 1, a piezoelectric element ZnO layer 12
The voltage is applied to the l layer 11-1 .
When the voltage is applied between the electrodes 11-2 to bend the piezoelectric element ZnO layer 12, the elastically deformable beam 10 is bent until the center of the elastically deformable beam 10 supporting the mirror 4 comes into contact with the lower part of the waveguide 7. Upon deflection, the mirror 4 moves toward the mirror insertion space gap 8 , and the mirror 4 is positioned relative to the waveguide 7 . At this time, at the intersection of the waveguides 7, the propagating light that has passed through the silicone oil 13 in the mirror insertion space gap 8 is reflected by the mirror 4 and switched to the orthogonal waveguides. Conversely, when the voltage application is stopped in the drive adjustment device l4 of the piezoelectric element ZnO layer 12, the piezoelectric element ZnO
The distortion (bending) of the layer 12 disappears, and therefore the deflection of the elastically deformable beam 10 returns to its original state, and the mirror 4 moves toward the outside of the mirror insertion space gap 8. At this time, at the waveguide intersection, the propagating light that has been reflected by the mirror 4 passes through the silicone oil 13 in the mirror insertion space gap 8 and travels straight, and switching is canceled.

次に、圧電素子ZnO層12などアクチュエータの駆動
力と弾性変形梁10( 1400μm X 200μm
X5μm)の撓みの目安を考える。また、梁の両端が固
定され、かつ梁の中央に0.1gの力が加わる条件で、
梁の中央の撓み、すなわちミラー4の移動量を求めると
、約70μmとなる。駆動力は、梁の中央の換算で、0
.1g以下で、十分なミラー移動量が得られる。
Next, the driving force of the actuator such as the piezoelectric element ZnO layer 12 and the elastic deformation beam 10 (1400 μm x 200 μm
Consider the standard of deflection (x5μm). Also, under the conditions that both ends of the beam are fixed and a force of 0.1 g is applied to the center of the beam,
The deflection at the center of the beam, that is, the amount of movement of the mirror 4, is approximately 70 μm. The driving force is 0 in terms of the center of the beam.
.. A sufficient amount of mirror movement can be obtained with 1 g or less.

なお以上の説明では、ユニモルフ圧電素子であるZnO
層l2で弾性変形梁lOを撓ませた場合を説明−11 したが、ZnO層12を2枚作り、バイモルフ圧電素子
として用いてもよい。一方、バイメタルの原理よって発
熱抵抗で駆動力を得てもよい。
In the above explanation, ZnO, which is a unimorph piezoelectric element, is used.
Although the case where the elastically deformable beam 1O is bent by the layer 12 has been explained in 11, two ZnO layers 12 may be formed and used as a bimorph piezoelectric element. On the other hand, the driving force may be obtained by a heat-generating resistor based on the bimetal principle.

以上のように、導波路交差部のピッチ1mm以下、切り
換え電圧数十ボルトで切替時間0. 05s程度、端子
数100 XIOO程度のマトリクス光スイッチを構成
できる。また、導波路形成技術の進歩などにより、導波
路における損失が低減してきており、端子数100 X
IOOの光スイッチの損失は約3. 5dB以下となる
As described above, the pitch of the waveguide intersections is 1 mm or less, the switching voltage is several tens of volts, and the switching time is 0. It is possible to construct a matrix optical switch with a time of about 0.5 seconds and a number of terminals of about 100 XIOO. In addition, due to advances in waveguide formation technology, loss in waveguides has been reduced, and the number of terminals is 100
The loss of the IOO optical switch is approximately 3. It becomes 5dB or less.

(発明の効果) 以上説明したように、本発明の71・リクス光スイッチ
は、光が導波路内に閉じ込められ、光路長の制限が小さ
くなり、多端子化できる。またマッチングオイルにより
フレネル損失がなく、導波路部で軸ずれ・角度ずれがな
く、かつ導波路の光軸に対するミラー角度を高精度に設
定でき、損失が小さい。また導波路交差部にミラー、ミ
ラー支持用弾性変形梁、アクチュエー夕を、半導体製作
プロセス技術(エッチング、接合技術など)により、1
2− 小型高密度に作製できる。またミラーは、機械的に摺動
ずることなくコア端面間に移動し、ミラーの設定位置精
度は劣化せず、接続・切替による損失のばらつきが長期
的に少ない。このように、機械的摺動部がないこと、半
導体製作プロセス技術を駆使してSi基板を複雑な3次
元構造に加工する技術が普及してきていることなどによ
って、上記マトリクス光スイッチは多端子化、低損失化
、小型高密度化が可能であり、また量産性があり、した
がって経済化が可能である。
(Effects of the Invention) As described above, in the 71-RiX optical switch of the present invention, light is confined within the waveguide, the restriction on the optical path length is reduced, and it is possible to have multiple terminals. Furthermore, due to the matching oil, there is no Fresnel loss, there is no axis deviation or angular deviation in the waveguide section, and the mirror angle with respect to the optical axis of the waveguide can be set with high precision, resulting in small loss. In addition, a mirror, an elastic deformable beam for supporting the mirror, and an actuator are installed at the waveguide intersection using semiconductor manufacturing process technology (etching, bonding technology, etc.).
2- Can be manufactured in a small size and with high density. In addition, the mirror moves between the core end faces without mechanically sliding, the precision of the mirror setting position does not deteriorate, and there is little variation in loss due to connection and switching over the long term. In this way, the above-mentioned matrix optical switch has become multi-terminal due to the lack of mechanical sliding parts and the widespread use of technology to process Si substrates into complex three-dimensional structures using semiconductor manufacturing process technology. , low loss, small size and high density are possible, and mass production is possible, so economicalization is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のマトリクス光スイッチのスイッチング
部の一実施例の断面図、 第2図は第1図の平面図で、スイッチング部をマトリク
ス状に形成した場合の説明図、第3図は第1図の導波路
を除いて、Si基板を上方からみたときのミラー移動機
構の平面図、第4図は従来のマトリクス光スイッチの基
本構成を示す平面図である。 11,i2・・・光ファイバ 1 3一 2−1.2−2・・・レンズ 3−1.3−2・・・ビームコリメータ4・・・ミラー
      訃・・ビーム6・・・Si基板     
 7・・・導波路8・・・ミラー挿入空間用ギャップ 9−1.9−2・・・コア IO・・・弾性変形梁11
−1. 11−2・AI層  12−ZnO層l3・・
・シリコーンオイル 14・・・駆動調節装置15・・
・配線穴      16・・・通し穴17・・・マト
リクス板
FIG. 1 is a sectional view of one embodiment of the switching section of the matrix optical switch of the present invention, FIG. 2 is a plan view of FIG. 1, and is an explanatory diagram when the switching section is formed in a matrix shape. FIG. 1 is a plan view of the mirror moving mechanism when the Si substrate is viewed from above, excluding the waveguide, and FIG. 4 is a plan view showing the basic configuration of a conventional matrix optical switch. 11,i2...Optical fiber 1 3-2-1.2-2...Lens 3-1.3-2...Beam collimator 4...Mirror End...Beam 6...Si substrate
7... Waveguide 8... Gap for mirror insertion space 9-1.9-2... Core IO... Elastic deformation beam 11
-1. 11-2・AI layer 12-ZnO layer l3...
・Silicone oil 14... Drive adjustment device 15...
・Wiring hole 16...Through hole 17...Matrix board

Claims (1)

【特許請求の範囲】 1、マトリクス状に配列された光路のおのおのの途中に
設置したミラーで光を反射させ、光路を切り替える多端
子マトリクス光スイッチにおいて、 格子状に形成した導波路、導波路の交差部に設けたミラ
ー挿入空間用ギャップ、ミラーを指示す弾性変形梁、弾
性変形梁上に形成した導波路内伝搬光を反射させるミラ
ー、弾性変形梁上に形成した弾性変形梁を撓ませミラー
を微小移動させるアクチュエータおよびアクチュエータ
用電極をマトリクス状に形成したマトリクス板と、 導波路交差部で対向しているコア端面間とミラー部に充
満したマッチングオイルと、 アクチュエータ駆動装置と を備えたことを特徴とするマトリクス光スイッチ。
[Claims] 1. In a multi-terminal matrix optical switch that switches the optical path by reflecting light with a mirror installed in the middle of each optical path arranged in a matrix, the waveguide is formed in a lattice pattern. A gap for mirror insertion space provided at the intersection, an elastically deformable beam that directs the mirror, a mirror formed on the elastically deformable beam to reflect the light propagating in the waveguide, and a mirror that deflects the elastically deformable beam formed on the elastically deformable beam. The actuator is equipped with a matrix plate in which an actuator and actuator electrodes are formed in a matrix shape, matching oil filled between the core end faces facing each other at the waveguide intersection and the mirror part, and an actuator drive device. A matrix optical switch with special features.
JP1052290A 1990-01-22 1990-01-22 Matrix optical switch Pending JPH03215812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052290A JPH03215812A (en) 1990-01-22 1990-01-22 Matrix optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052290A JPH03215812A (en) 1990-01-22 1990-01-22 Matrix optical switch

Publications (1)

Publication Number Publication Date
JPH03215812A true JPH03215812A (en) 1991-09-20

Family

ID=11752577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052290A Pending JPH03215812A (en) 1990-01-22 1990-01-22 Matrix optical switch

Country Status (1)

Country Link
JP (1) JPH03215812A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089108A2 (en) * 1999-09-28 2001-04-04 Agilent Technologies Inc Optical switches using micromirrors in trenches and integrated optical waveguides
WO2001051973A1 (en) * 2000-01-14 2001-07-19 Corning Incorporated Mems optical switch and method of manufacture
EP1189092A2 (en) * 2000-09-06 2002-03-20 Japan Aviation Electronics Industry, Limited Electrostatically operated optical switch
KR100417405B1 (en) * 2001-10-30 2004-02-05 엘지전자 주식회사 Piezoelectrically actuated optical switch
US6989919B2 (en) 2003-05-29 2006-01-24 Mitsubishi Denki Kabushiki Kaisha Scanning apparatus
US10816733B2 (en) * 2016-04-01 2020-10-27 Intel Corporation Piezoelectrically actuated mirrors for optical communications

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1089108A2 (en) * 1999-09-28 2001-04-04 Agilent Technologies Inc Optical switches using micromirrors in trenches and integrated optical waveguides
JP2001142008A (en) * 1999-09-28 2001-05-25 Agilent Technol Inc Optical switching element
EP1089108A3 (en) * 1999-09-28 2004-01-21 Agilent Technologies, Inc. (a Delaware corporation) Optical switches using micromirrors in trenches and integrated optical waveguides
WO2001051973A1 (en) * 2000-01-14 2001-07-19 Corning Incorporated Mems optical switch and method of manufacture
EP1189092A2 (en) * 2000-09-06 2002-03-20 Japan Aviation Electronics Industry, Limited Electrostatically operated optical switch
EP1189092A3 (en) * 2000-09-06 2003-01-02 Japan Aviation Electronics Industry, Limited Electrostatically operated optical switch
US6625343B2 (en) 2000-09-06 2003-09-23 Japan Aviation Electronics Industry Limited Optical switch
SG118086A1 (en) * 2000-09-06 2006-01-27 Japan Avionic Electronics Indu Optical switch
KR100417405B1 (en) * 2001-10-30 2004-02-05 엘지전자 주식회사 Piezoelectrically actuated optical switch
US6989919B2 (en) 2003-05-29 2006-01-24 Mitsubishi Denki Kabushiki Kaisha Scanning apparatus
US10816733B2 (en) * 2016-04-01 2020-10-27 Intel Corporation Piezoelectrically actuated mirrors for optical communications

Similar Documents

Publication Publication Date Title
EP1130442B1 (en) Optical switches using dual axis micromirrors
US6108466A (en) Micro-machined optical switch with tapered ends
US5367584A (en) Integrated microelectromechanical polymeric photonic switching arrays
US7505646B2 (en) Optical switch and optical switch array
US6360033B1 (en) Optical switch incorporating therein shallow arch leaf springs
US6577793B2 (en) Optical switch
JPH0675176A (en) Microdynamic optical switch, 2 x 2 optical switch and method for switching optical signal
US7006721B2 (en) Optical switch and beam direction module
KR100393127B1 (en) Optical switch
JPH03215812A (en) Matrix optical switch
KR20040094810A (en) Combination micromachine and optical device array
US6987901B2 (en) Optical switch with 3D waveguides
US20030012545A1 (en) Broad-band variable optical attenuator
US6873757B2 (en) Multiple optical switches using refractive optics
KR20010051511A (en) Micromirror optical switch
US6934440B2 (en) Optical switch and optical switch device
CN100414342C (en) Light switch
JP2002350746A (en) Optical switch
JP4396299B2 (en) Mirror system and optical switch
US6970615B1 (en) Compact high-stability optical switches
WO2002103432A1 (en) Optical switch
JP2005205578A (en) Comb-teeth-shaped actuator
JP2004070054A (en) Optical attenuator and optical attenuator array
JP3527744B2 (en) Waveguide type optical switch
EP1251385A1 (en) Optical-power coupling devices