JPH03215634A - Method for lowering oxygen content of rare earth metal - Google Patents

Method for lowering oxygen content of rare earth metal

Info

Publication number
JPH03215634A
JPH03215634A JP905590A JP905590A JPH03215634A JP H03215634 A JPH03215634 A JP H03215634A JP 905590 A JP905590 A JP 905590A JP 905590 A JP905590 A JP 905590A JP H03215634 A JPH03215634 A JP H03215634A
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
oxygen content
melting
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP905590A
Other languages
Japanese (ja)
Other versions
JPH0585627B2 (en
Inventor
Takashi Tode
戸出 孝
Yuichi Makino
牧野 勇一
Takayuki Hasegawa
孝幸 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP905590A priority Critical patent/JPH03215634A/en
Publication of JPH03215634A publication Critical patent/JPH03215634A/en
Publication of JPH0585627B2 publication Critical patent/JPH0585627B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily lower the oxygen content of a rare earth metal by heating and melting a mixture composed of this rare earth metal and a rare earth metal fluoride in an inert gas or under vacuum. CONSTITUTION:The rare earth metal and the rare earth metal fluoride to become a deoxidizing agent are charged into a crucible. The mixture is heated at the temp. higher than the m.p.s of both to transfer the oxygen in the rare earth metal into the rare earth metal fluoride. The atmosphere for the melting and heating is in the inert gas or under vacuum. The melt is obliquely poured into a casting mold after the treatment and is cooled or is cooled as it is. The rare earth metal and the rare earth metal fluoride are separated to two layers by a sp. gr. difference after the melting and, therefore, the rare earth metal lowered in oxygen content and the rare earth metal fluoride occluding oxygen are easily separated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は希土類金属の精製技術に関し、特には希土類金
属中の酸素含有量を容易に、かつ経済的に低下せしめる
希土類金属の低酸素化方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to rare earth metal refining technology, and in particular to a method for reducing the oxygen content of rare earth metals by easily and economically reducing the oxygen content in rare earth metals. Regarding.

(従来の技術と発明が解決しようとする課題)希土類金
属の用途は永久磁石、光磁気用素材等の新分野に拡大し
つつあるが、希土類金属は非常に活性が高く、空気中の
酸素によって容易に酸化される。希土類金属中の酸素は
各種用途における素材の物性を劣化させる原因となるの
で、この酸素含有量の減少が望まれていた。しかし、酸
素含有量を減少させるためには、原料の精製、取扱、保
管および製造工程において不活性ガス雰囲気中で処理す
るなど細心の注意を払う必要があり、通常の方法では酸
素含有量を1,OOOppm以下に低下させることは困
難であった。酸素含有量をさらに低下させるためには、
例えば、高真空ゾーン精製設備のような高価な設備を必
要とし、経済性に問題が残されていた。
(Problems to be solved by conventional technology and inventions) The use of rare earth metals is expanding into new fields such as permanent magnets and magneto-optical materials, but rare earth metals are extremely active and are Easily oxidized. Since oxygen in rare earth metals causes deterioration of the physical properties of materials used in various applications, it has been desired to reduce this oxygen content. However, in order to reduce the oxygen content, it is necessary to take great care such as processing the raw materials in an inert gas atmosphere during the refining, handling, storage, and manufacturing processes. , OOOppm or less was difficult to reduce. To further reduce the oxygen content,
For example, expensive equipment such as high-vacuum zone purification equipment is required, and economic efficiency remains unsolved.

本発明の目的は、希土類金属の酸素含有量を容易にかつ
経済的に低下せしめることができる希土類金属の低酸素
化方法を提供することにある。
An object of the present invention is to provide a method for reducing the oxygen content of rare earth metals by easily and economically reducing the oxygen content of rare earth metals.

(課題を解決するための手段) 本発明者等は、かかる課題を解決するために、希土類金
属の低酸素化方法ついて種々検討を重ねてきたが、脱酸
素剤として該希土類金属の弗化物を見出し、その反応条
件を確立して、本発明に到達した。
(Means for Solving the Problem) In order to solve the problem, the present inventors have repeatedly investigated various methods for reducing the oxygen content of rare earth metals. The present invention was achieved by discovering this and establishing the reaction conditions.

本発明の要旨は次の通りである。The gist of the invention is as follows.

希土類金属および該希土類金属弗化物からなる混合物を
不活性ガスまたは真空中で加熱溶融することを特徴とす
る希土類金属の低酸素化方法。
A method for reducing the oxygen content of rare earth metals, which comprises heating and melting a mixture of a rare earth metal and the rare earth metal fluoride in an inert gas or vacuum.

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明が適用される希土類金属元素には、Yを含むLa
, Ce, Pr, Nd, Pm, Sm, Eu,
 Gd, Tb, Dy, Ha, Er, Tm,Y
bおよびLuO内1種もし《は2種以上の混合物が挙げ
られる。
Rare earth metal elements to which the present invention is applied include La containing Y;
, Ce, Pr, Nd, Pm, Sm, Eu,
Gd, Tb, Dy, Ha, Er, Tm, Y
b and LuO may be one type, or << may be a mixture of two or more types.

脱酸素剤となる希土類金属弗化物としては、該希土類金
属の弗化物を使用するのが良く、不純物の混入を避ける
ことができる。例えば、Tb金属に対してはその弗化物
TbF3を使用すれば良い。添加量は希土類金属100
重量部に対して30〜200重量部、好ましくは50〜
100重量部の範囲が良い。30重量部以下では脱酸素
の効果が少な《、200重量部以上では希土類金属中の
弗素の混入量が増加する上に、1バッチ当たりの希土類
金属の処理量が減少するので経済性が悪くなる。希土類
金属から脱酸素される理由は希土類金属酸化物が弗化物
に溶解するためと考えられる。
As the rare earth metal fluoride serving as the oxygen scavenger, it is preferable to use a fluoride of the rare earth metal, and contamination with impurities can be avoided. For example, for Tb metal, its fluoride TbF3 may be used. Addition amount is rare earth metal 100
30 to 200 parts by weight, preferably 50 to 200 parts by weight
A range of 100 parts by weight is preferable. If it is less than 30 parts by weight, the deoxidizing effect will be small. If it is more than 200 parts by weight, the amount of fluorine mixed in the rare earth metal will increase, and the amount of rare earth metal processed per batch will decrease, making it uneconomical. . The reason why rare earth metals are deoxidized is thought to be that rare earth metal oxides dissolve in fluorides.

反応条件としては、原料希土類金属および該希土類金属
弗化物をるつぼに仕込み、原料希土類金?および該希土
類金属弗化物の融点より高い温度一般的には1,000
〜1,600℃に加熱溶融する。
As for the reaction conditions, the raw material rare earth metal and the rare earth metal fluoride are charged into a crucible, and the raw material rare earth metal fluoride is charged into a crucible. and a temperature higher than the melting point of the rare earth metal fluoride, generally 1,000
Heat and melt at ~1,600°C.

この加熱溶融雰囲気は不活性ガス中または真空中とする
必要があり、これにより希土類金属中の酸素が希土類金
属弗化物中に移行する。不活性ガスとしてはアルゴンが
好適であり、真空は0. ITorr以下が好ましい。
This heating and melting atmosphere must be in an inert gas or vacuum, so that oxygen in the rare earth metal migrates into the rare earth metal fluoride. Argon is suitable as the inert gas, and the vacuum is 0. ITorr or less is preferable.

加熱溶融時間は希土類金属の融点、酸素含有量、処理量
などを考慮して適宜選択されるが、3〜20分間で良い
The heating melting time is appropriately selected in consideration of the melting point of the rare earth metal, oxygen content, processing amount, etc., and may be 3 to 20 minutes.

以上の処理後、溶融物は鋳型に傾注してから冷却するか
、またはそのまま冷却すれば良く、希土類金属と希土類
金属弗化物は溶融後比重差により二層分離しているので
低酸素化された希土類金属と0■を吸蔵した希土類金属
弗化物は容易に分離される。
After the above treatment, the molten material can be poured into a mold and then cooled, or it can be cooled as it is, and since the rare earth metal and rare earth metal fluoride are separated into two layers due to the difference in specific gravity after melting, they are low in oxygen. The rare earth metal and the rare earth metal fluoride occluded with 0 are easily separated.

このようにして精製された希土類金属中の酸素含有量は
1 , 000ppm以下と極めて少な<.Ca等のア
ルカリ土類金属も0. 01%以下にまで減少しおり、
本発明が低酸素化精製方法として極めて優れていること
が判かる。
The oxygen content in the rare earth metals purified in this way is extremely low, less than 1,000 ppm. Alkaline earth metals such as Ca are also 0. Bookmark decreased to less than 0.01%,
It can be seen that the present invention is extremely excellent as a low oxygen purification method.

また必要に応じて上記の処理を2回以上繰り返すことに
より、さらに酸素含有量を減少させることが出来る。こ
こで回収した弗化物は再弗化処理によって繰り返し使用
が可能であり、更に希土類金属の製造用原料としても使
用可能で経済的に有利である。
Furthermore, the oxygen content can be further reduced by repeating the above treatment two or more times as necessary. The fluoride recovered here can be used repeatedly by refluorination treatment, and can also be used as a raw material for producing rare earth metals, which is economically advantageous.

以下、本発明の具体的実施態様を実施例と比較例を挙げ
て説明するが、本発明はこれらに限定されるものではな
い。例中%および部は特に断わらない限り重量に拠る。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples, percentages and parts are by weight unless otherwise specified.

(実施例1) 酸素含有量2, 000ppmのTb金属IKgに対し
、TbF3を第1表に示される4水準の重量を混合し、
夫々タンタル製るつぼに仕込み、高周波誘導溶解炉によ
りAr雰囲気下、1500℃に加熱溶融し、溶融状態を
IO分間維持した後、Mo製鋳型に傾注し放冷した。冷
却後二MからなるTb金属と弗化物は容易に分離でき、
各々の回収率は99%および98%であった。精製した
Tb金属中の酸素含有量を第1表に示した。TbF.量
が多い程低酸素化効果が向上することが判かる。
(Example 1) To Ikg of Tb metal with an oxygen content of 2,000 ppm, TbF3 was mixed at four levels of weight shown in Table 1,
Each was charged into a tantalum crucible, heated and melted at 1500° C. in an Ar atmosphere in a high frequency induction melting furnace, and after maintaining the molten state for 10 minutes, it was poured into a Mo mold and allowed to cool. After cooling, Tb metal consisting of 2M and fluoride can be easily separated,
The respective recoveries were 99% and 98%. Table 1 shows the oxygen content in the purified Tb metal. TbF. It can be seen that the larger the amount, the better the hypoxic effect.

(実施例2) 酸素含有量2, OOOppmのTb金属1. 0Kg
とTbF30.6Kgとをタンタル製るつぼに仕込み、
Ar雰囲気下1500℃に加熱溶融し、この状態を4〜
12分間維持した後、水冷銅製鋳型に傾注し、Tb金属
とTbFsの二層よりなるインゴットを得た。Tb金属
の酸素含有量は第2表に示した通りで、いずれの場合も
1 , 000ppm以下に安定して低下しており、ま
た、溶融状態維持時間が長い程、低酸素下効果が大きい
ことが判かる。
(Example 2) Oxygen content 2, OOOppm Tb metal 1. 0Kg
and TbF30.6Kg in a tantalum crucible,
Melt by heating at 1500°C in an Ar atmosphere, and maintain this state for 4 to 40 minutes.
After maintaining for 12 minutes, the mixture was poured into a water-cooled copper mold to obtain an ingot consisting of two layers of Tb metal and TbFs. The oxygen content of the Tb metal is shown in Table 2, and in all cases it has stably decreased to 1,000 ppm or less, and the longer the molten state is maintained, the greater the effect of low oxygen conditions. I understand.

(実施例3) 酸素含有量1, 600ppmのGd金属1. 0Kg
とGdF, 0.6Kgとをモリブデン製るつぼに入れ
、これをIO−3−JじLL− Torrの真空中において黒鉛ヒーター抵抗溶解炉で1
,400゜Cに加熱溶融し、この状態をlO分間維持し
た後、このまま冷却した。Gd金属の酸素含有量は53
0ppmであった。
(Example 3) Gd metal with an oxygen content of 1,600 ppm 1. 0Kg
and GdF, 0.6 kg were placed in a molybdenum crucible and melted in a graphite heater resistance melting furnace in a vacuum of IO-3-JLL- Torr.
, 400°C, maintained this state for 10 minutes, and then cooled as it was. The oxygen content of Gd metal is 53
It was 0 ppm.

(実施例4) 酸素含有量2, 500ppmのDy金
属0.5KgとDyFs 0.4Kgとをタンタル製ル
ツボに仕込み、高周波誘導溶解炉でアルゴン雰囲気中、
1,580℃に加熱溶解し、この状態をlO分間維持し
た後、水冷銅製鋳型に傾注した。Dy金属中の酸素含有
量は720ppmに低下していた。
(Example 4) 0.5 kg of Dy metal with an oxygen content of 2,500 ppm and 0.4 kg of DyFs were placed in a tantalum crucible, and heated in an argon atmosphere in a high frequency induction melting furnace.
After heating and melting at 1,580°C and maintaining this state for 10 minutes, the mixture was poured into a water-cooled copper mold. The oxygen content in the Dy metal had decreased to 720 ppm.

(比較例) 酸素含有量2, 000ppmのTb金属
1. 0KgとCaF20、6Kgとをタンタル製ルツ
ボに仕込み、高周波誘導溶解炉でアルゴン雰囲気中、1
,500℃に加熱溶融し、この状態をlO分間維持した
後、モリブデン製鋳型に傾注した。Tb金属中の酸素含
有量は1,500ppmに低下しただけであり、Ca金
属も1, 300ppm混入するという不利も生じた。
(Comparative example) Tb metal with an oxygen content of 2,000 ppm 1. 0Kg and CaF20, 6Kg were placed in a tantalum crucible, and heated in a high frequency induction melting furnace in an argon atmosphere for 1 hour.
After heating and melting at 500° C. and maintaining this state for 10 minutes, the mixture was poured into a molybdenum mold. The oxygen content in the Tb metal was only reduced to 1,500 ppm, and 1,300 ppm of Ca metal was also mixed in, which was a disadvantage.

(発明の効果) 本発明によれば、希土類金属に該希土類金属弗化物を添
加混合し、加熱溶融するという非常に簡便な方法で希土
類金属中の酸素を効率的に低酸素化することが可能とな
り、酸素含有量1 , OOOppm以下の低酸素希土
類金属が安価に製造でき、産業上その利用価値は極めて
高い。
(Effects of the Invention) According to the present invention, it is possible to efficiently reduce oxygen in rare earth metals by a very simple method of adding and mixing the rare earth metal fluoride to rare earth metals and heating and melting the mixture. Therefore, low-oxygen rare earth metals with an oxygen content of 1,000 ppm or less can be produced at low cost, and their utility value in industry is extremely high.

Claims (1)

【特許請求の範囲】[Claims] 希土類金属および該希土類金属弗化物からなる混合物を
不活性ガスまたは真空中で加熱溶融することを特徴とす
る希土類金属の低酸素化方法。
A method for reducing the oxygen content of rare earth metals, which comprises heating and melting a mixture of a rare earth metal and the rare earth metal fluoride in an inert gas or vacuum.
JP905590A 1990-01-18 1990-01-18 Method for lowering oxygen content of rare earth metal Granted JPH03215634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP905590A JPH03215634A (en) 1990-01-18 1990-01-18 Method for lowering oxygen content of rare earth metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP905590A JPH03215634A (en) 1990-01-18 1990-01-18 Method for lowering oxygen content of rare earth metal

Publications (2)

Publication Number Publication Date
JPH03215634A true JPH03215634A (en) 1991-09-20
JPH0585627B2 JPH0585627B2 (en) 1993-12-08

Family

ID=11709947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP905590A Granted JPH03215634A (en) 1990-01-18 1990-01-18 Method for lowering oxygen content of rare earth metal

Country Status (1)

Country Link
JP (1) JPH03215634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100957A (en) * 1992-09-17 1994-04-12 Shin Etsu Chem Co Ltd Production of high-purity rare earth metal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227814A (en) * 1994-02-22 1995-08-29 Daiken Trade & Ind Co Ltd Wooden fiber composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311628A (en) * 1986-06-30 1988-01-19 Mitsubishi Chem Ind Ltd Production of rare earth metal
JPS6424015A (en) * 1987-07-17 1989-01-26 Mitsubishi Chem Ind Production of low-oxygen rare earth metal halide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311628A (en) * 1986-06-30 1988-01-19 Mitsubishi Chem Ind Ltd Production of rare earth metal
JPS6424015A (en) * 1987-07-17 1989-01-26 Mitsubishi Chem Ind Production of low-oxygen rare earth metal halide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100957A (en) * 1992-09-17 1994-04-12 Shin Etsu Chem Co Ltd Production of high-purity rare earth metal

Also Published As

Publication number Publication date
JPH0585627B2 (en) 1993-12-08

Similar Documents

Publication Publication Date Title
KR100853089B1 (en) Remelting Process of Rare Earth Magnet Scrap and/or Sludge, and Magnet-Forming Alloy and Sintered Rare Earth Magnet
CN109112319B (en) Slag for nuclear-grade stainless steel electroslag remelting and method for electroslag remelting by using slag
JP5086598B2 (en) Cold work material
JP5086592B2 (en) Cold work material
CN110564997B (en) Aluminum-titanium-molybdenum intermediate alloy and preparation method thereof
JP5767993B2 (en) Method for enriching rare earth elements from rare earth-containing materials
CN105603257A (en) Production method of high-quality ferrotitanium
JPH0790411A (en) Production of high-purity rare earth metal
JPH03215634A (en) Method for lowering oxygen content of rare earth metal
JP5977385B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JP5905782B2 (en) Method for enriching rare earth elements from rare earth-containing materials
JPS61210142A (en) Ni-ti alloy having superior shock resistance and its manufacture
JPH0790410A (en) Production of low-oxygen rare earth metal
JP2702649B2 (en) Manufacturing method of high purity rare earth metal
CN105734377A (en) SmFex alloy and preparation method thereof
JPH0583622B2 (en)
JP7234326B2 (en) Manufacturing method of high-performance neodymium-iron-boron isotropic magnetic powder
US4375371A (en) Method for induction melting
SU1746162A1 (en) Working medium of magnetic refrigerating machine
CN109280786B (en) Aluminum-tungsten intermediate alloy and production method thereof
CN116732406A (en) Iron-nickel-cobalt-chromium-boron series bulk eutectic high-entropy alloy with network-like dual-phase structure
US5972074A (en) Method for reducing impurities in misch metal and alloys
JPS6151020B2 (en)
CN114703387A (en) Terbium-iron alloy preparation method
RU2196187C1 (en) Method of producing alloy with free and fixed carbon