JPH03211472A - Source voltage detecting circuit - Google Patents

Source voltage detecting circuit

Info

Publication number
JPH03211472A
JPH03211472A JP2007444A JP744490A JPH03211472A JP H03211472 A JPH03211472 A JP H03211472A JP 2007444 A JP2007444 A JP 2007444A JP 744490 A JP744490 A JP 744490A JP H03211472 A JPH03211472 A JP H03211472A
Authority
JP
Japan
Prior art keywords
voltage
potential
node
power supply
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007444A
Other languages
Japanese (ja)
Inventor
Osamu Segawa
修 瀬川
Hidetoshi Suzuki
秀利 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007444A priority Critical patent/JPH03211472A/en
Publication of JPH03211472A publication Critical patent/JPH03211472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Sources (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To minimize the temperature dependency of a reset pulse outputted by a comparator by canceling the temperature dependency of a threshold value voltage and mobility by using a diode and resistances for the determination of one input voltage of the comparator. CONSTITUTION:The potential of a node by resistance voltage division can freely be determined without any temperature dependency. When an FET 11 and a resistance 12 are so determined when a source voltage potential VDD reaches a reset resetting voltage, the potential of the node 1 has no temperature dependency. Further, resistances 13 and 14 are so determined that the potential of a node 2 is also equal. Consequently, when the source voltage potential VDD exceeds the reset resetting voltage, the potentials at terminals 51 and 52 are inverted and the comparator 50 is applied with the source voltage to output the reset pulse until the reset resetting voltage is reached; and then the pulse has its waveform shaped by an amplifier 60 and is outputted. Consequently, the temperature dependency of the reset voltage can be minimized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電源電圧が印加されたことを検出する電源電圧
検出回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a power supply voltage detection circuit that detects the application of a power supply voltage.

従来の技術 半導体集積回路において、電源を立ち上げた際に動作が
不安定となり、そのため初期出力が確定されない回路が
ある。場合によってはこの回路の初期出力を確定させる
必要がある。
2. Description of the Related Art Among conventional semiconductor integrated circuits, there are circuits whose operation becomes unstable when the power is turned on, and therefore the initial output is not determined. In some cases, it may be necessary to determine the initial output of this circuit.

第5図はこのような確定しない初期出力を有する回路に
出力確定用制御信号を供給する電源電圧検出回路のMO
8型電界効果トランジスタを用いた従来例である。
Figure 5 shows the MO of a power supply voltage detection circuit that supplies a control signal for determining the output to a circuit having such an undetermined initial output.
This is a conventional example using an 8-type field effect transistor.

第5図において、33.34は抵抗、35.36はPチ
ャネル型のMO8型電界効果トランジスタ(以下P型M
O3FETと記す)、37.38゜39はNチャネル型
のMO8型電界効果トランジスタ(以下N型MO8FE
Tと記す)、50はコンパレータ、51.52はコンパ
レータ50の入力端子、53はコンパレータ50の出力
端子、60は波形整形用増幅器であり、61は波形整形
用増幅器60の出力端子である。
In Fig. 5, 33.34 is a resistor, 35.36 is a P-channel type MO8 field effect transistor (hereinafter referred to as P-type M
37.38°39 is an N-channel type MO8 field effect transistor (hereinafter referred to as N-type MO8FE).
50 is a comparator, 51.52 is an input terminal of the comparator 50, 53 is an output terminal of the comparator 50, 60 is a waveform shaping amplifier, and 61 is an output terminal of the waveform shaping amplifier 60.

以上のように構成された従来の電源電圧検出回路につい
て、以下その動作を説明する。
The operation of the conventional power supply voltage detection circuit configured as described above will be described below.

第5図において、抵抗33.34は電源電位VOOと接
地電位VSS間に直列に接続され、これらによって電源
電位VDDを分圧した基準電位をコンパレータ50の入
力端子51に供給する。P型MO8FET35.36及
びN型MO5FET37゜38.39はカレントミラー
回路構成され、N型MO3FET39のドレイン電位を
コンパレータ5゜の入力端子52に供給する。コンパレ
ータ5oの入力端子52に入力される電圧値は、電源電
位VDDがある値より高くなり、P型MO8FET36
゜N型M OS F E T 37 、39に電流が流
れる状態においては、N型MO8FETのしきい値電圧
をVTN、 P型MO8FETのしきい値をvTPとす
ると、はぼVDD−IVTPI−lVrNlニ1tfs
k定される。
In FIG. 5, resistors 33 and 34 are connected in series between the power supply potential VOO and the ground potential VSS, and thereby supply a reference potential obtained by dividing the power supply potential VDD to the input terminal 51 of the comparator 50. The P-type MO8FET 35.36 and the N-type MO5FET 37°38.39 constitute a current mirror circuit, and the drain potential of the N-type MO3FET 39 is supplied to the input terminal 52 of the comparator 5°. The voltage value input to the input terminal 52 of the comparator 5o becomes higher than a certain value of the power supply potential VDD, and the P-type MO8FET 36
゜In a state where current flows through the N-type MOSFETs 37 and 39, if the threshold voltage of the N-type MO8FET is VTN and the threshold voltage of the P-type MO8FET is vTP, then approximately VDD-IVTPI-lVrNl 1tfs
k is determined.

第6図に電源電圧に対するコンパレータ5oの各入力端
子電位の温度依存性を示す。電源電圧VDDを上げてい
き、ある値(以降リセット解除電圧値と記す)に達する
と、コンパレータ5oの入力端子52に入力される入力
信号の電圧値が入力端子51に入力される入力信号の電
圧値より大きくなり、コンパレータ50の出力端子53
の出力値が変化する。その出力信号は増幅器60により
増幅されて出力端子61から出力される。電源電圧印加
により半導体装置中の各回路に初期出力値を決定させる
リセット信号が加わり、出力端子61の出力変化により
リセットが解除される。
FIG. 6 shows the temperature dependence of each input terminal potential of the comparator 5o with respect to the power supply voltage. When the power supply voltage VDD is increased and reaches a certain value (hereinafter referred to as reset release voltage value), the voltage value of the input signal input to the input terminal 52 of the comparator 5o becomes the voltage of the input signal input to the input terminal 51. output terminal 53 of the comparator 50.
The output value of changes. The output signal is amplified by an amplifier 60 and output from an output terminal 61. By applying a power supply voltage, a reset signal is applied to each circuit in the semiconductor device to determine an initial output value, and the reset is canceled by a change in the output of the output terminal 61.

発明が解決しようとする課題 前記従来の構成では、入力端子52に入力される出力値
が電源電圧及びP型MO8FETのしきい値電圧とN型
MO8FETのしきい値電圧によって決まるためにしき
い値電圧の温度依存性がそのまま反映される。第6図に
示すように高温時にはしきい値電圧は小さくなり、出力
端子53にリセット解除信号を出力するときのリセット
解除電圧値が設定値より小さくなり、パルス幅が狭くリ
セットパルスとして認識されない場合がある。
Problems to be Solved by the Invention In the conventional configuration, the output value input to the input terminal 52 is determined by the power supply voltage, the threshold voltage of the P-type MO8FET, and the threshold voltage of the N-type MO8FET. The temperature dependence of is directly reflected. As shown in FIG. 6, when the temperature is high, the threshold voltage becomes small, and the reset release voltage value when outputting the reset release signal to the output terminal 53 becomes smaller than the set value, and the pulse width is narrow and it is not recognized as a reset pulse. There is.

本発明は上記問題点を解決するもので、リセット解除電
圧値の温度依存性を小さくすることを目的とする。
The present invention solves the above problems, and aims to reduce the temperature dependence of the reset release voltage value.

課題を解決するための手段 この目的を達成するために本発明の電源電圧検出回路は
コンパレータのどちらが一方の入力端子に入力する電圧
を決めるのに、ダイオードと抵抗を用い、しきい値電圧
の温度依存性と移動度の温度依存性とを相殺させる構成
になっている。
Means for Solving the Problems To achieve this object, the power supply voltage detection circuit of the present invention uses a diode and a resistor to determine which voltage is input to one input terminal of the comparator, and uses a diode and a resistor to The configuration is such that the temperature dependence of the mobility and the temperature dependence of the mobility are offset.

作用 この構成にすればコンパレータの入力電圧は温度依存性
を持たず、コンパレータの出力であるところのリセット
パルスも温度依存性を持たない。
Effect: With this configuration, the input voltage of the comparator has no temperature dependence, and the reset pulse, which is the output of the comparator, also has no temperature dependence.

実施例 以下本発明の実施例について図面にもとづいて説明する
。第1図は、本発明の一実施例であり、ダイオード手段
としてドレインとゲートを接続したMOSFETを用い
た場合を示す。
EXAMPLES Below, examples of the present invention will be described based on the drawings. FIG. 1 shows an embodiment of the present invention, in which a MOSFET whose drain and gate are connected is used as the diode means.

第1図において電源電位vDDと接地電位VSSの間を
第1のノード1を介してMO8FETIIと抵抗12を
直列接続し、また第2のノード2を介して抵抗13と抵
抗14を直列接続し、前記第1のノード1と前記第2の
ノード2をそれぞれコンパレータの入力端子51および
52に接続し、コンパレータ結果を波形整形用増幅器5
0を通して出力する構成である。第2図は電源電圧に対
する前記ノード1の温度依存性を示す。
In FIG. 1, a MO8FET II and a resistor 12 are connected in series between a power supply potential vDD and a ground potential VSS via a first node 1, and a resistor 13 and a resistor 14 are connected in series via a second node 2. The first node 1 and the second node 2 are connected to input terminals 51 and 52 of a comparator, respectively, and the comparator results are sent to a waveform shaping amplifier 5.
It is configured to output through 0. FIG. 2 shows the temperature dependence of the node 1 on the power supply voltage.

第3図は、電源電圧に対する前記コンパレータ50の各
入力端子電位の温度依存性を示す。
FIG. 3 shows the temperature dependence of each input terminal potential of the comparator 50 with respect to the power supply voltage.

以下第1図、第2図及び第3図を用いて、本発明の電源
電圧検出回路の動作を説明する。
The operation of the power supply voltage detection circuit of the present invention will be described below with reference to FIGS. 1, 2, and 3.

電源電圧VDDが接地電位からMOSFETのしきい値
電圧に達するまではMOSFETは非導通状態で、第1
のノード1の電圧は、電源電圧vDDである。また第2
のノード2は抵抗13と抵抗14とに分圧された電位に
なる。
Until the power supply voltage VDD reaches the threshold voltage of the MOSFET from the ground potential, the MOSFET is in a non-conducting state and the first
The voltage at node 1 is the power supply voltage vDD. Also the second
The node 2 has a potential divided between the resistors 13 and 14.

電源電圧VDDがMOSFETのしきい値電圧以上にな
ると、MO5FETIIが導通状態となり、抵抗とMO
SFETの飽和特性によって分圧された電位が第1のノ
ード1に出力される。
When the power supply voltage VDD becomes equal to or higher than the threshold voltage of the MOSFET, MO5FETII becomes conductive, and the resistance and MOSFET become conductive.
A voltage divided by the saturation characteristic of the SFET is output to the first node 1 .

電源電圧vDDに対する第1のノード1の電位は、第2
図のように、温度変化に依存しない点Aが存在し、この
点Aは、MO8FETII及び抵抗12の形状を変えれ
ば、第2図中の点線上を動くことになる。
The potential of the first node 1 with respect to the power supply voltage vDD is
As shown in the figure, there is a point A that does not depend on temperature changes, and if the shapes of the MO8FET II and the resistor 12 are changed, this point A will move on the dotted line in FIG. 2.

抵抗分圧によるノード2の電位は、温度依存性がなく、
分圧電位は抵抗の形状により自由に決定できる。電源電
圧VDDがリセット解除電圧値に達したときに、前記ノ
ード1の電位が温度依存性をもたなくなるように、MO
8FETIIと抵抗12の形状を決定し、前記ノード2
の電位も同時にノード1と同電位になるように抵抗13
と抵抗14との形状を決定しておく。そうすると、電源
電位VDDが大きくなり、リセット解除電圧値以上にな
ると、入力端子51及び52の電位の大小関係が反転す
る。コンパレータ50の出力は、電源電圧が印加され、
リセット解除電圧に達するまでの期間、リセットパルス
を出力する。この出力は、波形整形用増幅器60により
波形整形され、出力より他の回路にリセット信号を伝達
する。
The potential of node 2 due to resistor voltage division has no temperature dependence,
The divided potential can be freely determined depending on the shape of the resistor. When the power supply voltage VDD reaches the reset release voltage value, the MO
8FETII and the shape of the resistor 12 are determined, and the shape of the node 2 is determined.
resistor 13 so that the potential of node 1 is also the same potential as node 1.
The shapes of the resistor 14 and the resistor 14 are determined in advance. Then, when the power supply potential VDD increases and exceeds the reset release voltage value, the magnitude relationship between the potentials of the input terminals 51 and 52 is reversed. The output of the comparator 50 is applied with the power supply voltage,
A reset pulse is output until the reset release voltage is reached. This output is waveform-shaped by a waveform-shaping amplifier 60, and a reset signal is transmitted from the output to other circuits.

第4図は本発明の他の実施例であり、ダイオード手段と
してドレインとゲートを接続したP型MO3FET21
と抵抗22により温度依存性をもたない電位をコンパレ
ータ50の入力端子52に与えるものであり、原理は第
1図に示した実施例と同じである。なお、以上の実施例
では、ダイオード手段としてMOSFETを使用したが
、他にも、ダイオードとして動作するように接続された
バイポーラトランジスタを用いてもよい。
FIG. 4 shows another embodiment of the present invention, in which a P-type MO3FET 21 whose drain and gate are connected as a diode means.
A potential having no temperature dependence is applied to the input terminal 52 of the comparator 50 by the resistor 22 and the resistor 22, and the principle is the same as that of the embodiment shown in FIG. In the above embodiments, a MOSFET is used as the diode means, but a bipolar transistor connected to operate as a diode may also be used.

発明の詳細 な説明したように本発明は、電源電圧によって回路網に
制御用信号を出力する電源電圧検出回路において、リセ
ット電圧値を仕様に合わせて定めることができ、かつ温
度依存性を最小限にすることを可能にしている。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention enables a reset voltage value to be determined according to specifications in a power supply voltage detection circuit that outputs a control signal to a circuit network based on the power supply voltage, and also minimizes temperature dependence. It makes it possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電源電圧検出回路の
回路図、第2図は本発明の一実施例における電源電圧検
出回路の電圧検出部のノード電位の特性図、第3図は本
発明の一実施例における電源電圧検出回路のコンパレー
タ入力端子51.52に入力される電圧値と電源電圧の
関係を示す特性例の電源電圧検出回路の回路図、第6図
は従来例の電源電圧検出回路のコンパレータ入力端子に
入力される電圧値と電源電圧の関係を示す特性図である
。 11・・・・・・N型MO8FET、12,13.14
・・・・・・抵抗、50・・・・・・コンパレータ、6
0・・・・・・波形整形用増幅器、VOO・・・・・・
電源電圧、51.52・・・・・・コンパレータの入力
端子。
FIG. 1 is a circuit diagram of a power supply voltage detection circuit according to an embodiment of the present invention, FIG. 2 is a characteristic diagram of the node potential of the voltage detection section of the power supply voltage detection circuit according to an embodiment of the present invention, and FIG. A circuit diagram of a power supply voltage detection circuit as a characteristic example showing the relationship between the voltage value input to the comparator input terminals 51 and 52 of the power supply voltage detection circuit in one embodiment of the invention and the power supply voltage, FIG. 6 is a circuit diagram of the power supply voltage detection circuit of the conventional example. FIG. 3 is a characteristic diagram showing the relationship between the voltage value input to the comparator input terminal of the detection circuit and the power supply voltage. 11...N-type MO8FET, 12, 13.14
...Resistance, 50 ...Comparator, 6
0... Waveform shaping amplifier, VOO...
Power supply voltage, 51.52...Comparator input terminal.

Claims (1)

【特許請求の範囲】[Claims] 一方の電源端子と第1のノードとの間に順方向に接続さ
れたダイオード手段と、前記第1のノードと他方の電源
端子との間に接続された第1の抵抗手段と、前記一方の
電源端子と第2のノードとの間に接続された第2の抵抗
手段と、前記第2のノードと前記他方の電源端子との間
に接続された第3の抵抗手段と、前記第1のノードの電
位と前記第2のノードの電位の一致を検出する手段を有
し、前記第1のノードの電位が温度依存性をもたなくな
る電位に達したときに前記第2のノードの電位もその電
位となるべく前記第2の抵抗手段と前記第3の抵抗手段
の抵抗値が選択されている電源電圧検出回路。
a diode means connected in a forward direction between one power supply terminal and a first node; a first resistance means connected between the first node and the other power supply terminal; a second resistance means connected between the power supply terminal and the second node; a third resistance means connected between the second node and the other power supply terminal; means for detecting coincidence of the potential of the node and the potential of the second node, and when the potential of the first node reaches a potential that has no temperature dependence, the potential of the second node also increases. A power supply voltage detection circuit in which resistance values of the second resistor means and the third resistor means are selected so as to attain that potential.
JP2007444A 1990-01-17 1990-01-17 Source voltage detecting circuit Pending JPH03211472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007444A JPH03211472A (en) 1990-01-17 1990-01-17 Source voltage detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007444A JPH03211472A (en) 1990-01-17 1990-01-17 Source voltage detecting circuit

Publications (1)

Publication Number Publication Date
JPH03211472A true JPH03211472A (en) 1991-09-17

Family

ID=11666017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007444A Pending JPH03211472A (en) 1990-01-17 1990-01-17 Source voltage detecting circuit

Country Status (1)

Country Link
JP (1) JPH03211472A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079947A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Supply voltage detection circuit
JP2012107982A (en) * 2010-11-17 2012-06-07 Fujitsu Semiconductor Ltd Power supply voltage determination circuit
WO2013042285A1 (en) * 2011-09-22 2013-03-28 パナソニック株式会社 Voltage detecting circuit and voltage regulator apparatus provided with same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079947A (en) * 2007-09-26 2009-04-16 Fujitsu Microelectronics Ltd Supply voltage detection circuit
JP2012107982A (en) * 2010-11-17 2012-06-07 Fujitsu Semiconductor Ltd Power supply voltage determination circuit
WO2013042285A1 (en) * 2011-09-22 2013-03-28 パナソニック株式会社 Voltage detecting circuit and voltage regulator apparatus provided with same
JPWO2013042285A1 (en) * 2011-09-22 2015-03-26 パナソニックIpマネジメント株式会社 Voltage detection circuit and voltage regulator device including the same

Similar Documents

Publication Publication Date Title
JP2760594B2 (en) Temperature threshold detection circuit
US5485111A (en) Power on reset circuit with accurate detection at low voltages
JP2592234B2 (en) Semiconductor device
US20020125942A1 (en) Comparator circuit
US5191235A (en) Semiconductor integrated circuit device having substrate potential detection circuit
US6593790B2 (en) Power-up/power-down detection circuit
KR960006278A (en) Power Out Reset System
KR20020072041A (en) Reference voltage generator
JP3800115B2 (en) Load drive circuit with overcurrent detection function
US6198312B1 (en) Low level input voltage comparator
JPH04345208A (en) Power-on reset circuit
JPH11103227A (en) Output amplitude adjusting circuit
US20150260802A1 (en) Voltage detection circuit
JPH03211472A (en) Source voltage detecting circuit
JP3249608B2 (en) Integrated comparator circuit
US10514306B2 (en) Overheat detection circuit, overheat protection circuit, and semiconductor device
JPH027615A (en) Power supply voltage detection circuit
JPH04288609A (en) Supply voltage detecting circuit
JPH11134051A (en) Reference voltage circuit
US5339045A (en) Comparator start-up arrangement
US5719524A (en) Circuit having an input terminal for controlling two functions
JP2753144B2 (en) Potential generation circuit
JPH03267767A (en) Detecting circuit for power source voltage
JPH03238513A (en) Bias circuit
JP2004072681A (en) Comparator circuit and semiconductor integrated circuit having same