JPH03210404A - Shape sensor - Google Patents

Shape sensor

Info

Publication number
JPH03210404A
JPH03210404A JP557890A JP557890A JPH03210404A JP H03210404 A JPH03210404 A JP H03210404A JP 557890 A JP557890 A JP 557890A JP 557890 A JP557890 A JP 557890A JP H03210404 A JPH03210404 A JP H03210404A
Authority
JP
Japan
Prior art keywords
conductive rubber
layer
electrodes
rubber layer
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP557890A
Other languages
Japanese (ja)
Inventor
Yoshinori Hayashi
好典 林
Akihito Inoki
猪木 昭仁
Masayoshi Yamashita
正芳 山下
Takeshi Suzuki
武 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP557890A priority Critical patent/JPH03210404A/en
Publication of JPH03210404A publication Critical patent/JPH03210404A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely keep a restoring property over a long period by using a laminate composed of a conductive rubber and an elastic body. CONSTITUTION:A shape sensor 1 has a conductive rubber layer 2 to which electrodes P1-Pn are fixedly adhered spacing each other in a longitudinal direction on a plurality of portions. An elastic layer 4 is laminated over the electrodes P1-Pn via an insulating layer 3. The electrodes P1-Pn are provided by adhering conductors such as copper plates to the surface of the conductive rubber layer 2 via a conductive adhesive and electrically insulated from one another by the insulating layer 3. The elastic layer 4 is made of an elastic material with a large Young's modulus such as common steel or spring steel. The elastic layer 4 is fixedly adhered to the conductive rubber layer 2 and elastically deformed with the layer 2. The quantity of deformation is measured by deforming the shape sensor 1 adhered to an object to be measured and measuring a resistance of the electrodes P1 through Pn.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は物体の形状変化を電気信号として検出する形状
センサに関するものである。
The present invention relates to a shape sensor that detects changes in the shape of an object as electrical signals.

【従来の技術】[Conventional technology]

従来、上記形状センサとして、測定対象となる物体の表
面などに貼付された導電性ゴムが物体の変形とともに変
形することによる電気抵抗の変化を、導電性ゴムの両端
に設けられた一対の電極の間で測定する方式のものが知
られている。
Conventionally, the shape sensor described above uses a pair of electrodes installed at both ends of the conductive rubber to detect changes in electrical resistance caused by the deformation of conductive rubber attached to the surface of the object to be measured as the object deforms. A method is known that measures the distance between the two.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記方式では導電性ゴム自身の特性に起
因して次のような問題がある。 ■導電性ゴムの両端の電極間の抵抗変化として信号を取
り出しているため、物体の細かい形状変化を正確に測定
することができない。 ■導電性ゴムの復元力には限りがあるから、使用条件に
より、大きな変形があった場合、あるいは、経時的に復
元力が劣化した場合、零点が変化して、その後の測定の
誤差となることが避けられない。 本発明は上記事情に鑑みてなされたもので、細かな形状
変化を測定することができ、かつ、確実に零点を維持し
得る形状センサを得ることを目的とするものである。
However, the above method has the following problems due to the characteristics of the conductive rubber itself. ■Since the signal is extracted as a change in resistance between the electrodes at both ends of the conductive rubber, it is not possible to accurately measure minute changes in the shape of an object. ■The restoring force of conductive rubber is limited, so if there is large deformation due to usage conditions, or if the restoring force deteriorates over time, the zero point will change, causing errors in subsequent measurements. That is unavoidable. The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a shape sensor that can measure minute changes in shape and can reliably maintain the zero point.

【課題を解決するための手段】[Means to solve the problem]

上記目的を達成するため、本発明は、測定対象と一体に
変形してそめ変形を電気信号に変換する形状センサにお
いて、測定対象と一体に変形するとともに、その変形量
に応じて電気抵抗が変化する導電性コム層と、該導電性
ゴム層の面方向に沿う直線]lに相互に間隔をおいて固
着され、それぞれ周行箇所の導電性コム層に電気的に接
続された複数の電極と、該電極に対して電気的に絶縁さ
れて前記導電性コム層に積層され、少なくとも前記導電
性ゴム層よりヤング率の大きな材料により形成された弾
性体とから構成してなるものである。
To achieve the above object, the present invention provides a shape sensor that deforms integrally with the object to be measured and converts the deformation into an electrical signal. a conductive comb layer, and a straight line along the surface direction of the conductive rubber layer; a plurality of electrodes fixed at intervals from each other and electrically connected to the conductive comb layer at a circumferential location; , an elastic body that is electrically insulated from the electrode and laminated on the conductive comb layer, and made of a material having a Young's modulus larger than at least the conductive rubber layer.

【作用】[Effect]

上記構成であると、導電性コム層にこれよりもヤング率
の大きな弾性体が積層されているから、被測定物ととも
に導電性コム層が大きく変形した場合にも、弾性体の復
帰どともに前記導電性コt・層をもとの形状に復元させ
ることができる。また、導電性ゴム層に直線状に複数の
電極が取り付けられているから、前記直線と交差する方
向へ導電性ゴム層が変形した場合に、その変形を前記複
数の電極の相互間でそれぞれ電気抵抗の変化として検出
することができる。
With the above configuration, since an elastic body with a larger Young's modulus is laminated on the conductive comb layer, even if the conductive comb layer is significantly deformed together with the object to be measured, the elastic body returns and The conductive layer can be restored to its original shape. In addition, since a plurality of electrodes are attached to the conductive rubber layer in a straight line, when the conductive rubber layer is deformed in a direction intersecting the straight line, the deformation is compensated for by electric current between the plurality of electrodes. It can be detected as a change in resistance.

【実施例】【Example】

以下、第1図ないし第3図を参照して本発明の詳細な説
明する。 第1図は形状センサ1の構成を示すものである。 この形状センサIは、導電性ゴム層2を有し、この導電
性ゴム層2には、電極P、〜Pnが、導電性コム層2の
長さ方向に相互に間隔をおいて複数箇所に固着され、さ
らに、これらの電極[)、〜Pnの上には、絶縁層3を
介して弾性層4が積層されている。 前記電極P、〜P、は、例えば導電性ゴムを塗布するこ
とによって、あるいは、銅板などの導電体を導電性接着
剤を介して接着することによって前記導電性ゴム層2の
表面に機械的および電気的に接続されている。またこれ
らのs極p、〜P、は、その上に積層して固着された絶
縁層3によって互いに電気的に絶縁されて、さらに、そ
の上の弾性層4に固着されている。また弾性層4は、例
えば普通鋼、バネ鋼などのヤング率の大きな弾性材料か
らなり、前記絶縁層3および電極P1〜Pnを介して前
記導電性ゴム2に固着されて、該導電性ゴム2と一体に
弾性変形することができるようになっている。 なお、前記導電性ゴム2は、第2図に示すように、応力
ゼロの点く歪みゼロの点)を原点として、圧縮応力の増
大とともに電気抵抗が増大し、また、引っ張り応力の増
大とともに電気抵抗が減少する特性を持っている。 次いで、第3図を整層して前記変形センサ1の電気抵抗
変化を測定する回路を説明する。 前記各電極P 、 −P 、は、スキャニング手段10
にそれぞれ接続されて、隣接する電極間の電気抵抗が順
次一定周期で測定されるようになっている。 スキャニング手段10によって測定された各区間の電気
抵抗の測定値は、A/D変換器11により変換された後
、CPU12に供給されており、このCPU12は、記
憶手段13に記憶された導電性ゴムの抵抗〜応力特性(
第2図に示す特性)に基づいて各区間についての電気抵
抗から応力(歪み)を演算し、この応力に基づいて各区
間の変形量を演算して、順次プロッター14へ記録させ
るようになっている。すなわち、各電極間の変形量をプ
ロッター14に順次プロットさせることにより、前記変
形センサ1が貼付された測定対象たる物体Aの変形量を
知ることができるようになっている。 そして、上記測定にあっては、弾性層4が導電性ゴム層
2に接着されて一体に変形するようになっているから、
導電性ゴム2が外力により変形した場合であっても、弾
性層4の弾性限度内の変形ならば、弾性層4の弾性力に
よって導電性ゴム層2にも元の形状に1飯元することが
でき、したがって、大きな変形が生じた場合にも、確実
に零点に復帰することができる。 なお、形状センサの積層構造は第1図に限定されるもの
ではなく、この実施例のように導電性ゴム〜電極〜絶縁
層〜弾性体を順次積層する構造に代えて、導電性ゴムの
一方の面に電極を設け、他方の面に弾性体を積層した構
造、あるいは、実施例のように導電性ゴムと弾性体とを
電極を介して固着した構造に代えて、電極が設けられた
部分以外で両者を固着した構造であってもよい。また、
形状センサの各区間から得られたデータを処理する回路
の具体的構成が第3図に限定されるものでないのはもち
ろんである。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 3. FIG. 1 shows the configuration of a shape sensor 1. As shown in FIG. This shape sensor I has a conductive rubber layer 2, and the conductive rubber layer 2 has electrodes P, ~Pn at multiple locations spaced apart from each other in the length direction of the conductive comb layer 2. Further, an elastic layer 4 is laminated on these electrodes [ ), ~Pn with an insulating layer 3 interposed therebetween. The electrodes P, ~P are formed by mechanically and mechanically applying the conductive rubber layer 2 to the surface of the conductive rubber layer 2, for example, by applying conductive rubber or by bonding a conductive material such as a copper plate with a conductive adhesive. electrically connected. Further, these S poles p, ~P, are electrically insulated from each other by an insulating layer 3 laminated and fixed thereon, and further fixed to an elastic layer 4 thereon. The elastic layer 4 is made of an elastic material with a large Young's modulus, such as ordinary steel or spring steel, and is fixed to the conductive rubber 2 via the insulating layer 3 and the electrodes P1 to Pn. It is designed so that it can be elastically deformed as one unit. As shown in FIG. 2, the electrical resistance of the conductive rubber 2 increases as the compressive stress increases, and the electrical resistance increases as the tensile stress increases, starting from the point of zero stress and zero strain. It has the property of reducing resistance. Next, a circuit for measuring the electrical resistance change of the deformation sensor 1 by aligning the layers in FIG. 3 will be explained. Each of the electrodes P, -P, is connected to the scanning means 10.
The electrical resistance between adjacent electrodes is sequentially measured at regular intervals. The measured value of the electrical resistance of each section measured by the scanning means 10 is converted by the A/D converter 11 and then supplied to the CPU 12. resistance ~ stress characteristics (
The stress (strain) is calculated from the electrical resistance for each section based on the characteristics shown in FIG. There is. That is, by sequentially plotting the amount of deformation between each electrode on the plotter 14, it is possible to know the amount of deformation of the object A to be measured to which the deformation sensor 1 is attached. In the above measurement, since the elastic layer 4 is bonded to the conductive rubber layer 2 and deforms as one,
Even if the conductive rubber 2 is deformed by an external force, if the deformation is within the elastic limit of the elastic layer 4, the conductive rubber layer 2 can be returned to its original shape by the elastic force of the elastic layer 4. Therefore, even if large deformation occurs, it is possible to reliably return to the zero point. Note that the laminated structure of the shape sensor is not limited to that shown in FIG. A structure in which an electrode is provided on one surface and an elastic body is laminated on the other surface, or a structure in which a conductive rubber and an elastic body are fixed via an electrode as in the example, a part where an electrode is provided. It is also possible to have a structure in which both are fixed together by other means. Also,
Of course, the specific configuration of the circuit for processing data obtained from each section of the shape sensor is not limited to that shown in FIG. 3.

【発明の効果】【Effect of the invention】

以上の説明で明らかなように、本発明は、導電性ゴムに
弾性体が積層されているから、この弾性体によって導電
性ゴムを確実に復元させて応力ゼロの状態とすることが
でき、また、一般に弾性体として用いられる普通鋼、ス
テンレス鋼などの材料は、導電性ゴムに比してそめ弾性
体としての特性が長期にわたって保存されるから、前記
復元性を長期に亙って確実に維持することができるとい
う効果を奏する。また、前記導電性ゴムの面方向に沿っ
て直線状に複数の電極を配置したから、これらの電極相
互間の電気抵抗を各区間で測定することにより、前記直
線と交差する方向への測定対象物の変形を細かく検出す
ることができるという効果を奏する。
As is clear from the above description, in the present invention, since the elastic body is laminated on the conductive rubber, the elastic body can reliably restore the conductive rubber to a state of zero stress. Compared to conductive rubber, materials such as ordinary steel and stainless steel that are generally used as elastic bodies retain their properties as elastic bodies for a long period of time, so they can reliably maintain the above-mentioned resilience over a long period of time. It has the effect of being able to In addition, since a plurality of electrodes are arranged in a straight line along the surface direction of the conductive rubber, by measuring the electrical resistance between these electrodes in each section, it is possible to measure the object to be measured in the direction intersecting the straight line. This has the effect that deformation of objects can be detected in detail.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の一実施例を示すもので、
第1図は一部を断面とした斜視図、第2図は導電性ゴム
の応力〜電気抵抗特性を示す図表、第3図は形状センサ
から得られた信号を処理する回路のブロック図である。 l・・・・・・形状センサ、2・・・・・・導電性ゴム
層、3・・・・・・絶縁層、4・・・・・・弾性体、l
O・・・・・・スキャニング手段、P1〜P、・・・・
・・電極、A・・・・・・測定対象。 出顆人  ヤ マ ハ 株 式 会 社3:絶峰1 第1図 4:弾性体 第2図
1 to 3 show an embodiment of the present invention,
Figure 1 is a partially sectional perspective view, Figure 2 is a chart showing the stress-electrical resistance characteristics of conductive rubber, and Figure 3 is a block diagram of a circuit that processes signals obtained from a shape sensor. . l... Shape sensor, 2... Conductive rubber layer, 3... Insulating layer, 4... Elastic body, l
O...Scanning means, P1 to P,...
...Electrode, A...Measurement target. Yamaha Co., Ltd. Company 3: Zeppou 1 Figure 1 4: Elastic body Figure 2

Claims (1)

【特許請求の範囲】 測定対象と一体に変形してそめ変形を電気信号に変換す
る形状センサにおいて、 測定対象と一体に変形するとともに、その変形量に応じ
て電気抵抗が変化する導電性ゴム層と、該導電性ゴム層
の面方向に沿う直線上に相互に間隔をおいて固着され、
それぞれ固着箇所の導電性ゴム層に電気的に接続された
複数の電極と、該電極に対して電気的に絶縁されて前記
導電性ゴム層に積層され、少なくとも前記導電性ゴム層
よりヤング率の大きな材料により形成された弾性体と、 からなることを特徴とする形状センサ。
[Claims] In a shape sensor that deforms integrally with the object to be measured and converts the deformation into an electrical signal, a conductive rubber layer deforms integrally with the object to be measured and whose electrical resistance changes according to the amount of deformation. and fixed to each other at intervals on a straight line along the surface direction of the conductive rubber layer,
A plurality of electrodes are electrically connected to the conductive rubber layer at the fixing location, and the electrodes are electrically insulated from the electrodes and laminated to the conductive rubber layer, and have a Young's modulus at least lower than that of the conductive rubber layer. A shape sensor characterized by comprising: an elastic body made of a large material;
JP557890A 1990-01-12 1990-01-12 Shape sensor Pending JPH03210404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP557890A JPH03210404A (en) 1990-01-12 1990-01-12 Shape sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP557890A JPH03210404A (en) 1990-01-12 1990-01-12 Shape sensor

Publications (1)

Publication Number Publication Date
JPH03210404A true JPH03210404A (en) 1991-09-13

Family

ID=11615110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP557890A Pending JPH03210404A (en) 1990-01-12 1990-01-12 Shape sensor

Country Status (1)

Country Link
JP (1) JPH03210404A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206907A (en) * 2001-01-10 2002-07-26 Central Res Inst Of Electric Power Ind Rockbed crack measuring method and device thereof
JP2007003436A (en) * 2005-06-27 2007-01-11 Tokyo Electric Power Co Inc:The Sensor for crack depth measuring device and crack depth measuring device
JP2007121159A (en) * 2005-10-28 2007-05-17 Tokai Rubber Ind Ltd Device for detecting displacement amount

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002206907A (en) * 2001-01-10 2002-07-26 Central Res Inst Of Electric Power Ind Rockbed crack measuring method and device thereof
JP4562158B2 (en) * 2001-01-10 2010-10-13 財団法人電力中央研究所 Rock crack measuring method and apparatus
JP2007003436A (en) * 2005-06-27 2007-01-11 Tokyo Electric Power Co Inc:The Sensor for crack depth measuring device and crack depth measuring device
JP2007121159A (en) * 2005-10-28 2007-05-17 Tokai Rubber Ind Ltd Device for detecting displacement amount

Similar Documents

Publication Publication Date Title
JPH0531540Y2 (en)
US11301077B2 (en) Piezoelectric sensing apparatus and applications thereof
US4555954A (en) Method and apparatus for sensing tactile forces
US5652395A (en) Bending sensor
WO2007135895A1 (en) Array type capacitance sensor
CA2075145A1 (en) Corrosion sensors
WO2002077615A3 (en) Sensor array and method for electrochemical corrosion monitoring
CN108931292B (en) Method for calibrating at least one sensor
JP2007315875A (en) Pressure-sensitive sensor
US20090158856A1 (en) Capacitive strain gauge system and method
JP2006226858A (en) Fluctuation load sensor, and tactile sensor using the same
JPH05215766A (en) Inspectable acceleration sensor
US20190186983A1 (en) WIM Sensor and Method for Producing the WIM Sensor
US2986928A (en) Apparatus for the measurement of crack propagation in test panels and the like
JPH03210404A (en) Shape sensor
US5070737A (en) Transducer which determines a position of an object by modifying differential pulses
US7752927B2 (en) Cable-type load sensor
GB2230094A (en) Force transducers for use in arrays
CN115768994A (en) Force-sensing device, vehicle braking device comprising such a force-sensing device and method for producing the same
JPH0283425A (en) Piezoelectric type pressure distribution sensor
JP2001074569A (en) Planar capacitance type twist strain sensor
GB2092409A (en) Ultrasonic transducer
JPH0226723B2 (en)
KR101996542B1 (en) Structural demage monitoring sensor with aligning function and aligning method thereof
JP2000230868A (en) Pressure measuring sensor