JPH03209834A - Manufacture of mis semiconductor device - Google Patents

Manufacture of mis semiconductor device

Info

Publication number
JPH03209834A
JPH03209834A JP479590A JP479590A JPH03209834A JP H03209834 A JPH03209834 A JP H03209834A JP 479590 A JP479590 A JP 479590A JP 479590 A JP479590 A JP 479590A JP H03209834 A JPH03209834 A JP H03209834A
Authority
JP
Japan
Prior art keywords
film
polycrystalline silicon
titanium
titanium silicide
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP479590A
Other languages
Japanese (ja)
Other versions
JP2917348B2 (en
Inventor
Toshihiko Higuchi
俊彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP479590A priority Critical patent/JP2917348B2/en
Publication of JPH03209834A publication Critical patent/JPH03209834A/en
Application granted granted Critical
Publication of JP2917348B2 publication Critical patent/JP2917348B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To form a titanium silicide film in a self alignment manner and at the same time, to inhibit an increase in the contact resistance of the titanium silicide film with a polycrystalline silicon film by a method wherein impurity ions are implanted in the silicon film with phosphorus diffused therein to bring the vicinity of the surface of the silicon film into an amorphous state. CONSTITUTION:A polycrystalline silicon film 3 is formed on a substrate 1 via a gate insulating film 2 and thereafter, phosphorus is diffused in the film 3 and moreover, impurity ions are implanted to bring the vicinity of the surface of the film 3 into an amorphous state. After that, the film 3 is processed into a gate electrode and a wiring, an insulating film is deposited thereon and the whole surface of the substrate 1 is subjected to anisotropic etching to form sidewalls 5 consisting of the insulating film on the side surfaces of the gate electrode. Then, a titanium metal film 6 is formed on the whole surface of the substrate 1, a heating treatment is performed to change titanium into titanium silicide 7 and at the same time, a compound and a metal other than the titanium silicide are selectively removed. Thereby, a titanium silicide film 7 is formed in a selfalignment manner and at the same time, the contact resistance of the film 3 with the titanium silicide film 7 can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シリコン表面にチタンシリサイドを選択的に
形成した半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device in which titanium silicide is selectively formed on a silicon surface.

[従来の技術] 従来のシリコンの表面にチタンシリサイドを選択的に形
成した構造を有する半導体装置の製造方法において、特
にゲート電極として多結晶シリコンを用い該ゲート電極
の多結晶シリコンの表面にチタンシリサイドを形成する
半導体装置の製造方法においては、多結晶シリコンに導
電性をもたす力めに多結晶シリコン中に不純物として燐
を拡散していたがこの’t14?M度が高くなって多結
晶シリコン中に過飽和になってくるとチタンとシリコン
の反応が抑制されシソサイドになり難くなるため、従来
技術の半導体装置の製造方法では多結晶シリコン中に拡
散する燐の濃度を低くしていた。
[Prior Art] In a conventional method for manufacturing a semiconductor device having a structure in which titanium silicide is selectively formed on the surface of silicon, in particular, polycrystalline silicon is used as a gate electrode and titanium silicide is formed on the surface of the polycrystalline silicon of the gate electrode. In the manufacturing method of semiconductor devices that form semiconductor devices, phosphorus is diffused as an impurity into polycrystalline silicon in order to make it conductive, but this 't14? When the M degree increases and becomes supersaturated in polycrystalline silicon, the reaction between titanium and silicon is suppressed and formation of sisoside becomes difficult. The concentration was kept low.

[発明が解決しようとする課題及び目的]しかしながら
前述の従来技術の製造方法を用いて相補型のMIS型ト
ランジスタを形成すると、ゲート電極としての多結晶シ
リコン中の燐?M度が低いため、Pチャンネル側にソー
ス・ドレインにする不純物拡散層を形成するときに注入
されるP型の不純物であるホウ素がゲート電極中にも注
入されるためN型の不純物の烟が発生するキャリアとし
ての電子数が減少しゲート電極の抵抗が高くなったり、
トランジスタのスイッチング特性であるしきい値電圧が
変化する問題を有していた。またゲート電極中のキャリ
アの濃度が低くいため多結晶シリコン表面に形成したチ
タンシリサイドと多結晶シリコンの接触抵抗も高くなり
半導体装置の動作不良の原因になることや半導体装置の
高速動作をできなくする問題点を有していた。
[Problems and Objects to be Solved by the Invention] However, when a complementary MIS transistor is formed using the manufacturing method of the prior art described above, phosphorus in polycrystalline silicon as a gate electrode is removed. Due to the low M degree, boron, which is a P-type impurity that is injected when forming an impurity diffusion layer for the source and drain on the P-channel side, is also injected into the gate electrode, which causes smoke from N-type impurities. The number of electrons generated as carriers decreases, and the resistance of the gate electrode increases,
There was a problem in that the threshold voltage, which is the switching characteristic of the transistor, changed. Furthermore, since the concentration of carriers in the gate electrode is low, the contact resistance between the titanium silicide formed on the polycrystalline silicon surface and the polycrystalline silicon also increases, causing malfunction of the semiconductor device and making it impossible for the semiconductor device to operate at high speed. It had some problems.

そこで、本発明はこのような課題を解決しようとするも
ので゛、その目的とするところは、ゲート電極としての
多結晶シリコン表面にチタンシリサイドを自己整合的に
形成し同時にゲート電極の配線抵抗の増加やトランジス
タのしきい値電圧の変化、チタンシリサイドと多結晶シ
リコンの接触抵抗の増加を抑えた半導体装置の製造方法
を提供するところにある。
Therefore, the present invention aims to solve these problems.The purpose of the present invention is to form titanium silicide in a self-aligned manner on the surface of polycrystalline silicon as a gate electrode, and at the same time to reduce the wiring resistance of the gate electrode. It is an object of the present invention to provide a method for manufacturing a semiconductor device in which increase in the threshold voltage of a transistor and increase in contact resistance between titanium silicide and polycrystalline silicon are suppressed.

[課題を解決するための手段] 本発明の半導体装置の製造方法は、露出した多結晶シリ
コン表面にチタンシリサイドを自己整合的に形成する半
導体装置の製造方法において、半導体基板上にゲート絶
縁膜を介して多結晶シリコン膜を形成する工程と、該多
結晶シリコン中に燐を拡散する工程と、烟を拡散した多
結晶シリコン膜に不純物イオンをイオン注入することに
より該多結晶シリコン膜の表面近傍をアモルファス化す
る工程と、該多結晶シリコン膜をフォトリソ技術とエツ
チング技術によりゲート電極および配線に加工する工程
と、該ゲート電極および配線を形成した半導体基板上に
絶縁膜を堆積し、前記半導体基板全面を異方性エツチン
グする事により前記ゲート電極側面に絶縁膜のサイドウ
オールを形成する工程と、該サイドウオールを形成した
半導体基板全面にチタン金属膜を形成する工程と、該チ
タン金属膜を形成した半導体基板を加熱処理することに
より露出したシリコン表面および前記ゲート電極上のチ
タンをチタンシリサイドに変化させる工程と、該チタン
シリサイド以外のチタン化合物及びチタン金属を選択的
に除去する工程からなることを特徴とする。
[Means for Solving the Problems] A method for manufacturing a semiconductor device of the present invention includes forming a gate insulating film on a semiconductor substrate in a method for manufacturing a semiconductor device in which titanium silicide is formed on an exposed polycrystalline silicon surface in a self-aligned manner. a process of forming a polycrystalline silicon film through the polycrystalline silicon film, a process of diffusing phosphorus into the polycrystalline silicon, and a process of ion-implanting impurity ions into the polycrystalline silicon film into which smoke has been diffused, amorphous, processing the polycrystalline silicon film into gate electrodes and interconnections by photolithography and etching techniques, depositing an insulating film on the semiconductor substrate on which the gate electrodes and interconnections are formed, and forming the semiconductor substrate. forming a side wall of an insulating film on the side surface of the gate electrode by anisotropic etching the entire surface; forming a titanium metal film on the entire surface of the semiconductor substrate on which the side wall has been formed; and forming the titanium metal film. The method includes a step of heat-treating the semiconductor substrate exposed to the exposed silicon surface and the titanium on the gate electrode to change it into titanium silicide, and a step of selectively removing titanium compounds and titanium metal other than the titanium silicide. Features.

また前記不純物イオンとしてアルゴンイオン、または燐
イオン、または砒素イオン、またはホウ素イオンを用い
ることを特徴とする。
Further, the method is characterized in that argon ions, phosphorus ions, arsenic ions, or boron ions are used as the impurity ions.

[実施例コ 第1図(a)〜(g)は本発明の実施例であり、本発明
の半導体装置の製造方法を工程を追って示した半導体装
置の断面図である。以下この図にしたがって本発明の半
導体装置の製造方法をを実施例として説明する。
Embodiment FIGS. 1(a) to 1(g) show an embodiment of the present invention, and are cross-sectional views of a semiconductor device showing step by step the method for manufacturing a semiconductor device of the present invention. A method for manufacturing a semiconductor device according to the present invention will be described below as an example with reference to this figure.

第1図(a)に示すように半導体装置のシリコン基板1
上にゲート絶縁膜2を介して多結晶シリコン膜3を形成
する。本実施例ではこの第1の多結晶シリコン膜の膜厚
は4000人とする。多結晶シリコン膜は不純物を含ま
ない状態ではほとんど導電性はない。そこで本実施例と
しては第1図(b)で示すように半導体基板をオキシ塩
化燐雰囲気中において900°Cで加熱処理することに
より多結晶シリコン膜中に不純物として燐を熱拡散する
ことによりN型の半導体として導電性をもたせた。熱拡
散により注入される燐の濃度はPチャンネルのソース・
ドレインの不純物拡散層形成のために注入されるホウ素
の濃度より1桁以上高く拡散しておく。このように高い
濃度に燐を含んでいる多結晶シリコンに対してチタンは
シリサイドを作りにくい。次に第1図(C)”で示すよ
うに燐を拡散した多結晶シリコン膜1中に不純物イオン
をイオン注入する。本実施例では一例としてアルゴンイ
オンをイオン注入することにする。注入されたアルゴン
イオンは多結晶シリコンの結晶性を破壊し非晶質化する
ため結果として多結晶シリコンの表面近傍はアモルファ
ス化したシリコン層4となる。アモルファス化したシリ
コンはチタンと反応してチタンシリサイドになり易い。
As shown in FIG. 1(a), a silicon substrate 1 of a semiconductor device
A polycrystalline silicon film 3 is formed thereon with a gate insulating film 2 interposed therebetween. In this embodiment, the thickness of this first polycrystalline silicon film is 4000. A polycrystalline silicon film has almost no conductivity when it does not contain impurities. Therefore, in this embodiment, as shown in FIG. 1(b), the semiconductor substrate is heat-treated at 900°C in a phosphorus oxychloride atmosphere to thermally diffuse phosphorus as an impurity into the polycrystalline silicon film. It has conductivity as a type of semiconductor. The concentration of phosphorus injected by thermal diffusion is
The concentration of boron is diffused at least one order of magnitude higher than the concentration of boron implanted to form the impurity diffusion layer of the drain. In contrast to polycrystalline silicon, which contains such a high concentration of phosphorus, titanium is difficult to form silicide. Next, impurity ions are implanted into the polycrystalline silicon film 1 in which phosphorus is diffused, as shown in FIG. Argon ions destroy the crystallinity of polycrystalline silicon and make it amorphous, resulting in an amorphous silicon layer 4 near the surface of the polycrystalline silicon.The amorphous silicon reacts with titanium and becomes titanium silicide. easy.

この多結晶シリコン膜とアモルファスシリコン層をフォ
トリソ技術及びエツチング技術によりゲート電極および
配線以外の部分を除去することにより第1図(d)の様
に半導体基板上にゲート電極および配線を形成する。次
にこの半導体基板上の全面に絶縁膜を形成する。一実施
例としてこの絶縁膜は4oo’c程度の温度での化学的
気層成長法による5i02を主成分とする絶縁膜で膜厚
は5000人で形成した。この絶縁膜を全面に渡ってフ
ロン系ガスのプラズマ中での異方性エツチングによりケ
ート電極および配線の側面のみ残しそのほかの部分は除
去することにより、第1図(e)に示すようにゲート電
極および配線の側面に絶縁膜からなるサイドウオール5
を形成する。この後第1図(f)に示すように半導体基
板全面にチタン金属膜6を形成する。本実施例としてこ
のチタン金属膜の膜厚は500人である。この半導体基
板に加熱処理を行なうことによりシリコンとチタンを反
応させシリコンと接触している部分のチタンを選択的に
チタンシリサイドに変化させる。本発明の実施例として
は、窒素ガス中でのハロゲンランプによる光照射による
短時間アニールにより30秒間750°Cに半導体基板
表面を加熱する。この加熱によりアモルファス化した多
結晶シリコン表面のシリコン層および半導体基板のシリ
コンでシリコン表面がチタンと接触している部分が反応
してチタンシリサイドとなる。またサイドウオールの絶
縁膜上および素子分離の絶縁膜上のチタンのほとんどは
窒素と反応して窒化チタンとなる。また多少はチタンの
まま残っているがチタンシリサイド以外のチタン化合物
はアンモニア水と過酸化水素水の混合液で溶かすことが
できる。本実施例ではこの方法を用いてチタンシリサイ
ドのみを残しサイドウオール上や素子分離絶縁膜上のチ
タン金属およびチタン化合物を除去することにより第1
図(g)に示すように露出したシリコン基板上、および
ゲート電極と配線である多結晶シリコン上に選択的にチ
タンシリサイド7を形成することがで9− きた。
The polycrystalline silicon film and the amorphous silicon layer are removed by photolithography and etching to form gate electrodes and wiring on the semiconductor substrate, as shown in FIG. 1(d), by removing portions other than the gate electrode and wiring. Next, an insulating film is formed over the entire surface of this semiconductor substrate. As an example, this insulating film was formed by chemical vapor deposition at a temperature of about 400° C. to a thickness of 5000 by using 5,000 people. By anisotropically etching the entire surface of this insulating film in a fluorocarbon-based gas plasma, leaving only the side surfaces of the gate electrode and wiring and removing the other parts, the gate electrode is etched as shown in Figure 1(e). and a side wall 5 made of an insulating film on the side of the wiring.
form. Thereafter, as shown in FIG. 1(f), a titanium metal film 6 is formed over the entire surface of the semiconductor substrate. In this example, the thickness of this titanium metal film is 500 mm. By subjecting this semiconductor substrate to heat treatment, silicon and titanium are reacted, and the titanium in the portion that is in contact with silicon is selectively converted into titanium silicide. As an example of the present invention, the surface of the semiconductor substrate is heated to 750° C. for 30 seconds by short-time annealing by light irradiation with a halogen lamp in nitrogen gas. As a result of this heating, the silicon layer on the polycrystalline silicon surface which has become amorphous and the silicon of the semiconductor substrate where the silicon surface is in contact with titanium react to form titanium silicide. Further, most of the titanium on the sidewall insulating film and the element isolation insulating film reacts with nitrogen to become titanium nitride. Although some titanium remains as it is, titanium compounds other than titanium silicide can be dissolved with a mixture of aqueous ammonia and hydrogen peroxide. In this example, this method is used to remove titanium metal and titanium compounds on the sidewalls and element isolation insulating film, leaving only titanium silicide.
As shown in Figure (g), titanium silicide 7 could be selectively formed on the exposed silicon substrate and on the polycrystalline silicon that is the gate electrode and wiring.

以上実施例として述べてきた本発明の半導体装置の製造
方法によれば、不純物イオンのイオン注入によりアモル
ファス化したシリコン層4はチタンと反応しやすくチタ
ンシリサイドになりやすいのに対し多結晶シリコン膜3
は不純物として烟を多量に含んでいるためチタンとの反
応が抑制される。すなわちアモルファス化したシリコン
層4をすべてチタンシリサイド7にでき、かつ多結晶シ
リコン膜3はそのまま残るためゲート電極上および配線
上にチタンシリサイドを制御性よく形成することができ
る。さらにゲート電極および配線上に形成されたチタン
シリサイドは高濃度に燐を含んだ多結晶シリコンと接触
しているため従来技術の課題であったチタンシリサイド
と多結晶シリコンの接触抵抗は低減している。
According to the method of manufacturing a semiconductor device of the present invention described above as an embodiment, the silicon layer 4 made amorphous by implantation of impurity ions easily reacts with titanium and easily becomes titanium silicide, whereas the polycrystalline silicon film 3
contains a large amount of smoke as an impurity, which inhibits the reaction with titanium. That is, since the amorphous silicon layer 4 can be entirely made into titanium silicide 7 and the polycrystalline silicon film 3 remains as it is, titanium silicide can be formed on the gate electrode and wiring with good controllability. Furthermore, since the titanium silicide formed on the gate electrode and wiring is in contact with polycrystalline silicon containing a high concentration of phosphorus, the contact resistance between titanium silicide and polycrystalline silicon, which was a problem with conventional technology, has been reduced. .

さらに以上の実施例で述べてきたように多結晶シリコン
は高濃度に燐を含んでいるためPチャンネルのソース・
ドレインを形成するための不純物であるホウ素の注入拡
散によっても燐の濃度はは10− とんと変化しないためPチャンネル側のゲート電極の抵
抗が高くなったり、トランジスタのしきい値電圧が変化
することはなくなった。
Furthermore, as described in the above embodiments, polycrystalline silicon contains a high concentration of phosphorus, so it can be used as a source of P channel.
Even with the implantation and diffusion of boron, which is an impurity for forming the drain, the concentration of phosphorus does not change significantly, so the resistance of the gate electrode on the P-channel side does not increase or the threshold voltage of the transistor changes. lost.

また以上の実施例においては多結晶シリコンの表面近傍
の結晶性を破壊してアモルファス化する不純物イオンと
してアルゴンイオンを例に説明してきたがアルゴンイオ
ンの他に燐や砒素、ホウ素などのイオンを用いても特に
以上の実施例で述べてきた作用と異なるものではなく、
本発明の半導体装置の製造方法と異なるものではない。
Furthermore, in the above embodiments, argon ions were used as an example of impurity ions that destroy the crystallinity near the surface of polycrystalline silicon and make it amorphous, but in addition to argon ions, ions of phosphorus, arsenic, boron, etc. However, the effect is not particularly different from that described in the above embodiments,
This method is not different from the method for manufacturing a semiconductor device of the present invention.

[発明の効果] 以上述べたように、本発明によれば以下に列挙するよう
な効果を有する。
[Effects of the Invention] As described above, the present invention has the following effects.

(1)ゲート電極として高濃度に燐を含んだ多結晶シリ
コン上にチタンシリサイドを制御性よく形成することが
できた。
(1) Titanium silicide could be formed with good controllability on polycrystalline silicon containing a high concentration of phosphorus as a gate electrode.

(2)またゲート電極および配線である多結晶シリコン
とチタンシリサイドとの接触抵抗を低減さ11− せるごとができた。このことは半導体装置の高速動作に
おいて非常に有利である。
(2) It was also possible to reduce the contact resistance between the polycrystalline silicon and titanium silicide, which are the gate electrode and wiring. This is very advantageous in high-speed operation of semiconductor devices.

(3)従来技術におけるシリコン表面に自己整合的にチ
タンシリサイドを形成する技術で問題であったPチャン
ネル側のゲート電極の抵抗が高くなる問題やPチャンネ
ルトランジスタのしきい値電圧が変化する問題を解決で
きた。
(3) Solved the problems of the conventional technology of forming titanium silicide on the silicon surface in a self-aligned manner, such as the increase in resistance of the gate electrode on the P-channel side and the change in the threshold voltage of the P-channel transistor. I was able to solve it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(g)は、本発明の半導体装置の製造方
法を工程を追って示した半導体装置の断面図。 シリコン半導体基板 ゲート絶縁膜 多結晶シリコン膜 アモルファス化したシリコン層 サイドウオール チタン金属 チタンシリサイド 12−
FIGS. 1(a) to 1(g) are cross-sectional views of a semiconductor device showing the method for manufacturing a semiconductor device of the present invention step by step. Silicon semiconductor substrate Gate insulating film Polycrystalline silicon film Amorphous silicon layer Sidewall Titanium metal Titanium silicide 12-

Claims (5)

【特許請求の範囲】[Claims] (1)露出した多結晶シリコン表面にチタンシリサイド
を自己整合的に形成する半導体装置の製造方法において
、半導体基板上にゲート絶縁膜を介して多結晶シリコン
膜を形成する工程と、該多結晶シリコン中に燐を拡散す
る工程と、燐を拡散した多結晶シリコン膜に不純物イオ
ンをイオン注入することにより該多結晶シリコン膜の表
面近傍をアモルファス化する工程と、該多結晶シリコン
膜をフオトリソ技術とエッチング技術によりゲート電極
および配線に加工する工程と、該ゲート電極および配線
を形成した半導体基板上に絶縁膜を堆積し、前記半導体
基板全面を異方性エッチングする事により前記ゲート電
極側面に絶縁膜のサイドウォールを形成する工程と、該
サイドウォールを形成した半導体基板全面にチタン金属
膜を形成する工程と、該チタン金属膜を形成した半導体
基板を加熱処理することにより露出したシリコン表面お
よび前記ゲート電極上のチタンをチタンシリサイドに変
化させる工程と、該チタンシリサイド以外のチタン化合
物及びチタン金属を選択的に除去する工程からなること
を特徴とするMIS型半導体装置の製造方法。
(1) A method for manufacturing a semiconductor device in which titanium silicide is formed on an exposed polycrystalline silicon surface in a self-aligned manner, including the steps of forming a polycrystalline silicon film on a semiconductor substrate via a gate insulating film, and a step of diffusing phosphorus into the polycrystalline silicon film; a step of implanting impurity ions into the phosphorus-diffused polycrystalline silicon film to make the surface of the polycrystalline silicon film amorphous; and converting the polycrystalline silicon film using photolithography technology. A step of processing into gate electrodes and wiring using etching technology, depositing an insulating film on the semiconductor substrate on which the gate electrode and wiring are formed, and anisotropically etching the entire surface of the semiconductor substrate to form an insulating film on the side surface of the gate electrode. a step of forming a titanium metal film on the entire surface of the semiconductor substrate on which the sidewall has been formed; and a step of forming a titanium metal film on the entire surface of the semiconductor substrate on which the sidewall has been formed; A method for manufacturing an MIS type semiconductor device, comprising a step of converting titanium on an electrode into titanium silicide, and a step of selectively removing titanium compounds and titanium metal other than the titanium silicide.
(2)前記不純物イオンとしてアルゴンイオンを用いる
ことを特徴とする請求項1記載のMIS型半導体装置の
製造方法。
(2) The method for manufacturing an MIS type semiconductor device according to claim 1, characterized in that argon ions are used as the impurity ions.
(3)前記不純物イオンとして燐イオンを用いることを
特徴とする請求項1記載のMIS型半導体装置の製造方
法。
(3) The method for manufacturing an MIS type semiconductor device according to claim 1, characterized in that phosphorus ions are used as the impurity ions.
(4)前記不純物イオンとして砒素イオンを用いること
を特徴とする請求項1記載のMIS型半導体装置の製造
方法。
(4) The method for manufacturing an MIS type semiconductor device according to claim 1, characterized in that arsenic ions are used as the impurity ions.
(5)前記不純物イオンとしてホウ素イオンを用いるこ
とを特徴とする請求項1記載のMIS型半導体装置の製
造方法。
(5) The method for manufacturing an MIS type semiconductor device according to claim 1, characterized in that boron ions are used as the impurity ions.
JP479590A 1990-01-12 1990-01-12 Method of manufacturing MIS type semiconductor device Expired - Lifetime JP2917348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP479590A JP2917348B2 (en) 1990-01-12 1990-01-12 Method of manufacturing MIS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP479590A JP2917348B2 (en) 1990-01-12 1990-01-12 Method of manufacturing MIS type semiconductor device

Publications (2)

Publication Number Publication Date
JPH03209834A true JPH03209834A (en) 1991-09-12
JP2917348B2 JP2917348B2 (en) 1999-07-12

Family

ID=11593711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP479590A Expired - Lifetime JP2917348B2 (en) 1990-01-12 1990-01-12 Method of manufacturing MIS type semiconductor device

Country Status (1)

Country Link
JP (1) JP2917348B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554566A (en) * 1994-09-06 1996-09-10 United Microelectronics Corporation Method to eliminate polycide peeling
US6033978A (en) * 1994-07-05 2000-03-07 Nec Corporation Process of selectively producing refractory metal silicide uniform in thickness regardless of conductivity type of silicon thereunder
US6100170A (en) * 1997-07-07 2000-08-08 Matsushita Electronics Corporation Method of manufacturing semiconductor device
KR100295383B1 (en) * 1997-12-10 2001-08-07 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device and method for manufacturing the same
US6869867B2 (en) 1997-10-01 2005-03-22 Kabushiki Kaisha Toshiba Semiconductor device comprising metal silicide films formed to cover gate electrode and source-drain diffusion layers and method of manufacturing the same wherein the silicide on gate is thicker than on source-drain

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033978A (en) * 1994-07-05 2000-03-07 Nec Corporation Process of selectively producing refractory metal silicide uniform in thickness regardless of conductivity type of silicon thereunder
US5554566A (en) * 1994-09-06 1996-09-10 United Microelectronics Corporation Method to eliminate polycide peeling
US6100170A (en) * 1997-07-07 2000-08-08 Matsushita Electronics Corporation Method of manufacturing semiconductor device
US6869867B2 (en) 1997-10-01 2005-03-22 Kabushiki Kaisha Toshiba Semiconductor device comprising metal silicide films formed to cover gate electrode and source-drain diffusion layers and method of manufacturing the same wherein the silicide on gate is thicker than on source-drain
US7220672B2 (en) 1997-10-01 2007-05-22 Kabushiki Kaisha Toshiba Semiconductor device comprising metal silicide films formed to cover gate electrode and source-drain diffusion layers and method of manufacturing the same
US7638432B2 (en) 1997-10-01 2009-12-29 Kabushiki Kaisha Toshiba Semiconductor device comprising metal silicide films formed to cover gate electrode and source-drain diffusion layers and method of manufacturing the same
KR100295383B1 (en) * 1997-12-10 2001-08-07 다니구찌 이찌로오, 기타오카 다카시 Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
JP2917348B2 (en) 1999-07-12

Similar Documents

Publication Publication Date Title
EP0139467B1 (en) Method of manufacturing an insulated-gate field-effect transistor
EP0137645A2 (en) Method of forming a shallow N-type region
JP3313432B2 (en) Semiconductor device and manufacturing method thereof
KR100187729B1 (en) Process for forming a refractory metal silicide film having a uniform thickness
JP2917348B2 (en) Method of manufacturing MIS type semiconductor device
JP3116163B2 (en) Method of manufacturing insulated gate field effect transistor
JPH10125919A (en) Method for forming electrode of semiconductor element
JP3033525B2 (en) Method for manufacturing semiconductor device
JP2843037B2 (en) Method for manufacturing semiconductor device
JPH01110762A (en) Manufacture of semiconductor device
JPS60198814A (en) Manufacture of semiconductor device
JP2525186B2 (en) Method for manufacturing semiconductor device
JPH03209835A (en) Manufacture of mis semiconductor device
JP3376305B2 (en) Method for manufacturing semiconductor device
JP2582337B2 (en) Method of manufacturing MOS transistor having source / drain regions and silicide with shallow junction
JPH0227769A (en) Semiconductor device
KR100286341B1 (en) Manufacturing method for mos transistor
KR100256246B1 (en) Method of forming gate electrode in semiconductor device
JPS61248476A (en) Manufacture of semiconductor device
JPH01245560A (en) Manufacture of semiconductor device
KR100314272B1 (en) Method for forming silicide in semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPH03265131A (en) Manufacture of semiconductor device
JPH10107281A (en) Semiconductor device and its manufacture
JPH025411A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 11