JPH03209608A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH03209608A
JPH03209608A JP582590A JP582590A JPH03209608A JP H03209608 A JPH03209608 A JP H03209608A JP 582590 A JP582590 A JP 582590A JP 582590 A JP582590 A JP 582590A JP H03209608 A JPH03209608 A JP H03209608A
Authority
JP
Japan
Prior art keywords
magnetic
hard carbon
working gap
magnetic head
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP582590A
Other languages
Japanese (ja)
Inventor
Kayoko Kodama
児玉 佳代子
Isamu Inoue
勇 井上
Ryutaro Akutagawa
竜太郎 芥川
Hidenobu Shintaku
秀信 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP582590A priority Critical patent/JPH03209608A/en
Publication of JPH03209608A publication Critical patent/JPH03209608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To expand the service life of a working gap by forming a hard carbon film on the working gap face of a core. CONSTITUTION:The working gap faces 22, 23 of ferrite bases 20, 21 are specularly worked and track width regulating grooves 24, 25 are formed. Then, the hard carbon films 27, 28 of thickness coincident with about a half of working gap length GL are formed on the gap faces 22, 23 by the gas phase synthesizing method. Then, both the bases 20, 21 are joined with each other with adhering glass 29, and after working an R face, the joined base is sliced along plural cutting margins 31 to obtain plural single head chips 32. The sliding face 33 of the chip 32 is finished and wound by a winding (not shown in a figure) to complete a head. Since the hard carbon film is formed, the working gap part having high abrasion resistance capable of suppressing abrasion can be obtained and thereby the service life of the head can be extended.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気ヘッドに関し、詳しくは耐摩耗性に優れた
磁気ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic head, and more particularly to a magnetic head with excellent wear resistance.

従来の技術 磁気記録密度の向上への要求に対して、磁気記録媒体は
従来の塗布型の媒体よりも薄膜型の媒体が磁性体の充填
密度が高く高密度記録に適している。反面、薄膜型の磁
気記録媒体は塗布型のように媒体中に潤滑剤を十分にし
かも長期に亘って安定して含有させることは困難である
。従って磁気ヘッドとの摩擦が大きくなるので磁気ヘッ
ドが早く摩耗するという問題がある。磁気記録再生に多
用されているリング形磁気ヘッドの作動ギャップ部は、
通常は例えば特開昭64−53308号公報に示されて
いるようにSiO□膜が用いられている。
2. Description of the Related Art In response to the demand for increased magnetic recording density, thin film type magnetic recording media have a higher packing density of magnetic material than conventional coated type media and are suitable for high density recording. On the other hand, it is difficult for thin film type magnetic recording media to contain lubricant sufficiently and stably over a long period of time, unlike coating type magnetic recording media. Therefore, since the friction with the magnetic head increases, there is a problem that the magnetic head wears out quickly. The operating gap of the ring-shaped magnetic head, which is often used for magnetic recording and reproduction, is
Usually, a SiO□ film is used, as shown in, for example, Japanese Patent Application Laid-Open No. 64-53308.

発明が解決しようとする課題 しかし、従来の磁気ヘッドの作動ギヤ、ツブ部を構成す
るSiO□膜は、前記摩擦に対して十分な耐摩耗性を有
するものではなく、作動ギャップ部およびその近傍のコ
アも早く摩耗するという問題は依然として未解決である
Problems to be Solved by the Invention However, the SiO□ film constituting the operating gear and knob portion of the conventional magnetic head does not have sufficient wear resistance against the friction, and the SiO□ film that constitutes the operating gear and knob portion of the conventional magnetic head does not have sufficient wear resistance against the friction, and The problem that the core also wears out quickly remains unresolved.

本発明は、耐摩耗性に優れた寿命の長い磁気へ・ンドを
提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic lead with excellent wear resistance and long life.

課題を解決するための手段 上記課題を解決するための本願の第1発明は、少なくと
もコアの作動ギャップ面に硬質炭素膜を形成した磁気ヘ
ッドに係るものである。
Means for Solving the Problems A first invention of the present application for solving the above problems relates to a magnetic head in which a hard carbon film is formed at least on the working gap surface of the core.

第2発明は、コアの作動ギャップ部に軟磁性メタル膜を
設け、そのメタル膜に作動ギャプ面を形成し、少なくと
もその作動ギャップ面に硬質炭素膜を形成した磁気ヘッ
ドに係るものである。
A second invention relates to a magnetic head in which a soft magnetic metal film is provided in the working gap portion of the core, a working gap surface is formed on the metal film, and a hard carbon film is formed on at least the working gap surface.

第3発明は、作動ギャップ面を有するコアを軟磁性メタ
ル膜と硬質炭素膜を交互に積層した構成とした磁気ヘッ
ドに係るものである。
A third aspect of the present invention relates to a magnetic head in which a core having a working gap surface has a structure in which soft magnetic metal films and hard carbon films are alternately laminated.

第4発明は、作動ギャップ部に、軟磁性メタル膜と硬質
炭素膜を交互に積層した積層メタル層を設け、そのメタ
ル層に作動ギャップ面を形成した磁気ヘッドに係るもの
である。
A fourth invention relates to a magnetic head in which a laminated metal layer in which a soft magnetic metal film and a hard carbon film are alternately laminated is provided in the working gap portion, and a working gap surface is formed in the metal layer.

第5発明は、単磁極形磁気ヘッドに構成された磁気へン
ドにおいて、主磁極の磁束出入り口を囲む面のうちの少
なくともトラック幅方向の面に、硬質炭素膜を形成した
ことを特徴とするものである。
A fifth invention is a magnetic head configured as a single-pole magnetic head, characterized in that a hard carbon film is formed on at least the surface in the track width direction of the surfaces surrounding the magnetic flux entrance/exit of the main pole. It is.

作用 上記構成により、磁気ヘッドの作動ギャップ部に形成さ
れる硬質炭素膜は、硬度が高く耐摩耗性に優れているの
で、磁気特性を損なうことなく磁気媒体と摺動接触する
作動ギャップ部の長寿命化が成される。硬質炭素膜はプ
ラズマCVD等の気相合成法によって、フェライトコア
等の基板材の上に形成される。本構成は、フェライトコ
アのみで成るリング形磁気ヘッドだけでなく、磁気特性
に優れる軟磁性メタル膜形成のメタルインギャップ構造
の磁気ヘッド、高周波特性に優れる積層形磁気ヘッド、
および前記の両者の特性を兼ね備える積層形メタルイン
ギャップ構造の磁気ヘッド、更には単磁極磁気ヘッドの
それぞれの作動ギャップ部にも硬質炭素膜を形成させる
ことができ、耐摩耗性に優れた磁気ヘッドを実現する。
Effect With the above configuration, the hard carbon film formed in the working gap of the magnetic head has high hardness and excellent wear resistance, so the length of the working gap can be reduced to make sliding contact with the magnetic medium without impairing magnetic properties. Life expectancy is achieved. The hard carbon film is formed on a substrate material such as a ferrite core by a vapor phase synthesis method such as plasma CVD. This configuration includes not only a ring-shaped magnetic head consisting only of a ferrite core, but also a magnetic head with a metal-in-gap structure formed with a soft magnetic metal film with excellent magnetic properties, a laminated magnetic head with excellent high-frequency properties,
A magnetic head with a laminated metal-in-gap structure that combines the characteristics of both of the above, and a magnetic head with excellent wear resistance that can also form a hard carbon film on each operating gap of a single-pole magnetic head. Realize.

実施例 以下、本発明の実施例を図面に基づいて説明する。Example Embodiments of the present invention will be described below based on the drawings.

第1図は第1実施例のリング形磁気ヘッドであり、フェ
ライトコア1とフエイトコア2を接着ガラス3で接合し
て磁気回路を形成し、巻線穴4には図示しないが公知の
コイルが巻かれる。磁気記録媒体との摺動面5には作動
ギャップ部6が形成されており、第2図に作動ギャップ
部6の近傍を拡大して示す。
FIG. 1 shows a ring-shaped magnetic head of the first embodiment, in which a ferrite core 1 and a fate core 2 are bonded together with adhesive glass 3 to form a magnetic circuit, and a known coil (not shown) is wound in a winding hole 4. It will be destroyed. An operating gap portion 6 is formed in the sliding surface 5 against the magnetic recording medium, and FIG. 2 shows an enlarged view of the vicinity of the operating gap portion 6.

硬質炭素膜7が両フェライトコア1、2の作動ギャップ
面8.11と傾斜面9.12とに形成されている。
A hard carbon film 7 is formed on the working gap surface 8.11 and on the inclined surface 9.12 of both ferrite cores 1, 2.

GLは作動ギャップ長、Wはトラック幅、θはアジマス
角を示している。
GL is the working gap length, W is the track width, and θ is the azimuth angle.

第3図によって前記リング形磁気ヘッドの加工工程の概
略を説明する。尚、図中の矢印は加工の流れを示すもの
である。第3図(a)において、フェライト基板(以下
基板と略す)20およびフェライト基板21に作動ギャ
ップ面22.23の鏡面加工と、トラック幅規制溝24
および25の加工を行う。そして基板20に巻線穴とな
る溝26の加工を行う。次に第3図(b)に示すように
両基板20.21の作動ギャップ面22.23に硬質炭
素膜27.28を公知の気相合成法、例えばプラズマC
VD等によって作動ギャップ長GLの約172の厚みに
形成する。尚、硬質炭素膜はいずれか一方の作動ギャッ
プ面にのみ作動ギャップ長GLと略等しい厚みに形成す
ることもできる。このようにすると片側のコアのみに硬
質炭素膜を形成することになるので工程を簡略化するこ
とができる。次に、第3図(C)に示すように両基板2
0.21を接着ガラス29で接合し、次いで仮想線で示
すようにR面30の加工を行った後、図示するようにス
ライスすると単体のへラドチップ32が切り代31で分
離された状態で得られる。このヘッドチップ32の摺動
面33を最終仕上げし、図示しないが巻線を巻くとヘッ
ドが完成する。硬質炭素膜は耐摩耗性にすぐれているの
で、以上の構成にすることにより、作動ギャップ部の摩
耗が抑制され、ヘッドの長寿命化を実現することができ
る。
An outline of the manufacturing process of the ring-shaped magnetic head will be explained with reference to FIG. Note that the arrows in the figure indicate the flow of processing. In FIG. 3(a), a ferrite substrate (hereinafter abbreviated as substrate) 20 and a ferrite substrate 21 are mirror-finished with working gap surfaces 22 and 23, and track width regulating grooves 24 are formed.
and 25 processing. Then, a groove 26 that will become a winding hole is formed in the substrate 20. Next, as shown in FIG. 3(b), a hard carbon film 27.28 is formed on the working gap surfaces 22.23 of both substrates 20.21 using a known vapor phase synthesis method, for example, plasma carbon.
It is formed to have a thickness of about 172 mm, which is the working gap length GL, by VD or the like. Incidentally, the hard carbon film may be formed only on one of the working gap surfaces to have a thickness substantially equal to the working gap length GL. In this way, the hard carbon film is formed only on one side of the core, so the process can be simplified. Next, as shown in FIG. 3(C), both substrates 2
0.21 is bonded with adhesive glass 29, and then the R surface 30 is processed as shown by the imaginary line, and then sliced as shown in the figure to obtain a single Herad chip 32 separated by a cutting margin 31. It will be done. The sliding surface 33 of this head chip 32 is finally finished, and a winding wire (not shown) is wound to complete the head. Since the hard carbon film has excellent abrasion resistance, the above configuration suppresses abrasion of the operating gap portion and makes it possible to extend the life of the head.

記録密度を上げるため抗磁力Hcを高くした磁気記録媒
体に対応するためには、飽和磁束密度の大きな軟磁性膜
である例えばセンダストのようなメタル膜をフェライト
コアのギャップ近傍に設けた、いわゆるメタルインギャ
ップ構造のヘッド(以下MIGヘッドと略す)が用いら
れる。このMIGヘッドに本発明を適用した例を第2実
施例として説明する。
In order to support magnetic recording media with a high coercive force Hc to increase the recording density, a so-called metal film in which a metal film such as sendust, which is a soft magnetic film with a high saturation magnetic flux density, is provided near the gap of the ferrite core. A head with an in-gap structure (hereinafter abbreviated as MIG head) is used. An example in which the present invention is applied to this MIG head will be described as a second embodiment.

MIGヘッドの作動ギャップ部の第4図に示し、第1実
施例と同一の構成要素には同一の符号を付して、その説
明は省略する。
The operating gap portion of the MIG head is shown in FIG. 4, and the same components as in the first embodiment are given the same reference numerals, and their explanation will be omitted.

第4図に示す断面X字状に形成された部分が軟磁性メタ
ル膜40および41である。この構造のヘッドを実現す
るには、第5図に示すようにフェライト基板45に断面
が三角形の山条46を形成した上に軟磁性メタル膜47
をスパッタ蒸着などの手段により形成し、その後メタル
膜47の山頂部48を平面に加工して作動ギャップ面4
9とする(2つの基板の加工工程は同じであるので、基
板の一方のみを示す)。以降の加工工程は第3図に示し
た場合と同じである。
The portions formed to have an X-shaped cross section shown in FIG. 4 are soft magnetic metal films 40 and 41. In order to realize a head with this structure, as shown in FIG.
is formed by means such as sputter deposition, and then the peak portion 48 of the metal film 47 is processed into a flat surface to form the working gap surface 4.
9 (the processing steps for the two substrates are the same, so only one of the substrates is shown). The subsequent processing steps are the same as those shown in FIG.

尚、MIGヘッドの作動ギャップ部に表れる軟磁性メタ
ル膜の形状は第4図に示すX形に限るものではなく、公
知の斜め形、平行形であっても同様に本発明を通用でき
る。
Note that the shape of the soft magnetic metal film appearing in the working gap portion of the MIG head is not limited to the X-shape shown in FIG. 4, and the present invention can be applied to any known oblique or parallel shape.

以上の構成とすることにより、フェライトコアよりも磁
気特性に優れるが、耐摩耗性に劣るメタル膜の摩耗が抑
制され、磁気特性に優れしかも長寿命のMIGヘッドを
実現することができる。
With the above configuration, abrasion of the metal film, which has better magnetic properties than a ferrite core but is inferior in wear resistance, is suppressed, and an MIG head with excellent magnetic properties and long life can be realized.

次に第3実施例として、記録再生信号の高周波化に対応
するためにメタルの渦電流損失を小さくできる積層形磁
気ヘッドに本発明を適用した例を第6図に示す。
Next, as a third embodiment, FIG. 6 shows an example in which the present invention is applied to a laminated magnetic head that can reduce metal eddy current loss in order to cope with higher frequencies of recording and reproducing signals.

50.52および51.53は硬質非磁性基板であり、
その作動ギャップ位置に、例えばCo基合金から成るア
モルファスの軟磁性体のメタル膜55.56と絶縁体で
ある硬質炭素膜57.58を交互に積層してコア59.
60を形成し、作動ギャップ長CLを隔てて作動ギャッ
プ面61.62に図示しないが従来のSiO□膜を挟ん
で対向する構造である。
50.52 and 51.53 are hard nonmagnetic substrates,
At the operating gap position, amorphous soft magnetic metal films 55 and 56 made of, for example, a Co-based alloy and hard carbon films 57 and 58 which are insulators are alternately laminated to form a core 59.
60, and are opposed to each other with a conventional SiO□ film (not shown) sandwiched between the working gap surfaces 61 and 62 across the working gap length CL.

第7図は作動ギャップ面61.62にも硬質炭素膜63
.64を構成した例であり、耐摩耗性はより優れたもの
となる。要求される耐摩耗性によって作動ギャップ面の
硬質炭素膜63.64の要不要を選択すればよい。
FIG. 7 shows a hard carbon film 63 also on the working gap surfaces 61 and 62.
.. 64, and the wear resistance is even better. Depending on the required wear resistance, whether or not to provide the hard carbon films 63, 64 on the working gap surface may be selected.

この構造のヘッドを実現するには、第8図に示すように
硬質非磁性基板70の片側に前記メタル膜55と硬質炭
素膜57を交互に積層してコア71を形成し、それを複
数枚重ねて互いに接着ガラスで接合し、その後アジマス
角θを付けて切り代C5にて切断し、仕上げ加工を行っ
た後、同様に加工された対面と合わせることで硬質炭素
膜による積層形磁気ヘッドが完成する。この時、作動ギ
ャップ面75にSiO□膜を形成すれば第6図の構造と
なり、硬質炭素膜を形成すれば第7図に示す構造となる
To realize a head with this structure, as shown in FIG. 8, the metal film 55 and the hard carbon film 57 are alternately laminated on one side of the hard non-magnetic substrate 70 to form a core 71, and a plurality of cores 71 are formed. They are stacked and bonded to each other with adhesive glass, then cut at an azimuth angle of θ at cutting width C5, finished, and then combined with the opposite surface processed in the same manner to create a laminated magnetic head made of hard carbon films. Complete. At this time, if a SiO□ film is formed on the working gap surface 75, the structure shown in FIG. 6 will be obtained, and if a hard carbon film is formed, the structure shown in FIG. 7 will be obtained.

以上の構成とすることにより、磁気特性に優れるが、耐
摩耗性に劣るメタル膜から成るコアの摩耗が抑制され、
長寿命の積層ヘッドを実現することができる。
With the above configuration, wear of the core made of a metal film that has excellent magnetic properties but poor wear resistance is suppressed.
A long-life lamination head can be realized.

次に前記したMIGヘッドの特性に、前記積層形ヘッド
の構成を加味させた積層形MIGヘッドとした構成を第
4実施例として説明する。
Next, a configuration of a stacked MIG head in which the configuration of the stacked head described above is added to the characteristics of the MIG head described above will be described as a fourth embodiment.

積層形MIGヘッドは、MIGヘッドのメタル膜と硬質
炭素膜を積層構造としたものであり、MIGヘッドと積
層ヘッドの特徴を合わせ持つものである。
The laminated MIG head has a laminated structure of the metal film and hard carbon film of the MIG head, and has the characteristics of both the MIG head and the laminated head.

第9図に示す71および72は、それぞれフェライトコ
アで、その対面部にメタル膜75.76と硬質炭素膜7
7.78を交互に積層して形成した積層メタル膜73.
74を形成し、その表面の作動ギャップ面および傾斜面
に硬質炭素膜79.80を形成し、接着ガラス81で接
合している。硬質炭素膜79.80は、要求される耐摩
耗性によって要不要を選択できる。
71 and 72 shown in FIG. 9 are respectively ferrite cores, and metal films 75 and 76 and hard carbon films 7 are provided on the opposing parts.
A laminated metal film 73.78 formed by alternately laminating 7.78.
74, hard carbon films 79 and 80 are formed on the working gap surface and the inclined surface of the surface, and are bonded with adhesive glass 81. Whether or not the hard carbon films 79 and 80 are necessary can be selected depending on the required wear resistance.

次に本発明の第5実施例について説明する。Next, a fifth embodiment of the present invention will be described.

磁気記録密度の向上への要求に対して、従来の長手方向
記録方式よりも原理的に高密度記録特性に優れた垂直方
向記録方式が有望視されている。この垂直記録方式に適
用できる片側アクセス型単磁極磁気ヘッドに本発明を適
用した例を第10図〜第12図に示す。第10図におい
て、例えばCo基合金からなる飽和磁束密度の高いアモ
ルファスの軟磁性体のメタル膜で構成された主磁極85
は、硬質非磁性基板86に形成されている。その主磁極
85は第11図に示すように、磁気記録媒体との摺動面
91における厚さT1よりもその内側における厚さT2
を厚(し、磁路抵抗が小さくなるようにしである。87
はフェライトで構成された補助磁極で、107は硬質非
磁性基板86と補助磁極87を接合する接着ガラスであ
る。88は主磁極85と補助磁極87が磁気的に短絡し
ないようにするための非磁性の第1スペーサ、89は補
助磁極の磁気記録媒体との対向面108が直接磁気記録
媒体と接触して疑領信号を発生させないようにするため
の非磁性の第2スペーサである。90は巻線穴で、図示
しないが公知のコイルが巻かれる。
In response to the demand for increased magnetic recording density, perpendicular recording systems are viewed as promising, as they are theoretically superior in high-density recording characteristics to conventional longitudinal recording systems. An example in which the present invention is applied to a single-side access single-pole magnetic head applicable to this perpendicular recording method is shown in FIGS. 10 to 12. In FIG. 10, the main magnetic pole 85 is made of a metal film of an amorphous soft magnetic material with high saturation magnetic flux density made of a Co-based alloy, for example.
is formed on a hard non-magnetic substrate 86. As shown in FIG. 11, the main magnetic pole 85 has a thickness T2 on the inner side than a thickness T1 at the sliding surface 91 with the magnetic recording medium.
The thickness is such that the magnetic path resistance is small.87
107 is an auxiliary magnetic pole made of ferrite, and 107 is adhesive glass for bonding the hard non-magnetic substrate 86 and the auxiliary magnetic pole 87. 88 is a non-magnetic first spacer for preventing magnetic short circuit between the main magnetic pole 85 and the auxiliary magnetic pole 87, and 89 is a non-magnetic first spacer for preventing magnetic short circuit between the main magnetic pole 85 and the auxiliary magnetic pole 87; This is a non-magnetic second spacer for preventing the generation of magnetic signals. 90 is a winding hole in which a known coil (not shown) is wound.

記録再生時に磁束は、主磁極85から出入りして図示し
ない磁気記録媒体と、補助磁極87を通る閉磁路を形成
することになる。摺動面91に開口する主磁極85の近
傍を拡大して示す第12図において、92は硬質炭素膜
であり、Wはトラック幅、θはアジマス角である。主磁
極厚さT1は前記リングヘッドにおける作動ギャップ長
GLの約1/2〜l/3に相当する。
During recording and reproduction, magnetic flux enters and exits from the main magnetic pole 85 and forms a closed magnetic path passing through the auxiliary magnetic pole 87 and a magnetic recording medium (not shown). In FIG. 12, which shows an enlarged view of the vicinity of the main pole 85 opening in the sliding surface 91, 92 is a hard carbon film, W is the track width, and θ is the azimuth angle. The main pole thickness T1 corresponds to about 1/2 to 1/3 of the working gap length GL in the ring head.

次に第13図によって単磁極磁気ヘッドの加工工程の概
略を説明する。図中の矢印は加工の流れを示すものであ
る。第13図(a)において、フェライト基板93に前
記第1スペーサ88のための段差S1と、巻線穴90と
なる溝94の加工を行う。次に第1スペーサ88となる
非磁性体95を接着あるいは、スパッタ等の薄膜形成プ
ロセスで形成し8面96の加工を行う。次に第13図(
b)に示すようにこの8面96に、第2スペーサ89と
なる非磁性体97を前記と同様に接着あるいは、スパッ
タ等の薄膜形成プロセスで形成する。−力筒13図(a
)において、もう一方の硬質非磁性基板98に段差S2
加工を行った後、メタル膜99をスパッタ蒸着などによ
り形成し、次にトラック幅規制溝100の加工を行う。
Next, an outline of the manufacturing process of a single pole magnetic head will be explained with reference to FIG. The arrows in the figure indicate the flow of processing. In FIG. 13(a), a step S1 for the first spacer 88 and a groove 94 that will become the winding hole 90 are formed on the ferrite substrate 93. Next, a nonmagnetic material 95 that will become the first spacer 88 is formed by adhesion or by a thin film forming process such as sputtering, and eight surfaces 96 are processed. Next, Figure 13 (
As shown in b), a non-magnetic material 97 that will become the second spacer 89 is formed on these eight surfaces 96 by adhesion or a thin film forming process such as sputtering in the same manner as described above. -Image cylinder 13 (a
), there is a step S2 on the other hard non-magnetic substrate 98.
After processing, a metal film 99 is formed by sputter deposition or the like, and then track width regulating grooves 100 are processed.

メタル膜99を膜厚TlとT2で形成するには、例えば
寸法りの領域をマスクして膜を段差S2と略略同−の厚
さ、すなわちT2−Tlの厚さに形成し、次にそのマス
クを除去して全面に膜厚T1で形成すればよい。次に第
13図(b)に示すように硬質炭素膜101を形成する
。次いでフェライト基板93と硬質非磁性基板98を、
第13図(C)に示す様に接着ガラス102で接合し、
R面104の加工を行い、切り代104でスライスする
と単体のへラドチップ105ができる。このヘッドチッ
プ105の摺動面を最終仕上げし、図示しないが巻線を
巻くとヘッドが完成する。
To form the metal film 99 with film thicknesses Tl and T2, for example, mask a dimensioned area and form the film to a thickness that is approximately the same as that of the step S2, that is, T2 - Tl, and then It is sufficient to remove the mask and form the film with a thickness T1 over the entire surface. Next, as shown in FIG. 13(b), a hard carbon film 101 is formed. Next, the ferrite substrate 93 and the hard non-magnetic substrate 98 are
Bonded with adhesive glass 102 as shown in FIG. 13(C),
By processing the rounded surface 104 and slicing at the cutting margin 104, a single Herad chip 105 is produced. The head is completed by final finishing the sliding surface of this head chip 105 and winding a wire (not shown).

また、前記第12図の硬質非磁性基板91とメタル膜8
5との間にも図示しないが硬質炭素膜を形成すれば、耐
摩耗性はより優れたものとなる。
Furthermore, the hard non-magnetic substrate 91 and the metal film 8 in FIG.
If a hard carbon film (not shown) is also formed between the contact point 5 and the contact point 5, the wear resistance will be even better.

以上の構成により、主磁極の摩耗が抑制され、ヘッドの
長寿命化を実現することができる。
With the above configuration, wear of the main pole can be suppressed and the life of the head can be extended.

片側アクセス型単磁極磁気ヘッドの一例とて第10図に
示すように、主磁極85の片側に補助磁極87を設ける
構成を示したが、その構成に限るものではなく、図示し
ないが主磁極の両側に補助磁極を設ける構成としてもよ
い。磁気ヘッドの構造は複雑となるが主磁極からでた磁
束の対称性は良好となる。
As shown in FIG. 10 as an example of a single-sided access type single-pole magnetic head, an auxiliary magnetic pole 87 is provided on one side of the main magnetic pole 85. However, the configuration is not limited to this; A structure in which auxiliary magnetic poles are provided on both sides may also be used. Although the structure of the magnetic head is complicated, the symmetry of the magnetic flux emitted from the main pole is good.

以上本発明の第1実施例から第5実施例に用いる硬質炭
素膜は、適用する磁気記録媒体の性質に合うように、そ
の特性を選択して形成することができる。
As described above, the hard carbon films used in the first to fifth embodiments of the present invention can be formed by selecting properties that match the properties of the magnetic recording medium to which they are applied.

例えば比較的潤滑性に優れた磁気記録媒体に適用させる
場合は、硬質炭素膜を最も耐摩耗性に優れたダイヤモン
ド結合を有する炭素膜で構成すれば、磁気ヘッドの寿命
を最大限に延ばすことができる。
For example, when applying to a magnetic recording medium with relatively excellent lubricity, the life of the magnetic head can be extended to the maximum by configuring the hard carbon film with a carbon film with diamond bonds, which has the highest wear resistance. can.

一方、潤滑性があまり期待できない磁気記録媒体に適用
させる場合、その磁気記録媒体が損傷する恐れのあると
きは、硬質炭素膜をダイヤモンド結合とグラファイト結
合が混在した結合を有する炭素膜で構成すると、グラフ
ァイト結合は潤滑性を有するので磁気記録媒体を損傷せ
ずしかも長寿命の磁気ヘッドを構成することができる。
On the other hand, when applying it to a magnetic recording medium for which lubricity is not expected to be very high, if there is a risk of damage to the magnetic recording medium, it is possible to configure the hard carbon film with a carbon film having a mixture of diamond bonds and graphite bonds. Since graphite bonding has lubricating properties, it is possible to construct a magnetic head that does not damage the magnetic recording medium and has a long life.

前記結合状態は、例えばプラズマCVDの原料ガスの種
類や濃度比、あるいは成膜条件を変えることにより制御
することができる。
The bonding state can be controlled, for example, by changing the type and concentration ratio of raw material gas in plasma CVD, or the film forming conditions.

また、以上すべてフェライトコアあるいはメタル膜に直
接硬質炭素膜を形成し、硬質炭素膜に接着ガラスを直付
けする構成としたが、必要に応じて硬質炭素膜との密着
性向上などのためにCr等の中間膜を設ける構成として
もよい。
In addition, in all of the above configurations, the hard carbon film is formed directly on the ferrite core or metal film, and the adhesive glass is directly attached to the hard carbon film. It is also possible to provide a structure in which an intermediate film such as the like is provided.

発明の効果 本発明によれば、磁気ヘッドの作動ギャップ部に形成す
る硬質炭素膜は、硬度が高く耐摩耗性に優れているので
、磁気特性を損なうことな(磁気媒体と摺動接触する作
動ギャップ部の長寿命化を図ることができ、磁気記録密
度の向上への要求を満たすための薄膜型の磁気記録媒体
に適応する磁気ヘッドを提供することができる。また本
構成は、フェライトコアのみで成るリング形磁気ヘッド
だけでなく、磁気特性に優れる軟磁性メタル膜形成のメ
タルインギャップ構造の磁気ヘッド、高薗波特性に優れ
る積層形磁気ヘッド、および前記両者の特性を兼ね備え
る積層形メタルインギャップ構造の磁気ヘッド、更には
単磁極磁気ヘッドのそれぞれの作動ギャップ部にも硬質
炭素膜を形成させることができ、磁気記録再生装置の長
寿命化にも貢献できるものである。
Effects of the Invention According to the present invention, the hard carbon film formed in the operating gap portion of the magnetic head has high hardness and excellent wear resistance, so that it does not impair magnetic properties (operation that makes sliding contact with the magnetic medium). It is possible to prolong the life of the gap part, and to provide a magnetic head that is compatible with thin-film magnetic recording media to meet the demand for increased magnetic recording density.In addition, this configuration has only a ferrite core. In addition to ring-shaped magnetic heads, we also offer metal-in-gap structure magnetic heads with a soft magnetic metal film with excellent magnetic properties, laminated magnetic heads with excellent Takasono wave characteristics, and laminated metal-in magnetic heads that combine the above characteristics. A hard carbon film can be formed on the operating gap portion of a magnetic head having a gap structure, and furthermore, of a single-pole magnetic head, which can also contribute to extending the life of the magnetic recording/reproducing device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例における磁気ヘッドの斜視
図、第2図は第1図の作動ギャップ部の拡大斜視図、第
3図は第1図の磁気ヘッドの加工工程の概略説明図、第
4図は本発明の第2実施例における磁気ヘッドの作動ギ
ャップ部を拡大して示す斜視図、第5図は第4図の磁気
ヘッドの加工工程の一部を説明する説明図、第6図は本
発明の第3実施例における磁気ヘッドの作動ギャップ部
を拡大して示す斜視図、第7図は前記作動ギャップ部を
拡大して示す斜視図、第8図は第7図の磁気ヘッドの加
工工程の一部を説明するための説明図、第9図は本発明
の第4実施例における磁気ヘッドの作動ギャップ部を拡
大して示す斜視図、第10図は本発明の第5実施例にお
ける磁気ヘッドの斜視図、第11図は第10図の磁気ヘ
ッドをその厚みの中央部で断面にして示す斜視図、第1
2図は第10図の作動ギャップ部の拡大斜視図、第13
図は第10図の磁気ヘッドの加工工程の概略を説明する
説明図である。
FIG. 1 is a perspective view of a magnetic head according to a first embodiment of the present invention, FIG. 2 is an enlarged perspective view of the operating gap portion of FIG. 1, and FIG. 3 is a schematic explanation of the processing steps of the magnetic head of FIG. 1. 4 is an enlarged perspective view showing the working gap portion of the magnetic head in the second embodiment of the present invention, and FIG. FIG. 6 is an enlarged perspective view of the working gap of a magnetic head according to a third embodiment of the present invention, FIG. 7 is an enlarged perspective view of the working gap, and FIG. 8 is the same as that of FIG. An explanatory view for explaining a part of the manufacturing process of the magnetic head, FIG. 9 is a perspective view showing an enlarged working gap portion of the magnetic head in the fourth embodiment of the present invention, and FIG. 11 is a perspective view of the magnetic head in Example 5; FIG. 11 is a perspective view showing the magnetic head of FIG. 10 in cross section at the center of its thickness;
Figure 2 is an enlarged perspective view of the operating gap in Figure 10;
The figure is an explanatory diagram illustrating the outline of the processing steps for the magnetic head shown in FIG. 10.

Claims (7)

【特許請求の範囲】[Claims] (1)コアの作動ギャップ面に硬質炭素膜を形成したこ
とを特徴とする磁気ヘッド。
(1) A magnetic head characterized in that a hard carbon film is formed on the operating gap surface of the core.
(2)コアの作動ギャップ部に軟磁性メタル膜を設け、
そのメタル膜に作動ギャプ面を形成し、その作動ギャッ
プ面に硬質炭素膜を形成したことを特徴とする磁気ヘッ
ド。
(2) A soft magnetic metal film is provided in the operating gap of the core,
A magnetic head characterized in that a working gap surface is formed on the metal film, and a hard carbon film is formed on the working gap surface.
(3)作動ギャップ面を有するコアを軟磁性メタル膜と
硬質炭素膜を交互に積層した構成としたことを特徴とす
る磁気ヘッド。
(3) A magnetic head characterized in that the core having a working gap surface has a structure in which soft magnetic metal films and hard carbon films are alternately laminated.
(4)作動ギャップ部に、軟磁性メタル膜と硬質炭素膜
を交互に積層した積層メタル層を設け、前記メタル層に
作動ギャップ面を形成したことを特徴とする磁気ヘッド
(4) A magnetic head characterized in that a laminated metal layer in which soft magnetic metal films and hard carbon films are alternately laminated is provided in the working gap portion, and a working gap surface is formed in the metal layer.
(5)単磁極形に構成された磁気ヘッドにおいて、主磁
極の磁束出入り口を囲む面のうちの少なくともトラック
幅方向の面に、硬質炭素膜を形成したことを特徴とする
磁気ヘッド。
(5) A magnetic head configured as a single magnetic pole, characterized in that a hard carbon film is formed on at least the surface in the track width direction of the surfaces surrounding the magnetic flux entrance/exit of the main pole.
(6)硬質炭素膜を、ダイヤモンド結合を有する炭素膜
で構成したことを特徴とする請求項1、請求項2、請求
項3、請求項4または請求項5記載の磁気ヘッド。
(6) The magnetic head according to claim 1, 2, 3, 4, or 5, wherein the hard carbon film is a carbon film having diamond bonds.
(7)硬質炭素膜を、ダイヤモンド結合とグラファイト
結合が混在した結合を有する炭素膜で構成したことを特
徴とする請求項1、請求項2、請求項3、請求項4また
は請求項5記載記載の磁気ヘッド。
(7) Claim 1, Claim 2, Claim 3, Claim 4, or Claim 5, characterized in that the hard carbon film is composed of a carbon film having bonds in which diamond bonds and graphite bonds are mixed. magnetic head.
JP582590A 1990-01-11 1990-01-11 Magnetic head Pending JPH03209608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP582590A JPH03209608A (en) 1990-01-11 1990-01-11 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP582590A JPH03209608A (en) 1990-01-11 1990-01-11 Magnetic head

Publications (1)

Publication Number Publication Date
JPH03209608A true JPH03209608A (en) 1991-09-12

Family

ID=11621843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP582590A Pending JPH03209608A (en) 1990-01-11 1990-01-11 Magnetic head

Country Status (1)

Country Link
JP (1) JPH03209608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644528A (en) * 1991-12-03 1994-02-18 Nec Corp Thin-film magnetic head and its production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143206A (en) * 1977-05-18 1978-12-13 Nec Corp Magnetic disc
JPH01232510A (en) * 1988-03-14 1989-09-18 Teijin Ltd Space for gap formation of magnetic head
JPH0395712A (en) * 1989-09-07 1991-04-22 Fuji Elelctrochem Co Ltd Magnetic head

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143206A (en) * 1977-05-18 1978-12-13 Nec Corp Magnetic disc
JPH01232510A (en) * 1988-03-14 1989-09-18 Teijin Ltd Space for gap formation of magnetic head
JPH0395712A (en) * 1989-09-07 1991-04-22 Fuji Elelctrochem Co Ltd Magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644528A (en) * 1991-12-03 1994-02-18 Nec Corp Thin-film magnetic head and its production

Similar Documents

Publication Publication Date Title
JPH03209608A (en) Magnetic head
JPH06150236A (en) Magnetic head
JPS6015807A (en) Magnetic head
JPH03225610A (en) Thin-film magnetic head
JPH05325129A (en) Magnetic head
JPH0721513A (en) Magnetic head
JPH05282619A (en) Magnetic head
JPH0765316A (en) Magnetic head
JPH02105309A (en) Thin film magnetic head
JPH01185811A (en) Magnetic head
JPH06251322A (en) Magnetic head
JPH07210810A (en) Magnetic head
JPH06223314A (en) Magnetic head
JPH11213318A (en) Production of magnetic head
JPH1153709A (en) Magnetic head, its manufacture and magnetic recording and reproducing device using the same
JPH05234030A (en) Magnetic head for hdd
JPH06338023A (en) Magnetic head
JPH11203617A (en) Magnetic head
JPH02172007A (en) Multitrack magnetic head
JPH07307008A (en) Magnetic head and its production
JPH01137414A (en) Magnetic head
JPH06338016A (en) Magnetic head
JPH08138205A (en) Magnetic head and its production
JPH05151523A (en) Magnetic head and production thereof
JPH07282414A (en) Magnetic head and its production