JPH0320762Y2 - - Google Patents

Info

Publication number
JPH0320762Y2
JPH0320762Y2 JP20008684U JP20008684U JPH0320762Y2 JP H0320762 Y2 JPH0320762 Y2 JP H0320762Y2 JP 20008684 U JP20008684 U JP 20008684U JP 20008684 U JP20008684 U JP 20008684U JP H0320762 Y2 JPH0320762 Y2 JP H0320762Y2
Authority
JP
Japan
Prior art keywords
gas
humidity
cell
flow
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20008684U
Other languages
Japanese (ja)
Other versions
JPS61110147U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20008684U priority Critical patent/JPH0320762Y2/ja
Publication of JPS61110147U publication Critical patent/JPS61110147U/ja
Application granted granted Critical
Publication of JPH0320762Y2 publication Critical patent/JPH0320762Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【考案の詳細な説明】 (イ) 産業上の利用分野 この発明は、ガス成分測定セルに関する。さら
に詳しくは、気体中に含まれる各種ガス成分、例
えば湿分、亜硫酸ガス、アンモニアガス、二酸化
窒素ガス等の濃度測定用セルであつて、ことに石
油精製工程におけるリサイクルガスや塩素、フツ
素化学工業におけるプロセスガスの監視や高圧ボ
ンベガス中の水分測定等の湿度測定用として有用
なガス成分測定セルに関する。
[Detailed description of the invention] (a) Industrial application field This invention relates to a gas component measuring cell. More specifically, it is a cell for measuring the concentration of various gas components contained in gases, such as moisture, sulfur dioxide gas, ammonia gas, nitrogen dioxide gas, etc., especially recycled gas in the oil refining process, chlorine, and fluorine chemicals. The present invention relates to a gas component measuring cell useful for monitoring process gas in industry and measuring humidity such as measuring moisture in high-pressure cylinder gas.

(ロ) 従来技術 従来から種々のガス成分を測定する計測素子と
して水晶振動子等の圧電素子を利用したものが知
られており、例えば圧電素子板上にトリエタノー
ルアミンからなるガス感湿膜を形成した亜硫酸ガ
スセンサー、L−グルタミン酸−HClによる感湿
膜を形成したアンモニアガスセンサ、高分子電解
質膜を形成した湿度センサ等が提案されている。
かかる圧電素子を用いたガス検知センサは、通
常、ガス導入管及び排出管を備えたガス成分測定
用容器内に固定して用いられ(ガス成分測定セ
ル)、ガス成分の測定は被検ガスをガス導入管及
びガス排出管によりセル内に導入通過させ、この
ガス流動状態でのガス検知センサの出力、すなわ
ちガス感応膜の重量変化に基づく圧電素子板の発
振周波数の変動を検出することにより行なわれ
る。そして較正は標準ガスを用いることにより適
宜行なわれる。
(b) Prior Art Conventionally, devices using piezoelectric elements such as crystal oscillators have been known as measurement elements for measuring various gas components.For example, a gas moisture-sensitive film made of triethanolamine is placed on a piezoelectric element plate. A sulfurous acid gas sensor formed with a sulfur dioxide gas sensor, an ammonia gas sensor formed with a moisture-sensitive film made of L-glutamic acid-HCl, a humidity sensor formed with a polymer electrolyte membrane, and the like have been proposed.
A gas detection sensor using such a piezoelectric element is normally used by being fixed in a gas component measurement container equipped with a gas inlet pipe and a discharge pipe (gas component measurement cell). This is done by introducing the gas into the cell through a gas inlet pipe and a gas exhaust pipe, and detecting the output of the gas detection sensor in this gas flow state, that is, the fluctuation in the oscillation frequency of the piezoelectric element plate based on the change in the weight of the gas sensitive membrane. It can be done. Calibration is then performed appropriately using standard gases.

しかしながら、かかるガス成分測定セルにおい
ては、被検ガスや標準ガス等のセル内への導入ガ
ス流の流量変化により出力が変動し易く低濃度ガ
ス成分についての高確度な測定が困難であるとい
う問題点があつた。例えば、代表的な従来の湿度
測定セルは、第4図及び第5図に示すようにガス
導入管1及びガス排出管3を備えた容器9内に、
感湿膜8を形成した圧電素子板からなる湿度セン
サ7を内蔵し、かつこの感応面すなわち感湿膜表
面にガス導入管1からの導入ガス流が円滑に供給
されるように設定した構造からなるが、導入ガス
の流量変化による発振周波数への影響が生じ、そ
の結果、低湿度領域での誤差を生じ易いとい問題
点があつた。
However, in such a gas component measurement cell, the output tends to fluctuate due to changes in the flow rate of the gas flow introduced into the cell, such as the test gas or standard gas, making it difficult to accurately measure low concentration gas components. The point was hot. For example, a typical conventional humidity measuring cell includes a container 9 equipped with a gas inlet pipe 1 and a gas outlet pipe 3, as shown in FIGS. 4 and 5.
It has a built-in humidity sensor 7 consisting of a piezoelectric element plate on which a humidity-sensitive film 8 is formed, and is structured so that the flow of gas introduced from the gas introduction pipe 1 is smoothly supplied to this sensitive surface, that is, the surface of the humidity-sensitive film. However, there was a problem in that the oscillation frequency was affected by the change in the flow rate of the introduced gas, and as a result, errors were likely to occur in the low humidity region.

ことに最近、ガス感応膜や半導体技術の進歩に
よつてppmオーダー又はそれ以下の感度を有する
高分解能の各種圧電式ガス検知センサが開発され
ているが、このような高感度センサを用いた際に
は上記流量変化による影響を大きく受け、導入ガ
スの流量を厳格に制御しないと実質的な測定を行
なえないという欠点があつた。
In particular, recent advances in gas-sensitive films and semiconductor technology have led to the development of various high-resolution piezoelectric gas detection sensors with sensitivities on the order of ppm or lower. The method has the drawback that it is greatly affected by the above-mentioned flow rate changes and cannot perform substantial measurements unless the flow rate of the introduced gas is strictly controlled.

(ハ) 考案の目的 この考案は、上記従来の問題点に鑑みなされた
ものであり、ことに低濃度のガス成分を高確度に
測定しうるガス成分測定セルを提供しようとする
ものである。
(c) Purpose of the invention This invention was made in view of the above-mentioned conventional problems, and is intended to provide a gas component measuring cell that can measure particularly low concentration gas components with high accuracy.

(ニ) 考案の構成 かくしてこの考案によれば、ガス導入管及び排
出管を備え、圧電素子板上に所定のガス感応膜を
形成し感応面を設定したガス検知センサを内蔵し
てなるガス成分測定セルにおいて、 セル内のガス流の流れ方向に感応面が略平行と
なるようガス検知センサを配置すると共に、上記
ガス導入管のガス導入口とガス検知センサとの間
に介在してガス流を部分的に遮閉する遮閉手段を
設けてなるガス成分測定セルが提供される。
(d) Structure of the invention Thus, according to this invention, a gas component is provided with a gas inlet pipe and a discharge pipe, and a built-in gas detection sensor in which a predetermined gas-sensitive film is formed on a piezoelectric element plate and a sensitive surface is set. In the measurement cell, the gas detection sensor is arranged so that its sensitive surface is approximately parallel to the flow direction of the gas flow in the cell, and the gas detection sensor is interposed between the gas inlet of the gas introduction pipe and the gas detection sensor to control the gas flow. A gas component measuring cell is provided which is provided with a blocking means for partially blocking the gas component.

この考案は、上記のごとく構成することによ
り、ガス検知センサ感応面への導入ガス流の直接
吹き込みの防止とセル内ガス流の円滑な排出を可
能とし、それにより導入ガス流の流量変化による
セル内での圧力変化を緩和して流量変化に基づく
測定誤差を低減せしめたものである。
With the above-mentioned configuration, this device makes it possible to prevent direct blowing of the introduced gas flow to the sensitive surface of the gas detection sensor and to smoothly discharge the gas flow inside the cell. This reduces measurement errors due to flow rate changes by alleviating pressure changes within the valve.

(ホ) 実施例 以下、この考案を実施例により詳説するが、こ
れによりこの考案は限定されるものではない。
(e) Examples This invention will be explained in detail below using examples, but the invention is not limited thereby.

第1図はこの考案の一実施例の湿度測定セルを
示す構成説明図である。図において、湿度測定セ
ルは、直方体状のステンレス製容器9と、この容
器9の上面左端中央部に接続され内部空隙12内
にガスを供給しうるガス導入管1と、右側面中央
部に接続され内部空隙12内のガスを排出しうる
ガス排出管4と、内部空隙12内に保持金具5に
より装着された湿度センサ7とから基本構成され
てなる。湿度センサ7は圧電素子板の両面に各々
金電極を介して感湿膜8,8を形成してなる円板
状のタイプのものであり、導入ガスのセル内での
ガス流の流れ方向(図中、左端から右端)に感湿
膜8の感応面が略平行となるよう配置固定されて
なる。なお、それぞれの金電極には図示しないリ
ード線が接続されており、これらは保持金具5,
5に沿つて外部の発振周波数測定器に接続されて
いる。
FIG. 1 is an explanatory diagram showing the structure of a humidity measuring cell according to an embodiment of this invention. In the figure, the humidity measuring cell includes a rectangular parallelepiped stainless steel container 9, a gas introduction pipe 1 connected to the center of the left end of the upper surface of the container 9 and capable of supplying gas into the internal gap 12, and a gas introduction pipe 1 connected to the center of the right side. The humidity sensor 7 is basically composed of a gas exhaust pipe 4 capable of discharging the gas in the internal cavity 12, and a humidity sensor 7 mounted in the internal cavity 12 by a holding fitting 5. The humidity sensor 7 is a disc-shaped type in which humidity-sensitive films 8, 8 are formed on both sides of a piezoelectric element plate through gold electrodes, and the flow direction of the gas flow in the cell of the introduced gas ( The moisture sensitive film 8 is arranged and fixed so that its sensitive surfaces are substantially parallel from the left end to the right end in the figure. Note that lead wires (not shown) are connected to each gold electrode, and these are connected to the holding fittings 5,
5 to an external oscillation frequency measuring device.

一方、ガス導入管1は、左側壁に近接して内部
空隙12内の底面附近まで挿設されてなり、その
先端部の左側壁に対向する周側面がカツトされて
ガス導入口2が設定されている。そしてかかるガ
ス導入管の先端部構造により導入ガス流の湿度セ
ンサへの直接衝突が防止される遮閉壁10が設定
されることとなる。なお、図中、3はガス排出口
であり、6は保持金具5を支持する絶縁管を示
す。
On the other hand, the gas introduction pipe 1 is inserted close to the left side wall and close to the bottom of the internal cavity 12, and the gas introduction port 2 is set by cutting the circumferential side facing the left side wall of the tip thereof. ing. The structure of the tip of the gas introduction pipe provides a shielding wall 10 that prevents the introduced gas flow from directly colliding with the humidity sensor. In the figure, 3 is a gas exhaust port, and 6 is an insulating tube that supports the holding fitting 5.

かかる湿度測定セルにおいて、ガス導入管1よ
り被検ガスが導入された際、このガス流は遮閉壁
10の存在により湿度センサ7へ直接吹きつけら
れることなく、ガス導入口2から左側壁方向への
吹き込み及びそこでの反射を経て供給されるた
め、導入ガス流の流量変動によるセル内ガス流の
変化が緩和され、かつセル内ガス流を阻害しない
ように湿度センサが配置されていることと相俟つ
て、導入ガス流の流量変化に基づくセル内ことに
感応面に対するガス圧の変化が押えられることと
なる。その結果、流量の変化にも影響を受けない
湿度測定セルを提供することができ、微量水分の
高確度な測定が可能となる。
In such a humidity measurement cell, when a gas to be measured is introduced from the gas introduction pipe 1, the gas flow is not blown directly to the humidity sensor 7 due to the presence of the shielding wall 10, but instead flows from the gas introduction port 2 toward the left side wall. Since the humidity sensor is supplied after being blown into the cell and reflected there, changes in the gas flow within the cell due to fluctuations in the flow rate of the introduced gas flow are alleviated, and the humidity sensor is arranged so as not to impede the gas flow within the cell. Together with this, changes in the gas pressure within the cell, particularly against the sensitive surface, due to changes in the flow rate of the introduced gas flow are suppressed. As a result, it is possible to provide a humidity measurement cell that is not affected by changes in flow rate, making it possible to measure trace amounts of moisture with high accuracy.

一方、第2図は、この考案の他の一実施例の湿
度測定セルを示す構成説明図である。図におい
て、ガス導入管1がガス排出管4に対向して左側
面中央部に接続され、かつ遮閉手段としてガス導
入管1の内径とほぼ同径の遮閉板10′がガス導
入口2に近接して設置されている以外、第1図と
同様な構成を示す。なお11は遮閉板固定用の金
属支柱である。
On the other hand, FIG. 2 is an explanatory diagram showing the structure of a humidity measuring cell according to another embodiment of this invention. In the figure, a gas inlet pipe 1 is connected to the center of the left side facing the gas outlet pipe 4, and a shielding plate 10' having approximately the same diameter as the inner diameter of the gas inlet pipe 1 is provided as a shielding means to the gas inlet 2. The configuration is similar to that of FIG. 1, except that it is located close to the . Note that 11 is a metal support for fixing the shielding plate.

かかる第2図に示す湿度測定セルにおいても遮
閉板10′の設置により、導入ガス流の湿度セン
サ7の感応面への直接接触が防止され、前述と同
様に流量変化に基づく感応面へのガス圧変化が押
えられ、微量水分の高確度な測定が可能となる。
Also in the humidity measuring cell shown in FIG. 2, the installation of the shielding plate 10' prevents the introduced gas flow from coming into direct contact with the sensitive surface of the humidity sensor 7, and similarly to the above, the direct contact of the introduced gas flow with the sensitive surface of the humidity sensor 7 is prevented. Changes in gas pressure are suppressed, allowing highly accurate measurement of trace amounts of moisture.

なお、上記湿度測定セルにおける湿度センサと
しては、高感度測定の観点から、圧電素子上にプ
ラズマ重合高分子をマトリツクスとしこの表層部
にスルホン酸基又は第4級アンモニウム基を化学
結合させたタイプのものを用いるのが好ましく、
ことに、スチレン等の疎水性モノマーを水晶発振
子等の圧電素子板上にプラズマ重合させ、さらに
その上に有機アミノ化合物ことに直鎖状置換基を
有する第三級アミンをプラズマ重合させ、次いで
その表面をハロゲン化アルキルで接触処理して第
4級アンモニウム基を導入せしめた感湿膜を有す
るものを用いるのが最も好ましい。
In addition, from the viewpoint of high-sensitivity measurement, the humidity sensor in the above-mentioned humidity measurement cell is a type in which a plasma-polymerized polymer is matrixed on a piezoelectric element and a sulfonic acid group or a quaternary ammonium group is chemically bonded to the surface layer of the matrix. It is preferable to use
In particular, a hydrophobic monomer such as styrene is plasma-polymerized on a piezoelectric element plate such as a crystal oscillator, and then a tertiary amine having a linear substituent in an organic amino compound is plasma-polymerized thereon. It is most preferable to use one having a moisture-sensitive film whose surface is subjected to contact treatment with an alkyl halide to introduce quaternary ammonium groups.

第3図は、上記第1図及び第2図で示したこの
考案の湿度測定セルにおける導入ガス流量と発振
周波数との関係を示すグラフである。また、図中
プロツトXは第4図及び第5図に示した従来構造
のセルによる結果を示すものである。なお、湿度
センサとしては、ATカツト水晶振動子(約9M
Hz,14mmφ)の両面に蒸着により金薄膜を形成
し、この両面にプラズマ重合ポリスチレン膜(厚
さ約0.7μm)を形成し、さらにこの上にN,N,
N″,N″−テトラメチルヘキサンジアミンのプラ
ズマ重合によるアミノ基含有高分子膜(厚さ約
0.2μm)を形成し、次いでその表面を塩化メチル
で接触処理してアミノ基を第4級アンモニウム基
に変換させたものを用いた。また、被検ガスとし
ては、湿度5ppm(絶対湿度)の窒素ガスを用い
た。
FIG. 3 is a graph showing the relationship between the introduced gas flow rate and the oscillation frequency in the humidity measuring cell of this invention shown in FIGS. 1 and 2 above. Plot X in the figure shows the results obtained using the conventional cell structure shown in FIGS. 4 and 5. In addition, as a humidity sensor, an AT cut crystal oscillator (approximately 9M
A thin gold film was formed by vapor deposition on both sides of the metal (Hz, 14 mmφ), a plasma-polymerized polystyrene film (about 0.7 μm thick) was formed on both sides, and on top of this, N, N,
Amino group-containing polymer film (thickness approx.
0.2 μm) and then the surface was contacted with methyl chloride to convert the amino groups to quaternary ammonium groups. Furthermore, nitrogen gas with a humidity of 5 ppm (absolute humidity) was used as the test gas.

このように、この考案の湿度測定セルによれ
ば、0.2ml/分以上の流量において、発振周波数
の出力はほとんど影響を受けていないことが判
る。これに対し従来構造の湿度測定セルにおいて
は、流量により周波数が大きく変化しており、流
動を一定に制御しないと微量水分ことに1ppm以
下の水分の正確な測定は不可能であることが判
る。
Thus, it can be seen that according to the humidity measuring cell of this invention, the output of the oscillation frequency is hardly affected at a flow rate of 0.2 ml/min or more. On the other hand, in a humidity measuring cell with a conventional structure, the frequency changes greatly depending on the flow rate, and it is clear that unless the flow is controlled to be constant, it is impossible to accurately measure trace amounts of moisture, especially moisture of 1 ppm or less.

(ヘ) 考案の効果 以上述べたごとく、この考案のガス成分測定セ
ルによれば、簡便に微量ガス成分の正確な測定を
行なうことができる。そしてことに流量やガス圧
が大きく変化する各種対象ガス中の微量ガス成分
の測定に有利である。
(f) Effects of the invention As stated above, the gas component measuring cell of this invention allows for simple and accurate measurement of trace gas components. It is especially advantageous for measuring trace gas components in various target gases whose flow rates and gas pressures vary greatly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、この考案のガス成分測定
セルの実施例をそれぞれ示す構成説明図、第3図
はこの考案のガス成分測定セルにおける導入ガス
流量と、発振周波数との関係を比較例と共に例示
するグラフ、第4図及び第5図は従来のガス成分
測定セルをそれぞれ例示する構成説明図である。 1……ガス導入管、2……ガス導入口、3……
ガス排出口、4……ガス排出管、5……保持金
具、6……絶縁管、7……湿度センサ、8……感
湿膜、9……ステンレス製容器、10……遮閉
壁、10′……遮閉板、11……金属支柱、12
……内部空隙。
Figures 1 and 2 are configuration explanatory diagrams showing examples of the gas component measurement cell of this invention, and Figure 3 compares the relationship between the introduced gas flow rate and the oscillation frequency in the gas component measurement cell of this invention. The graphs illustrated along with the examples, FIGS. 4 and 5, are configuration explanatory diagrams each illustrating a conventional gas component measuring cell. 1...Gas inlet pipe, 2...Gas inlet, 3...
Gas exhaust port, 4... Gas exhaust pipe, 5... Holding fitting, 6... Insulating tube, 7... Humidity sensor, 8... Moisture sensitive membrane, 9... Stainless steel container, 10... Closing wall, 10'...Blocking plate, 11...Metal support column, 12
...internal void.

Claims (1)

【実用新案登録請求の範囲】 ガス導入管及び排出管を備え、圧電素子板上に
所定のガス感応膜を形成し感応面を設定したガス
検知センサを内蔵してなるガス成分測定セルにお
いて、 セル内のガス流の流れ方向に感応面が略平行と
なるようガス検知センサを配置すると共に、上記
ガス導入管のガス導入口とガス検知センサとの間
に介在してガス流を部分的に遮閉する遮閉手段を
設けてなるガス成分測定セル。
[Scope of Claim for Utility Model Registration] A gas component measuring cell comprising a gas inlet pipe and a discharge pipe, and a built-in gas detection sensor in which a predetermined gas-sensitive film is formed on a piezoelectric element plate and a sensitive surface is set. The gas detection sensor is arranged so that its sensitive surface is substantially parallel to the flow direction of the gas flow in the gas flow direction, and the gas flow is partially blocked by being interposed between the gas introduction port of the gas introduction pipe and the gas detection sensor. A gas component measurement cell equipped with a closing means.
JP20008684U 1984-12-24 1984-12-24 Expired JPH0320762Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20008684U JPH0320762Y2 (en) 1984-12-24 1984-12-24

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20008684U JPH0320762Y2 (en) 1984-12-24 1984-12-24

Publications (2)

Publication Number Publication Date
JPS61110147U JPS61110147U (en) 1986-07-12
JPH0320762Y2 true JPH0320762Y2 (en) 1991-05-07

Family

ID=30760607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20008684U Expired JPH0320762Y2 (en) 1984-12-24 1984-12-24

Country Status (1)

Country Link
JP (1) JPH0320762Y2 (en)

Also Published As

Publication number Publication date
JPS61110147U (en) 1986-07-12

Similar Documents

Publication Publication Date Title
US5580441A (en) Method of measuring ion concentration and apparatus therefor
JPS5824851A (en) Method and device for measuring ion concentration
Karmarkar et al. A new design and coatings for piezoelectric crystals in measurement of trace amounts of sulfur dioxide
US8608925B2 (en) Multiple-electrode ionic probe
JPH0320762Y2 (en)
JPH08210960A (en) Method for measuring concentration of non-polar gas such as carbon dioxide by sensor based on polymer and structure of concentration sensor
Midgley Investigations into the use of gas-sensing membrane electrodes for the determination of carbon dioxide in power station waters
US7887683B2 (en) Electrochemical sensor compensated for relative humidity
Guilbault et al. Use of Sodium Tetrachloromercuriate as a Substrate for the Determination of So2 on the Piezocrystal Detector
US4394240A (en) Combined sulfur oxide/oxygen measuring apparatus
US4990236A (en) Thin film moisture sensing element
JPS6011160A (en) Moisture analysis meter
CA1316715C (en) Thin film moisture sensing elements and process for the manufacture thereof
Xu et al. Ammonia selective bulk acoustic wave sensor based on neutral ionophores
JPS59182334A (en) Cell for measuring gas component
JPH04191650A (en) Measuring apparatus for ion
KR100441663B1 (en) Micro pH sensor with temperature sensor for measuring pH with the micro pH sensor
Liu et al. Effects of gas flow-rates on a Clark-type oxygen gas sensor
JPH0446202Y2 (en)
JPS6130194Y2 (en)
Guimarães et al. Detection of sulfur dioxide using a piezoelectric quartz crystal microbalance
Trojanowicz et al. Flow-injection analysis of inorganic pollutants in gaseous phase with piezoelectric detection Part 1. Verification of principal experimental parameters affecting the detector response
SU1087866A1 (en) Electrochemical device for measuring concentration of gaseous fluoride compounds
JPS61196134A (en) Moisture measuring cell
JPH02293644A (en) Sensor for concentration of ruthenium tetraoxide