JPH03206126A - Production of massive-sphere fiber active carbon - Google Patents

Production of massive-sphere fiber active carbon

Info

Publication number
JPH03206126A
JPH03206126A JP1343976A JP34397689A JPH03206126A JP H03206126 A JPH03206126 A JP H03206126A JP 1343976 A JP1343976 A JP 1343976A JP 34397689 A JP34397689 A JP 34397689A JP H03206126 A JPH03206126 A JP H03206126A
Authority
JP
Japan
Prior art keywords
activated carbon
pitch
fibers
adsorption
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1343976A
Other languages
Japanese (ja)
Inventor
Fumihiro Miyoshi
史洋 三好
Yukihiro Osugi
大杉 幸広
Seiji Hanatani
誠二 花谷
Masayuki Sumi
角 誠之
Mamoru Kamishita
神下 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1343976A priority Critical patent/JPH03206126A/en
Publication of JPH03206126A publication Critical patent/JPH03206126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To efficiently obtain the subject active carbon having a high adsorptivity and a high rate of adsorption and desorption and capable of ready reuse by using tar pitch as the raw material, melt spinning the tar pitch, subsequently infusibilizing the spun yarn and carrying out spheroidizing and activation. CONSTITUTION:A pitch for spinning is prepared using tar pitch as the raw material and the above mentioned pitch for spinning is subjected to melt spinning followed by infusibilization in an oxidative atmosphere. The resultant infusibilized fibers are then mutually entangled for spheroidizing and activation is subsequently carried out, thus obtaining the objective active carbon. In addition, an adhesive is preferably applied before or after the spheroidizing process in order to bond mutual fibers.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸着脱離能力および広い表面積を活かして、
幅ひろい産業分野で利用されている活性炭に関する。さ
らに、詳しくは、公害防止および環境浄化、食品工業、
石油工業等に用いられ高度処理に不可欠な高機能性活性
炭素繊維に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention utilizes adsorption/desorption ability and a large surface area to
Concerning activated carbon, which is used in a wide range of industrial fields. Further details include pollution prevention and environmental purification, food industry,
This article relates to highly functional activated carbon fibers that are used in the petroleum industry and are indispensable for advanced processing.

(従来の技術〉 活性炭は、無数の微細孔を有し、単位重量当りの外表面
積が大きく、気相、液相中で種々の分子を吸着保持し、
また脱離させることができる。従って、従来より活性炭
はこの吸着能力を活かして種々の分子の分離剤、除去剤
、吸着剤、回収剤、触媒、触媒担体等として用いられて
いる。
(Prior art) Activated carbon has countless micropores and a large outer surface area per unit weight, and can adsorb and hold various molecules in the gas and liquid phases.
It can also be desorbed. Therefore, activated carbon has conventionally been used as a separation agent, removal agent, adsorbent, recovery agent, catalyst, catalyst carrier, etc. for various molecules by taking advantage of its adsorption ability.

活性炭は、その形態から、一般に粒径が149μm以下
の粉末活性炭と、粒径がlmm〜3mm程度の粒状活性
炭と、無定形の活性炭素繊維とに大別される。
Activated carbon is generally classified into powdered activated carbon with a particle size of 149 μm or less, granular activated carbon with a particle size of about 1 mm to 3 mm, and amorphous activated carbon fiber based on its form.

粉末活性炭は、粒状活性炭に比べて、単位重量当りの外
表面積が大きく、吸着速度が速いという利点があるが、
粒径が149μm以下と小さいために、飛び易く、概し
て取り扱いが困難で、粉塵爆発の危険性もある。また、
固定層で使用するとき通気抵抗が大きいことから、気相
中での使用は困難であり、処理液と適当量の活性炭とを
混合した後に濾過する接触回分法で利用され、液層中で
の種々の分子の分離剤、除去剤、吸着剤、分解剤、回収
剤、触媒担体としてしか用いられないという欠点を有し
ている。従って、仮に、気相中で、有害物質の種々の分
子の吸着効果を得ようとすれば、処理量の減少、いわゆ
る吸着効率の低下を招くことになる。
Powdered activated carbon has the advantage of having a larger outer surface area per unit weight and faster adsorption speed than granular activated carbon.
Because the particle size is small (149 μm or less), they fly easily, are generally difficult to handle, and pose a risk of dust explosion. Also,
When used in a fixed bed, it is difficult to use in a gas phase due to the large ventilation resistance, so it is used in a contact batch method in which the treatment liquid and an appropriate amount of activated carbon are mixed and filtered. It has the disadvantage that it can only be used as a separation agent, removal agent, adsorbent, decomposition agent, recovery agent, and catalyst carrier for various molecules. Therefore, if an attempt is made to obtain the effect of adsorbing various molecules of harmful substances in the gas phase, this will result in a decrease in the throughput, or a decrease in the so-called adsorption efficiency.

粒状活性炭は、粉末活性炭に比べて取り扱い易く、飛散
し難く、粉塵爆発の危険性もなく、また固定層で使用す
るときは通気抵抗が小さいことから、気相中でも液相中
でも利用でき、また再生使用ができるという利点を有す
るが、その一方で、粉砕、粉化され易く、単位重量当り
の外表面積が小さく、吸着速度、脱着速度が遅いという
欠点を有する。従って、仮に、精製しようとするガスま
たは液を粒状活性炭層に流し、低濃度の有害物質の種々
の分子を充分に吸着除去しようとすれば、大容量の粒状
活性炭層を必要とし、処理量の減少、いわゆる吸着効率
の低下を招く結果となる。
Granular activated carbon is easier to handle than powdered activated carbon, is less likely to scatter, has no risk of dust explosion, and has low ventilation resistance when used in a fixed bed, so it can be used in both gas and liquid phases, and can be recycled. Although it has the advantage of being easy to use, it has the disadvantages of being easily crushed and powdered, having a small external surface area per unit weight, and having slow adsorption and desorption rates. Therefore, if the gas or liquid to be purified were to be passed through a granular activated carbon layer to sufficiently adsorb and remove various molecules of harmful substances at low concentrations, a large capacity granular activated carbon layer would be required, and the amount of treatment would be reduced. This results in a decrease in adsorption efficiency.

活性炭素繊維は、一般に、炭素繊維をガス賦活または薬
品賦活することで製造される繊維状の活性炭で、繊維一
本一本の単位重量当りの外表面積が大きく、吸着脱着速
度が速いという利点がある。
Activated carbon fiber is generally a fibrous activated carbon produced by activating carbon fiber with gas or chemicals, and has the advantage of having a large outer surface area per unit weight of each fiber and a fast adsorption/desorption rate. be.

活性炭素繊維の製造方法は、ポリアクリロニトリル系繊
維を原料とするもの、フェノール樹脂繊維を原料とする
もの、セルロース系繊維を原料とするもの、およびピッ
チ系繊維を原料とするものなどがある。
Methods for producing activated carbon fibers include methods using polyacrylonitrile fibers as raw materials, methods using phenol resin fibers as raw materials, methods using cellulose fibers as raw materials, and methods using pitch fibers as raw materials.

従来よりピッチ系活性炭素繊維は、特開昭61−132
629号公報、特開昭62−27315号公報などに見
られるように、光学的に等方性のピッチ繊維、種類を原
料として紡糸、不融化、炭化賦活化処理することにより
製造されている。
Conventionally, pitch-based activated carbon fiber
As seen in JP-A No. 629 and JP-A No. 62-27315, optically isotropic pitch fibers are produced by spinning, infusibility, and carbonization activation treatment using optically isotropic pitch fibers as raw materials.

また、ポリアクリロニトリル系炭素繊維では、特公昭6
3−53294号公報などにみられるように、ポリアク
リロニトリル繊維、一種類を原料として製造されている
In addition, for polyacrylonitrile carbon fiber,
As seen in Japanese Patent No. 3-53294, it is manufactured using one type of polyacrylonitrile fiber as a raw material.

(発明が解決しようとする課題〉 従来より、ピッチ系活性炭素繊維は、特開昭61132
629号公報などの不織布の製造方法に見られるように
、嵩密度が低い状態で賦活化処理され、製造されており
、さらには、製品の形態も、フエルト、マット、ペーパ
ーと、嵩密度の低いものばかりであった。また、ポリア
クリロニトリル系活性炭素繊維(特開昭63−5329
4号公報等)でも、セルロース系活性炭素繊維(特開昭
51−19818号公報等)のシート状集合体の賦活化
においても、嵩密度の低い状態で賦活化するため、賦活
化処理炉の容積がどうしても大きくなり、生産性が悪か
った。
(Problem to be solved by the invention) Conventionally, pitch-based activated carbon fiber
As seen in the manufacturing method of nonwoven fabrics such as No. 629, they are manufactured by activation treatment in a state with low bulk density, and furthermore, the form of the product is also low bulk density, such as felt, mat, and paper. There were so many things. In addition, polyacrylonitrile activated carbon fiber (Japanese Patent Application Laid-Open No. 63-5329
4, etc.) and cellulose activated carbon fibers (Japanese Patent Laid-Open No. 51-19818, etc.), since the activation is carried out in a state with a low bulk density, The volume inevitably became large, and productivity was poor.

このようにして製造された活性炭素繊維は、繊維である
ため、繊維集合体としては強度が弱く、作業性が悪く、
取り扱い難く、飛散し易く、形状維持特性が悪く、空隙
率が高く、充填密度が低いという欠点のために、空隙率
、充填密度の再現性が悪いという問題がある。従って、
仮に、精製しようとするガスまたは液を活性炭素繊維充
填層に流し、低濃度の有害物質の種々の分子を吸着除去
しようとすれば、大容積の活性炭素繊維充填層を必要と
し、経済的でなく、処理量の減少、いわゆる吸着効率の
低下を招く結果となる。また、精製しようとするガスま
たは液を、活性炭素繊維を綿状にした充填層に流し有害
物質の種々の分子の吸着除去を行おうとすると、綿状に
した繊維体は形状維持特性が悪く、ばらけ飛散し、摩耗
、破砕ロス、形状変化を引き起こし、同じく吸着除去率
の低下、処理量の減少、いわゆる吸着効率の低下を招く
ことになる。更に、仮に、形状維持特性を改善する目的
で、織物、不織布(フェルト、マット、ペーパー)状の
活性炭素繊維を製造するには、嵩密度が低いため、製造
装置が大きくなり、製造コストが高くなるという問題が
ある。
Since the activated carbon fibers produced in this way are fibers, they have low strength as a fiber aggregate and have poor workability.
Due to the disadvantages of being difficult to handle, easy to scatter, poor shape retention characteristics, high porosity, and low packing density, there is a problem of poor reproducibility of porosity and packing density. Therefore,
If the gas or liquid to be purified were to be passed through an activated carbon fiber packed bed to adsorb and remove various molecules of harmful substances at low concentrations, a large volume of activated carbon fiber packed bed would be required, which would not be economical. This results in a decrease in the throughput, ie, a decrease in adsorption efficiency. Furthermore, when trying to adsorb and remove various molecules of harmful substances by flowing the gas or liquid to be purified through a packed bed made of flocculent activated carbon fibers, the flocculent fibers have poor shape retention properties; It scatters and causes abrasion, crushing loss, and shape change, which also leads to a decrease in adsorption removal rate, a decrease in throughput, and a decrease in so-called adsorption efficiency. Furthermore, if we were to produce activated carbon fibers in the form of woven or non-woven fabrics (felt, mat, paper) for the purpose of improving their shape retention properties, their low bulk density would require large production equipment and high production costs. There is a problem with becoming.

そこで、本発明の目的は、従来活性炭、すなわち粉末活
性炭、粒状活性炭、および活性炭素繊維の欠点を解消し
、吸着能力が高く、吸脱着速度が速く、ハンドリング性
が良好で、形状維持特性が良く、かつ再生使用が容易な
高機能の球状繊維塊活性炭の製造方法を提供することに
ある。
Therefore, the purpose of the present invention is to eliminate the drawbacks of conventional activated carbon, namely powdered activated carbon, granular activated carbon, and activated carbon fiber, and to provide high adsorption capacity, fast adsorption/desorption rate, good handling property, and good shape retention properties. It is an object of the present invention to provide a method for producing highly functional spherical fiber aggregate activated carbon that is easy to recycle and use.

(課題を解決するための手段) 本発明者らは、上記課題を解決すべく鋭意検討した結果
、クールピッチを原料として、紡糸した後に、このピッ
チ繊維を不融化し、得られた不融化繊維を球状として、
球状不融化繊維塊を得、さらに賦活化することにより、
高機能性の球状繊維塊活性炭が得られることを見出し、
本発明を完或するに至った。
(Means for Solving the Problems) As a result of intensive studies to solve the above problems, the present inventors used cool pitch as a raw material, spun the pitch fibers, and then infusibleized the pitch fibers to obtain infusible fibers. As a spherical shape,
By obtaining a spherical infusible fiber mass and further activating it,
It was discovered that highly functional spherical fibrous activated carbon could be obtained.
The present invention has now been completed.

すなわち、本発明は、複数本の繊維状の活性炭素繊維が
互いに密接に絡みあい、あるいは一部が接着もしくは融
着してなる高機能性の球状繊維塊活性炭の製造方法に関
するものである。
That is, the present invention relates to a method for producing highly functional spherical fiber aggregate activated carbon in which a plurality of fibrous activated carbon fibers are closely intertwined with each other or are partially adhered or fused.

本発明においては、球状化処理の前もしくは後に接着剤
処理を施して、得られる球状繊維塊活性炭の形状維持特
性を高めることができる。
In the present invention, adhesive treatment can be performed before or after the spheroidization treatment to improve the shape retention properties of the obtained spherical fiber aggregate activated carbon.

上記ピッチ繊維の繊維径は、好ましくは4μm〜60μ
m1更に好ましくは6μm〜40μmである。
The fiber diameter of the pitch fiber is preferably 4 μm to 60 μm.
m1 is more preferably 6 μm to 40 μm.

また、本発明に係る球状繊維塊活性炭の見かけ密度は0
.01g/cffl以上、好ましくは0.03g/c[
[l以上、更に好ましくは0.05g/crl以上であ
る。
Further, the apparent density of the spherical fiber aggregate activated carbon according to the present invention is 0.
.. 01g/cffl or more, preferably 0.03g/c[
[1 or more, more preferably 0.05 g/crl or more.

以下、本発明の球状繊維塊活性炭の製造方法を詳細に説
明する。
Hereinafter, the method for producing the spherical fiber aggregate activated carbon of the present invention will be explained in detail.

本発明に用いる原料は、クールピッチが好ましい。これ
は、従来製造されているポリアクリロニトリル系、フェ
ノール樹脂系、セルロース系に比べて、ピッチを原料と
したほうが、原料が安価であり、かつ賦活化収率が高い
からである。また、ここで用いるピッチは、後工程の紡
糸、不融化、賦活化に適したものとなるように重質化さ
れた高軟化点のものが適しており、特に200℃以上の
軟化点のものが好ましい。このようなピンチとしては、
例えば、特公昭61−002712号公報などに提案さ
れている、精製、溶剤抽出、蒸留、熱処理などを施して
調製されたもので、実質的に光学的等方性ピッチ、いわ
ゆるブリカーサピッチが適している。
The raw material used in the present invention is preferably cool pitch. This is because pitch is a cheaper raw material and has a higher activation yield than conventionally produced polyacrylonitrile, phenol resin, and cellulose materials. In addition, the pitch used here is preferably one with a high softening point that is made heavy so that it is suitable for spinning, infusibility, and activation in the subsequent processes, especially one with a softening point of 200°C or higher. is preferred. In such a pinch,
For example, as proposed in Japanese Patent Publication No. 61-002712, etc., it is prepared by performing purification, solvent extraction, distillation, heat treatment, etc., and substantially optically isotropic pitch, so-called bricasser pitch, is suitable. ing.

次に、ピッチの紡糸は、公知の方法により行なうことが
でき、例えば溶融押出紡糸、遠心紡糸等の方法を採用す
ることができる。
Next, the pitch can be spun using a known method, such as melt extrusion spinning or centrifugal spinning.

不融化処理は、得られたピッチ繊維を高温で賦活化する
際に形状を維持できるようにするために、酸化性の雰囲
気下で150〜350℃程度の温度で処理する。この不
融化処理は、酸化性ガス、例えば空気、酸素、二酸化窒
素などの混合ガス雰囲気中で加熱処理することにより行
なうことができるが、薬品による処理でもよい。
The infusibility treatment is performed at a temperature of about 150 to 350° C. in an oxidizing atmosphere in order to maintain the shape of the obtained pitch fibers when activated at high temperatures. This infusibility treatment can be performed by heat treatment in an atmosphere of an oxidizing gas such as a mixed gas of air, oxygen, nitrogen dioxide, etc., but treatment with chemicals may also be used.

次に、ピッチ繊維を球状化するが、この方法としては、
例えば内部に旋回気流を生じさせた円筒容器中に炭素繊
維の短繊維集合体を混入し、気流とともに旋回させる方
法が提案されており(特開昭62−114636号公報
)、この方法を利用することができる。
Next, the pitch fibers are spheroidized, but this method is as follows:
For example, a method has been proposed in which short carbon fiber aggregates are mixed in a cylindrical container with a swirling airflow inside and swirled together with the airflow (Japanese Patent Application Laid-open No. 114636/1983). be able to.

球状化処理に適用することのできる接着剤処理の接着剤
としては、ポリビニルアルコール水溶液、デンプン水溶
液、フェノール樹脂アルコール溶液等を使用することが
できる。しかし、接着剤を使用しなくても多少形状維持
特性が劣る程度で、球状にすることは可能である。
As the adhesive for the adhesive treatment that can be applied to the spheroidization treatment, polyvinyl alcohol aqueous solution, starch aqueous solution, phenol resin alcohol solution, etc. can be used. However, it is possible to make it spherical even without using an adhesive, although the shape retention properties are somewhat inferior.

球状不融化繊維塊の賦活化処理は、球状繊維塊を水蒸気
、二酸化炭素、酸素またはこれらを少なくとも一種類以
上含む混合ガスで、通常の方法で賦活化することができ
る。あるいは、薬品による賦活化処理を採用することも
できる。
In the activation treatment of the spherical infusible fiber mass, the spherical fiber mass can be activated by a conventional method using water vapor, carbon dioxide, oxygen, or a mixed gas containing at least one of these. Alternatively, activation treatment using chemicals can also be employed.

通常、ガス賦活法では、活性炭素繊維の特性は、賦活化
処理の温度、時間等により制御することができる。ガス
賦活する場合の好ましい賦活化条件としては、賦活化温
度が700〜1000℃で、賦活化時間が0〜480分
であるが、要求される特性にあわせて条件を選択する必
要がある。
Usually, in the gas activation method, the characteristics of activated carbon fibers can be controlled by the temperature, time, etc. of the activation treatment. Preferred activation conditions for gas activation include an activation temperature of 700 to 1000°C and an activation time of 0 to 480 minutes, but it is necessary to select the conditions according to the required characteristics.

また、賦活化装置としては、回分式、あるいは本発明で
は繊維が球状塊となっているためにハンドリング性がよ
く、連続式の賦活化炉も採用することができる。
Further, as the activation apparatus, a batch type or, in the present invention, a continuous type activation furnace, which has good handling properties since the fibers are in the form of spherical lumps, can be employed.

本方法によれば、繊維同士の過度の融着もなく、また不
活性雰囲気下での炭化工程を経ることがないため、短時
間の賦活処理で球状繊維塊活性炭を製造することができ
る。
According to this method, there is no excessive fusion between fibers, and there is no need to undergo a carbonization step in an inert atmosphere, so that activated carbon spherical fiber aggregates can be produced in a short activation process.

以上のようにして、得られた球状繊維塊活性炭は、単位
重量当たりの外表面積が大きく、吸着脱着速度が速く、
充填層の圧力損失が少なく、しかも球状であることから
作業性、ハンドリング性に優れ、あらゆる形状に充填す
ることが可能で、かつ緻密な充填をすることができる。
The spherical fiber aggregate activated carbon obtained in the above manner has a large outer surface area per unit weight, a fast adsorption/desorption rate,
The pressure loss of the packed bed is small, and since it is spherical, it has excellent workability and handling, and can be filled into any shape and densely packed.

また、形状維持特性が良く、粉化ロスが少なく、再生使
用が容易である。さらに、高機能性を活かして、液相、
気相を問わず、環境浄化に使用することができる。
In addition, it has good shape retention characteristics, has little powdering loss, and is easy to reuse. Furthermore, by taking advantage of its high functionality, we have
Regardless of the gas phase, it can be used for environmental purification.

(実施例) 次に本発明を実施例により説明する。(Example) Next, the present invention will be explained by examples.

実施例1 夕一ルピノチを原料とし、ベンゼン不溶分を56重量%
含む全面光学的等方性ピッチ(プリヵーサピノチ)を溶
融紡糸し、ピッチ繊維を得た。得られたピッチ繊維は、
繊維径20μmであった。これを5℃/ m i nの
速度で昇温し、310℃、空気流通下で、不融化処理し
た。
Example 1 Yuichi Lupinoch is used as a raw material, and the benzene insoluble content is 56% by weight.
Pitch fibers were obtained by melt spinning a fully optically isotropic pitch (precursor pinoch) containing: The obtained pitch fiber is
The fiber diameter was 20 μm. This was heated at a rate of 5° C./min and subjected to infusibility treatment at 310° C. under air circulation.

得られた不融化繊維を3rrII[lの長さに切断し、
チョンプ状にした後、これを、円筒容器に挿入し、旋回
気流を生じさせながら旋回させたところ、球状の不融化
繊維を得ることができた。次いで、この球状不融化ビノ
チ繊維塊を回分式の炉を用いて、33%の水蒸気を含む
窒素ガスを流通させながら昇温し、900℃で1時間保
持することにより、賦活化処理を行った。
The obtained infusible fiber was cut into a length of 3rrII [l,
After forming into a chomp shape, this was inserted into a cylindrical container and swirled while generating a swirling air current, and a spherical infusible fiber could be obtained. Next, this spherical infusible binochi fiber mass was heated in a batch-type furnace while flowing nitrogen gas containing 33% water vapor, and was held at 900°C for 1 hour to perform an activation treatment. .

得られた球状繊維塊活性炭の収率は、ピンチ繊維の重量
に対して19%であり、比表面積(マイクロメリティク
ス社製、アサップ2000を用いて、測定し、ラングミ
ュア法にて解析)は2500m’/g、平均細孔直径は
1.9nmであった。
The yield of the obtained spherical fiber aggregate activated carbon was 19% based on the weight of the pinched fibers, and the specific surface area (measured using ASAP 2000 manufactured by Micromeritics and analyzed by Langmuir method) was 2500 m '/g, and the average pore diameter was 1.9 nm.

かかる球状繊維塊活性炭を充填した吸着力ラムにトルエ
ン蒸気を通し、吸着処理し、更に窒素ガスにて脱着処理
した。吸着カラムは、内径30mmのテフロン管に、当
該球状繊維塊活性炭5gを充填したものを用いた。
Toluene vapor was passed through an adsorption ram filled with such spherical fiber aggregate activated carbon for adsorption treatment, and further desorption treatment was performed using nitrogen gas. The adsorption column used was a Teflon tube with an inner diameter of 30 mm filled with 5 g of the spherical fiber aggregate activated carbon.

トルエン蒸気の吸脱着を100回繰り返すと、形状変化
のため、嵩高さが2%減少した。
When adsorption and desorption of toluene vapor was repeated 100 times, the bulkiness decreased by 2% due to shape change.

実施例2 実施例1で得られたと同じ球状不融化繊維にポリビニル
アルコールl重量%水溶液を付着させた後、乾燥した。
Example 2 A 1% by weight aqueous solution of polyvinyl alcohol was applied to the same spherical infusible fibers obtained in Example 1, and then dried.

得られた球状繊維塊を実施例lで使用したと同じ賦活化
炉を用いて、33%の水蒸気を含む窒素ガスを流通させ
ながら昇温し、900℃で1時間保持することにより、
賦活化処理を行った。
Using the same activation furnace as used in Example 1, the obtained spherical fiber mass was heated while flowing nitrogen gas containing 33% water vapor, and held at 900 ° C. for 1 hour.
Activation treatment was performed.

得られた球状繊維塊活性炭の収率は、ピッチ繊維重量に
対して20%であり、比表面積(マイクロメリティクス
社製、アサップ2000を用いて、測定し、ラングミュ
ア法にて解析)は2450m’/g,平均細孔直径は1
.3nmであった。
The yield of the obtained spherical fiber aggregate activated carbon was 20% based on the pitch fiber weight, and the specific surface area (measured using ASAP 2000 manufactured by Micromeritics and analyzed by Langmuir method) was 2450 m'. /g, average pore diameter is 1
.. It was 3 nm.

かかる球状繊維塊活性炭を充填した吸着カラムにトルエ
ン蒸気を通し、吸着処理し、更に窒素ガスにて脱着処理
した。吸着カラムは、内径30mmのテフロン管に、当
該球状繊維塊活性炭5gを充填したものを用いた。
Toluene vapor was passed through an adsorption column filled with such spherical fiber aggregate activated carbon for adsorption treatment, and further desorption treatment was performed using nitrogen gas. The adsorption column used was a Teflon tube with an inner diameter of 30 mm filled with 5 g of the spherical fiber aggregate activated carbon.

トルエン蒸気の吸脱着を100回繰り返すと、形状変化
のため、嵩高さが1%減少した。
When adsorption and desorption of toluene vapor was repeated 100 times, the bulkiness decreased by 1% due to shape change.

実施例3 実施例1で得られたと同じ不融化繊維を3111[[1
の長さに切断し、チョンプ状にした後、これを、円筒容
器に挿入し、ポリビニルアルコール1重量%水溶液を噴
霧し、旋回気流を生じさせながら旋回させたところ、球
状の不融化繊維塊を得ることができた。次いで、この球
状不融化ピンチ繊維塊を回分式の炉を用いて、33%の
水蒸気を含む窒素ガスを流通させながら昇温し、900
℃で■時間保持することにより、賦活化処理を行った。
Example 3 The same infusible fibers obtained in Example 1 were made into 3111[[1
After cutting it into a length and making it into a chomp shape, it was inserted into a cylindrical container, sprayed with a 1% by weight aqueous solution of polyvinyl alcohol, and swirled while creating a swirling air current, resulting in a spherical infusible fiber mass. I was able to get it. Next, this spherical infusible pinch fiber mass was heated in a batch type furnace while flowing nitrogen gas containing 33% water vapor to a temperature of 900%.
Activation treatment was carried out by holding at °C for 2 hours.

得られた球状繊維塊活性炭の収率は、ピッチ繊維重量に
対して20%であり、比表面積(マイクロメリティクス
社製、アサップ2000を用いて、測定し、ラングミュ
ア法にて解析)は2440m’/g,平均細孔直径はl
,gnmであった。
The yield of the obtained spherical fiber aggregate activated carbon was 20% based on the pitch fiber weight, and the specific surface area (measured using ASAP 2000 manufactured by Micromeritics and analyzed by Langmuir method) was 2440 m'. /g, average pore diameter is l
,gnm.

かかる球状繊維塊活性炭を充填した吸着力ラムにトルエ
ン蒸気を通し、吸着処理し、更に窒素ガスにて脱着処理
した。吸着カラムは、内径30mmのテフロン管に、当
該球状繊維塊活性炭5gを充填したものを用いた。
Toluene vapor was passed through an adsorption ram filled with such spherical fiber aggregate activated carbon for adsorption treatment, and further desorption treatment was performed using nitrogen gas. The adsorption column used was a Teflon tube with an inner diameter of 30 mm filled with 5 g of the spherical fiber aggregate activated carbon.

トルエン蒸気の吸脱着を100回繰り返すと、形状変化
のため、嵩高さが1%減少した。
When adsorption and desorption of toluene vapor was repeated 100 times, the bulkiness decreased by 1% due to shape change.

比較例 実施例1で使用したと同じ不融化繊維を球状化せずに、
実施例lで使用したと同じ賦活化炉を用いて、33%の
水蒸気を含む窒素ガスを流通させながら昇温し、900
℃で1時間保持することにより、賦活化処理を行った。
Comparative Example The same infusible fiber used in Example 1 was made without spheroidizing.
Using the same activation furnace as used in Example 1, the temperature was raised while flowing nitrogen gas containing 33% water vapor, and the temperature was raised to 900%.
Activation treatment was performed by holding at ℃ for 1 hour.

得られた活性炭素繊維の収率は、ピッチ繊維重量に対し
て18%であり、比表面積(マイクロメリティクス社製
、アサップ2000を用いて、測定し、ラングミュア法
にて解析)は2530m’/g、平均細孔直径は1.9
nmであった。
The yield of the obtained activated carbon fiber was 18% based on the pitch fiber weight, and the specific surface area (measured using ASAP 2000 manufactured by Micromeritics and analyzed by Langmuir method) was 2530 m'/ g, average pore diameter is 1.9
It was nm.

かかる活性炭素繊維を充填した吸着カラムにトルエン蒸
気を通し、吸着処理し、更に窒素ガスにて脱着処理した
。吸着カラムは、内径30mmのテフロン管に、当該活
性炭素繊維5gを充填したものを用いた。
Toluene vapor was passed through an adsorption column filled with such activated carbon fibers for adsorption treatment, and further desorption treatment was performed using nitrogen gas. The adsorption column used was a Teflon tube with an inner diameter of 30 mm filled with 5 g of the activated carbon fiber.

トルエン蒸気の吸脱着を100回繰り返すと、嵩高さが
11%減少した。
When adsorption and desorption of toluene vapor was repeated 100 times, the bulkiness decreased by 11%.

(発明の効果) 以上説明してきたように、本発明の方法により、クール
ピッチを原料として球状の繊維塊活性炭を効率良く製造
することができた。
(Effects of the Invention) As explained above, by the method of the present invention, spherical fiber lump activated carbon could be efficiently produced using cool pitch as a raw material.

しかも、この球状繊維塊活性炭は、従来の活性炭、すな
わち粒状活性炭、粉末状活性炭、活性炭素繊維に比べて
吸着能力が高く、吸脱着速度が速く、ハンドリング性お
よび形状維持特性が良く、しかも再生使用が容易で、機
能性の改良がなされている。
Moreover, compared to conventional activated carbon, such as granular activated carbon, powdered activated carbon, and activated carbon fiber, this spherical fiber aggregate activated carbon has higher adsorption capacity, faster adsorption/desorption rate, better handling and shape retention characteristics, and can be recycled. It is easy to use and has improved functionality.

従って、かかる球状繊維塊活性炭は、高吸着能力および
広い表面積を活かして幅広い産業分野で利用されている
活性炭として、極めて優れた特性を有し、公害防止およ
び環境浄化の他に、食品工業、石油産業など幅広い分野
で用いることができ、高度処理技術に不可欠なものとし
て、産業上極めて有用である。
Therefore, such spherical fiber aggregate activated carbon has extremely excellent properties as an activated carbon that is used in a wide range of industrial fields by taking advantage of its high adsorption capacity and large surface area. It can be used in a wide range of fields, including industry, and is extremely useful industrially as an essential part of advanced processing technology.

Claims (1)

【特許請求の範囲】 1、タールピッチを原料として紡糸用ピッチを調製し、
この紡糸用ピッチを溶融紡糸した後、酸化性雰囲気で不
融化し、次に、この不融化繊維同士を絡み合わせる球状
化処理を行い、しかる後に賦活化処理することを特徴と
する球状繊維塊活性炭の製造方法。 2、球状化処理の後、繊維同士を接着させるための接着
剤処理を施す請求項1記載の製造方法。 3、球状化処理の前に、繊維同士を接着させるための接
着剤処理を施す請求項1記載の製造方法。
[Claims] 1. Preparing pitch for spinning using tar pitch as a raw material,
After melt-spinning this spinning pitch, it is made infusible in an oxidizing atmosphere, and then a spheroidization treatment is performed to intertwine the infusible fibers, and then an activation treatment is performed. manufacturing method. 2. The manufacturing method according to claim 1, wherein after the spheroidization treatment, an adhesive treatment is performed to bond the fibers together. 3. The manufacturing method according to claim 1, wherein an adhesive treatment for adhering the fibers to each other is performed before the spheroidization treatment.
JP1343976A 1989-12-29 1989-12-29 Production of massive-sphere fiber active carbon Pending JPH03206126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343976A JPH03206126A (en) 1989-12-29 1989-12-29 Production of massive-sphere fiber active carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343976A JPH03206126A (en) 1989-12-29 1989-12-29 Production of massive-sphere fiber active carbon

Publications (1)

Publication Number Publication Date
JPH03206126A true JPH03206126A (en) 1991-09-09

Family

ID=18365688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343976A Pending JPH03206126A (en) 1989-12-29 1989-12-29 Production of massive-sphere fiber active carbon

Country Status (1)

Country Link
JP (1) JPH03206126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001028A (en) * 2015-06-09 2017-01-05 ユニチカ株式会社 Oil purification device filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001028A (en) * 2015-06-09 2017-01-05 ユニチカ株式会社 Oil purification device filter

Similar Documents

Publication Publication Date Title
US6258300B1 (en) Activated carbon fiber composite material and method of making
JPH0617321A (en) Pitch-based activated carbon fiber
JPH01230414A (en) Activated carbon and production thereof
JPH01139865A (en) Production of large surface area carbon fiber
EP1118698A2 (en) Multifibrous carbon fiber and utilization thereof
JPS61132629A (en) Production of nonwoven fabrics of pitch activated carbon fiber
JPH03206126A (en) Production of massive-sphere fiber active carbon
US5888928A (en) Process for producing activated carbon fiber molding and activated carbon fiber molding
JP2635784B2 (en) Bunched fiber mass activated carbon and method for producing the same
JP3310348B2 (en) Method for producing molecular sieve carbon
JP2556598B2 (en) Method for producing spherical fiber lump activated carbon
JPH03199426A (en) Activated carbon having form of spherical fiber lump and production thereof
JP2515919B2 (en) Method for producing spherical fiber lump activated carbon
JP2596984B2 (en) Agglomerated activated carbon fiber aggregate and method for producing the same
JPH03199427A (en) Activated carbon having form of spherical fiber lump and production thereof
JPH03279423A (en) Production of spherical fiber massive active carbon
JPH0489370A (en) Porous carbon material and production thereof
JPH03146722A (en) Production of activated carbon composed of spherical fiber lump
JP3280094B2 (en) Method for producing molecular sieve carbon
JPH05155673A (en) Porous carbon material and its production
JPH05186210A (en) Production of spherically fibrous lumpy activated carbon
JPH03153514A (en) Production of spherical fiber lump activated carbon
JP3253708B2 (en) Method for producing molecular sieve carbon of spherical fiber mass
JPH07299357A (en) Production of spherical fiber lump molecular sieve carbon
JP2591676B2 (en) Activated carbon fiber nonwoven fabric and method for producing the same