JPH0320439A - Wear-resistant cast iron for die casting - Google Patents

Wear-resistant cast iron for die casting

Info

Publication number
JPH0320439A
JPH0320439A JP15500089A JP15500089A JPH0320439A JP H0320439 A JPH0320439 A JP H0320439A JP 15500089 A JP15500089 A JP 15500089A JP 15500089 A JP15500089 A JP 15500089A JP H0320439 A JPH0320439 A JP H0320439A
Authority
JP
Japan
Prior art keywords
weight
cast iron
wear
die casting
resistant cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15500089A
Other languages
Japanese (ja)
Inventor
Yasushi Asai
裕史 浅井
Takeshi Okazaki
健 岡崎
Yasuo Uosaki
靖夫 魚崎
Akira Otsuka
章 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP15500089A priority Critical patent/JPH0320439A/en
Publication of JPH0320439A publication Critical patent/JPH0320439A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain the wear-resistant cast iron for die casting having excellent machinability and wear resistance by specifying the compsn. constituted of C, Si, Mn, S, Ti, Cu, Cr, Sn and Fe. CONSTITUTION:The wear-resistant cast iron for die casting is constituted of the compsn. contg., by weight, 3.6 to 4.0% C, 1.6 to 2.0% Si, 0.1 to 0.5% Mn, <=0.03% S and 0.05 to 0.15% Ti, contg. at least one kind among 0.3 to 1.0% Cu, 0.1 to 0.4% Cr and 0.06 to 0.15% Sn and the balance Fe, which has excellent machinability and wear resistance. In the alloy, the above effects can be obtd. by regulating the amounts of ferritization promoting elements such as Si and Mn as well as the amounts of chilling promoting elements such as C and Si, furthermore adding Ti to refine graphite and moreover adding Cu, Cr, Sn, etc., to promote the transformation into pearlite.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金型鋳造用として適する耐摩耗性鋳鉄に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to wear-resistant cast iron suitable for die casting.

(従来の技術及び発明が解決しようとする課題)近年、
鋳造工程における環境改善あるいは自動化等のニーズに
対応した技術として、従来から多用されている砂型を用
いず、金型を用いて鋳鉄の鋳造を行う、所謂金型鋳造法
が注目されるようになっできている。この金型鋳造法は
、冷却速度が従来の砂型鋳造に比べて大幅に大きくなる
ところから、鋳鉄組織中における黒鉛の微細化が図れ、
且つ強度、肢削性に優れたものが得られるという材料特
性の点、砂かみ等の従来の砂型鋳造に見られた鋳造欠陥
もなく、寸法精度にも優れているという鋳造作業の点を
考慮すれば、今後における鋳鉄鋳造法と↓て注目される
ものとなってきつつある。
(Problems to be solved by conventional techniques and inventions) In recent years,
The so-called die casting method, in which cast iron is cast using a metal mold instead of the conventionally widely used sand mold, has been attracting attention as a technology that responds to the needs for environmental improvement and automation in the casting process. is made of. This mold casting method has a much faster cooling rate than traditional sand mold casting, which allows for finer graphite in the cast iron structure.
In addition, we take into consideration the material properties of a product with excellent strength and machinability, and the casting process that has excellent dimensional accuracy without the casting defects found in conventional sand mold casting such as sand mold casting. Therefore, the cast iron casting method is becoming a hot topic in the future.

ところで、上記の如き特性を有する金型鋳造法により鋳
造される鋳鉄は、冷却速度が大きいところから、鋳鉄材
料の組成によっては脆性の高いチル組織を生成し易く、
披削性に劣るものとなりなり易いし、被削性に富むフエ
ライト組織を多く含む鋳鉄とする場合、耐摩耗性に劣る
ものとなるおそれがある。
By the way, cast iron cast by the mold casting method having the above-mentioned characteristics has a high cooling rate, so depending on the composition of the cast iron material, a highly brittle chill structure is likely to be generated.
It tends to have poor machinability, and if cast iron is used that contains a large amount of ferrite structure that has good machinability, it may have poor wear resistance.

例えば、特開昭59−202156号公報に開示されて
いるように、熱伝導率の高い銅合金製の金型を用い、強
制冷却して冷却速度を速め、離型時間を規制することに
より、内部まで均一な共晶状の黒鉛を有する鋳鉄製品を
得るようにしたものが提案されているが、この場合、基
地の大部分がフエライト組織となっていて、耐摩耗性が
不十分となる。また、特開昭58−34160号公報に
開示されているように、CSSi,Mn,P,S%Cr
およびTiの組成比率を限定して金型鋳造したものが提
案されているが、この場合、基地はパーライト組織とな
っているものの、硬度が高くなり過ぎ、被削性が悪化す
るおそれがある。
For example, as disclosed in Japanese Patent Application Laid-Open No. 59-202156, by using a mold made of a copper alloy with high thermal conductivity, increasing the cooling rate by forced cooling, and regulating the mold release time, It has been proposed to obtain a cast iron product having uniform eutectic graphite throughout the interior, but in this case, most of the base has a ferrite structure, resulting in insufficient wear resistance. Furthermore, as disclosed in Japanese Patent Application Laid-open No. 58-34160, CSSi, Mn, P, S%Cr
It has been proposed to mold-cast with a limited composition ratio of Ti, but in this case, although the base has a pearlite structure, the hardness becomes too high and machinability may deteriorate.

本発明は、上記の点に鑑みてなされたもので、鋳造組成
中におけるSi,MnおよびTiの含有量とCu.Cr
SSnの添加量を規定することにより、被削性および耐
摩耗性に優れた鋳鉄を得ることを目的とするものである
The present invention has been made in view of the above points, and is based on the content of Si, Mn, and Ti in the casting composition and the content of Cu. Cr
The purpose is to obtain cast iron with excellent machinability and wear resistance by specifying the amount of SSn added.

(課題を解決するための構或) 本発明では、上記課題を解決するための構成として、金
型鋳造用耐摩耗性鋳鉄の組成を、C:3.6〜4.0重
量%、Si:1.8〜2、0重量%、Mn:0.1〜0
.5重量%、S:0.03重量%以下、Ti:0.05
〜0.15重量%と、C u:0. 3〜1. 0重量
%、C rho、1〜4.4重量%、Sn+0.06〜
0.15重量%のうちの少なくとも1種とを含み、残部
Feの組成となしている。
(Structure for Solving the Problems) In the present invention, as a structure for solving the above problems, the composition of the wear-resistant cast iron for mold casting is C: 3.6 to 4.0% by weight, Si: 1.8-2, 0% by weight, Mn: 0.1-0
.. 5% by weight, S: 0.03% by weight or less, Ti: 0.05
~0.15% by weight and Cu:0. 3-1. 0% by weight, Crho, 1 to 4.4% by weight, Sn+0.06 to
0.15% by weight of at least one kind, and the balance is Fe.

上記の如き組成としたことにより、鋳鉄組織中における
フエライトおよびチル組織の発生が大幅に抑制されるこ
ととなる。
By setting the composition as described above, the generation of ferrite and chill structure in the cast iron structure is significantly suppressed.

上記組成の限定理由を以下に説明する。The reasons for limiting the above composition will be explained below.

C:3、6〜4.0重量% CはSiとともにチル組織発生に影響を及ぼす最も重要
な元素であり、3、6重社%以下では、チル組織の発生
が激しく、基材の変形を生じたり、鋳造後における熱処
理によるチル分解に長時間を要することとなるため、こ
れを下限とするのが望ましい。一方、4、O重重%以上
では、黒鉛の微細化が図れず、粗大化が激しくなるとこ
ろから、これを上限とするのが望ましい。
C: 3.6 to 4.0% by weight C, along with Si, is the most important element that affects the generation of chill structure, and if it is less than 3.6%, chill structure will be generated severely and the base material will be deformed. It is desirable to set this as the lower limit because it may take a long time for chill decomposition due to heat treatment after casting. On the other hand, if the content exceeds 4.0% by weight, the graphite cannot be made finer and becomes coarser, so it is desirable to set this as the upper limit.

Si:1.6〜2,0重量% SiはCと同様にチル組織生成に影響を及ぼす元素であ
ると同時に、フエライト化促進元素でもある。このため
、本発明では、7・エライト組織の生成を抑制すべく通
常のSi量より低めに限定している。即ち、2.0重量
%以上では従来通りフェライト組織を多量に生成するこ
ととなるため、これを上限とするのが望ましい。一方、
1.6fil%以下では、鋳造性の悪化およびチル組織
生成が著しくなるため、これを下限とするのが望ましい
Si: 1.6 to 2.0% by weight Si, like C, is an element that affects the formation of a chill structure, and at the same time is an element that promotes ferrite formation. Therefore, in the present invention, the amount of Si is limited to be lower than the normal amount in order to suppress the formation of the 7-elite structure. That is, if it is 2.0% by weight or more, a large amount of ferrite structure will be generated as before, so it is desirable to set this as the upper limit. on the other hand,
If it is less than 1.6 fil%, castability deteriorates and chill structure formation becomes significant, so it is desirable to set this as the lower limit.

M n:0. 1〜0. 4重量% Mnはチル化促進元素であるため、Si量低下に伴うチ
ル組織生成を防止するため通常のMn量から大幅に低下
させる必要がある。即ち、0,4重量%以上では、チル
組織の生戊が著しくなるところから、これを上限とする
のが望ましい。一方、0.1重量%以下では、パーライ
ト化を促進することが困難となり、また製造コスト上も
不利となるため、これを下限とするのが望ましい。
Mn: 0. 1~0. 4% by weight Since Mn is an element that promotes chilling, it is necessary to significantly reduce the amount of Mn from the normal amount in order to prevent the formation of a chilled structure due to a decrease in the amount of Si. That is, if it exceeds 0.4% by weight, the chill structure will be severely damaged, so it is desirable to set this as the upper limit. On the other hand, if it is less than 0.1% by weight, it will be difficult to promote pearlitization and it will also be disadvantageous in terms of manufacturing costs, so it is desirable to set this as the lower limit.

S:0.03重量%以下 SはMuとのバランスが重要な元素であり、Mn量の低
下に伴いSの量も低減する必要がある。これは、Mnに
対してSが過剰に存在すると、黒鉛化に有害な作用をな
すためであり、これを上限とするのが望ましい。
S: 0.03% by weight or less S is an element whose balance with Mu is important, and as the amount of Mn decreases, the amount of S must also be reduced. This is because the presence of S in excess relative to Mn has a detrimental effect on graphitization, and it is desirable to set this as the upper limit.

T i:0. 05〜Q.15重量% Tiは黒鉛の微細化を図るために添加される元素であり
、0.4]5重量%以下ではその効果が表れないため、
これを下限とするのが望ましい。一方、0.l5重量%
以上では、その効果は飽和し、コスト的に不利となるた
め、これを上限とするのが望ましい。
Ti:0. 05~Q. 15% by weight Ti is an element added to make graphite finer, and if it is less than 0.4]5% by weight, the effect will not appear.
It is desirable to set this as the lower limit. On the other hand, 0. l5% by weight
Above this, the effect becomes saturated and becomes disadvantageous in terms of cost, so it is desirable to set this as the upper limit.

Cu,Cr%Snの少なくとも1種 鋳造品の肉厚により最適範囲は決定されるが、下記範囲
以下ではパーライト化の効果か表れず、下記範囲以上で
は効果が飽和する。
The optimum range is determined by the thickness of the cast product of at least one of Cu and Cr%Sn, but below the range below, the effect of pearlitization is not apparent, and above the range below, the effect is saturated.

C u:0. 3〜1. 0重量% C r:o. 1〜0. 4重量% Sn:0.06〜0.15重量% (発明の効果) 本発明によれば、金型鋳造用耐摩耗性鋳鉄の組成を、C
:3.6〜4.0重量%、Si:1.6〜2.0重量%
、Mn:O. l〜0. 5重量%、S二〇、03重量
%以下、T i:005〜0.15重量%と、Cu:0
.3〜1.0重重%、C r:01〜0.4重量%、S
 n:0. 06〜0. 15重量%のうちの少なくと
も1種とを含み、残部Feの組成となして、フエライト
化促進元素およびチル化促進元素量を制限するようにし
たので、鋳鉄組織中におけるフエライトおよびチル組織
の発生が大幅に抑制されることとなり、彼削性および耐
摩耗性に優れたものとなるという優れた効果がある。
Cu:0. 3-1. 0% by weight Cr:o. 1~0. 4% by weight Sn: 0.06-0.15% by weight (Effects of the invention) According to the present invention, the composition of wear-resistant cast iron for mold casting is changed to C.
: 3.6 to 4.0 wt%, Si: 1.6 to 2.0 wt%
, Mn:O. l~0. 5% by weight, S20.03% by weight or less, Ti: 005 to 0.15% by weight, Cu: 0
.. 3-1.0% by weight, Cr: 01-0.4% by weight, S
n:0. 06-0. 15% by weight, and the balance is Fe, so that the amount of ferrite-promoting element and chill-promoting element is limited, so that the generation of ferrite and chill structure in the cast iron structure is prevented. This has the excellent effect of providing excellent cutting properties and wear resistance.

(実施例) 実施例1〜5、比較例1.2として、下記表一1に示し
た組成を有する各溶湯を、150℃に予熱した銅合金製
金型に鋳込み、径20IIIIN1長さ160ffil
1のテストビースを得た。
(Example) As Examples 1 to 5 and Comparative Example 1.2, each molten metal having the composition shown in Table 1 below was cast into a copper alloy mold preheated to 150°C, and the mold was made with a diameter of 20IIIN1 and a length of 160ffil.
1 test bead was obtained.

かくして、得られた実施例1〜5および比較例1,2に
対して、 900℃X 1. Ohr−+空冷 という熱処理を施した後、硬さ(Hv)およびフエライ
トfft(%)をill1定したところ、前記表一lの
結果が得られた。これによれば、実施例l〜5において
は、フエライト量が減少してほとんどバーライト組織と
なっており、硬さも比較例1.2に比べて大幅に増大し
ていることがわかる。ちなみに、実施例4と比較例2と
の顕微鏡組織写真を第2図(イ)、(口)にそれぞれ示
すが、これによっても、本発明のものがほとんどパーラ
イト組織化されているのに対して、比較例のものがほと
んどフエライト組織からなっていることが良くわかる。
Thus, for the obtained Examples 1 to 5 and Comparative Examples 1 and 2, 900°C×1. After the heat treatment of Ohr-+ air cooling, the hardness (Hv) and ferrite fft (%) were determined, and the results shown in Table 1 above were obtained. According to this, it can be seen that in Examples 1 to 5, the amount of ferrite decreased and almost became a barite structure, and the hardness was also significantly increased compared to Comparative Example 1.2. Incidentally, the microstructure photographs of Example 4 and Comparative Example 2 are shown in Figures 2 (a) and (b), respectively, and these also show that the ones of the present invention have almost a pearlite structure, whereas the ones of the present invention have a pearlite structure. , it can be clearly seen that most of the comparative examples are composed of ferrite structure.

さらに、実施例4〜5と比較例1,2のテストピースか
ら15X80開の摩耗試験片を切り出し、往復摺動摩耗
試験装置に懸け、以下の条件で摩耗試験を行ったところ
、第l図の特性図に示す結果か得られた。
Furthermore, a 15 x 80 open wear test piece was cut out from the test pieces of Examples 4 to 5 and Comparative Examples 1 and 2, and was hung on a reciprocating sliding wear test device to conduct a wear test under the following conditions. The results shown in the characteristic diagram were obtained.

摩擦方式   乾式 荷重     2、5kg〜25kg(0. 1〜1.
 0kg/ am”)速度     700回/sin ストローク  lhm 繰り返し数  20000回 摺動徊手   硬質Crメッキリング 第1図図示の特性図によれば、実施例3〜4のものが比
較例1.2のものに比べて著しく優れた耐摩耗性を示し
ていることは明らかであろう。
Friction method Dry load 2.5kg~25kg (0.1~1.
0kg/am'') Speed: 700 times/sin Stroke: lhm Number of repetitions: 20,000 times Sliding hand Hard Cr plated ring According to the characteristic diagram shown in Figure 1, those of Examples 3 and 4 are those of Comparative Example 1.2. It is clear that it exhibits significantly superior wear resistance compared to.

【図面の簡単な説明】[Brief explanation of drawings]

ダ 第l図は本発明の実施例3〜/と比較列1.2との摩擦
試験結果を示す特性図、第2図(イ)、(口)は本発明
の実施例4と比較例2との顕微鏡組織写真である。 2. 3. 4. 5, (特許庁審判長 殿) 発明の名称 金型鋳造用耐摩耗性鋳鉄 補正をする者 事件との関係 特許出願人 住 所 広島県安芸郡府中町新地3番l号名 称 (3
13)  マ ツ ダ 株式会社代表者   古 田 
徳 昌 代  理  人 補正命令の日付 平成1年9月ll日 補正の内容 (1〉 明細書第9頁第11行ないし同頁第13行「第
2図・・・・・である。」とあるのを次の通り補正する
。 「第2図(イ)、(ロ)はそれぞれ本発明の実施例4お
よび比較例2にかかるテストビース内部の金属組織を示
す顕微鏡写真である。」
Fig. 1 is a characteristic diagram showing the friction test results of Examples 3 to 1 of the present invention and comparison row 1.2, and Fig. 2 (a) and (b) are characteristic diagrams showing the friction test results of Examples 3 to 2 of the present invention and Comparative Example 2. This is a microscopic photograph of the structure. 2. 3. 4. 5. (To the Chief Adjudicator of the Japan Patent Office) Name of the invention Relationship to the case of a person who corrects wear-resistant cast iron for mold casting Patent applicant address 3-l Shinchi, Fuchu-cho, Aki-gun, Hiroshima Name (3)
13) Mazda Co., Ltd. Representative Furuta
Masayo Noriku Date of amendment order: September 11, 1999 Details of the amendment (1> Page 9, line 11 to line 13 of the specification, ``Figure 2...'' is corrected as follows: ``Figures 2(a) and 2(b) are micrographs showing the metal structure inside the test bead according to Example 4 of the present invention and Comparative Example 2, respectively.''

Claims (1)

【特許請求の範囲】[Claims] 1、C:3.6〜4.0重量%、Si:1.6〜2.0
重量%、Mn:0.1〜0.5重量%、S:0.03重
量%以下、Ti:0.05〜0.15重量%と、Cu:
0.3〜1.0重量%、Cr:0.1〜0.4重量%、
Sn:0.06〜0.15重量%のうちの少なくとも1
種とを含み、残部Feの組成からなることを特徴とする
金型鋳造用耐摩耗性鋳鉄。
1, C: 3.6-4.0% by weight, Si: 1.6-2.0
weight%, Mn: 0.1 to 0.5 weight%, S: 0.03 weight% or less, Ti: 0.05 to 0.15 weight%, Cu:
0.3 to 1.0% by weight, Cr: 0.1 to 0.4% by weight,
Sn: at least 1 from 0.06 to 0.15% by weight
1. A wear-resistant cast iron for mold casting, characterized in that the composition includes seeds and the remainder is Fe.
JP15500089A 1989-06-16 1989-06-16 Wear-resistant cast iron for die casting Pending JPH0320439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15500089A JPH0320439A (en) 1989-06-16 1989-06-16 Wear-resistant cast iron for die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15500089A JPH0320439A (en) 1989-06-16 1989-06-16 Wear-resistant cast iron for die casting

Publications (1)

Publication Number Publication Date
JPH0320439A true JPH0320439A (en) 1991-01-29

Family

ID=15596512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15500089A Pending JPH0320439A (en) 1989-06-16 1989-06-16 Wear-resistant cast iron for die casting

Country Status (1)

Country Link
JP (1) JPH0320439A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073817A1 (en) * 2011-11-14 2013-05-23 Lg Electronics Inc. Alloy cast iron and manufacturing method of vane using the same
CN106119681A (en) * 2016-08-10 2016-11-16 苏州东海玻璃模具有限公司 A kind of glass mold cylinder iron material
CN109423582A (en) * 2017-08-31 2019-03-05 山东鲁达轿车配件股份有限公司 A kind of deep bid casting HT250 material formula

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073817A1 (en) * 2011-11-14 2013-05-23 Lg Electronics Inc. Alloy cast iron and manufacturing method of vane using the same
KR101409877B1 (en) * 2011-11-14 2014-06-20 엘지전자 주식회사 Alloy cast iron and manufacturing method of vane using the same
CN103930579A (en) * 2011-11-14 2014-07-16 Lg电子株式会社 Alloy cast iron and manufacturing method of vane using the same
JP2015504481A (en) * 2011-11-14 2015-02-12 エルジー エレクトロニクス インコーポレイティド Alloy cast iron and method of manufacturing vane using the same
AU2012337617B2 (en) * 2011-11-14 2015-10-01 Lg Electronics Inc. Alloy cast iron and manufacturing method of vane using the same
CN106119681A (en) * 2016-08-10 2016-11-16 苏州东海玻璃模具有限公司 A kind of glass mold cylinder iron material
CN106119681B (en) * 2016-08-10 2018-11-16 苏州东海玻璃模具有限公司 A kind of glass mold cylinder iron material
CN109423582A (en) * 2017-08-31 2019-03-05 山东鲁达轿车配件股份有限公司 A kind of deep bid casting HT250 material formula

Similar Documents

Publication Publication Date Title
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
US3765877A (en) High strength aluminum base alloy
US5468310A (en) High temperature abrasion resistant copper alloy
JP2012041571A (en) Flake graphite cast iron for large-sized casting product and method for producing the same
JPH01237A (en) High strength and wear resistant copper alloy
JPH0524971B2 (en)
JP3217661B2 (en) High strength ductile cast iron
JP3735658B2 (en) High strength ductile cast iron
JPH0320439A (en) Wear-resistant cast iron for die casting
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP3723706B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
US4124413A (en) Wear and pitting resistant cast iron
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2012026017A (en) Spheroidal graphite iron casting with excellent wear resistance
US3297435A (en) Production of heat-treatable aluminum casting alloy
JPS6244547A (en) Composite aluminum alloy material
JP2879930B2 (en) Free-cutting stainless steel for molds with excellent rust resistance
US2201555A (en) Copper and copper base alloys
JP2636008B2 (en) High strength and high wear resistant ductile cast iron material and method of manufacturing the same
JPS61133361A (en) Spheroidal graphite cast iron and its manufacture
US2075089A (en) Aluminum alloy
JPH0557346B2 (en)
JP2659352B2 (en) Manufacturing method of Bamikiura graphite cast iron
JPH08120396A (en) Pearlitic spheroidal graphite cast iron as cast and its production
JP2843375B2 (en) Free-cutting stainless steel for molds with excellent rust resistance