JPH03203010A - Production of magnetic head - Google Patents

Production of magnetic head

Info

Publication number
JPH03203010A
JPH03203010A JP34244489A JP34244489A JPH03203010A JP H03203010 A JPH03203010 A JP H03203010A JP 34244489 A JP34244489 A JP 34244489A JP 34244489 A JP34244489 A JP 34244489A JP H03203010 A JPH03203010 A JP H03203010A
Authority
JP
Japan
Prior art keywords
laminated
magnetic
film
alloy
sendust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34244489A
Other languages
Japanese (ja)
Inventor
Tatsuji Shimizu
達司 清水
Osamu Murata
修 村田
Kazuhiro Saito
斎藤 和宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP34244489A priority Critical patent/JPH03203010A/en
Publication of JPH03203010A publication Critical patent/JPH03203010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To produce a magnetic head having good magnetic characteristics of >=30mum track width by butting two thin-film laminates of a sendust alloy formed with laminated magnetic alloy films on nonmagnetic substrates in such a manner that the laminated magnetic alloy films face each other and joining these substrates by laminated glass. CONSTITUTION:Fe-Si-Al alloy films 12 and nonmagnetic insulating films 13 are laminated required times on the nonmagnetic ceramics substrate 11, by which the thin-film structural bodies 15 of the sendust alloys formed with the laminated magnetic alloy films 14 on the substrates 11 are obtd. These bodies are so formed that the outermost layers of the laminated magnetic alloy films 14 are the Fe-Si-Al alloy films 12 and the laminated glass 16 is formed thereon. The thin-film structural bodies 15 of the sendust alloys formed in such a manner are so butted against each other that the laminated magnetic alloy films 14 face each other. The laminated glass 16 is fused by heating, by which a magnetic core block 17 is obtd. The magnetic core block 27 is cut in a thickness direction by providing an azimuth angle theta, by which a pair of core half body blocks 18, 19 are formed.

Description

【発明の詳細な説明】 の1 本発明は、一般にはFe−5i−An合金膜を有した薄
膜積層型磁気ヘッドの製造方法に関するものであり、特
に、Fe−5i−Al合金膜及び非磁性絶縁膜を複数回
積層して成膜される積層合金磁性膜の厚さが、即ち、ト
ラック幅が30μm以上とされる磁気ヘッドの製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. The present invention generally relates to a method for manufacturing a thin film laminated magnetic head having an Fe-5i-An alloy film, and particularly relates to a method for manufacturing a thin-film laminated magnetic head having an Fe-5i-Al alloy film and a non-magnetic The present invention relates to a method for manufacturing a magnetic head in which the thickness of a laminated alloy magnetic film formed by laminating insulating films a plurality of times, that is, the track width is 30 μm or more.

斯る本発明に従って製造された磁気ヘッドは、特に、V
HS標準モード或は業務用デジタルVTRのD2フォー
マット用磁気ヘッドとして好適に利用し得る。
In particular, the magnetic head manufactured according to the present invention has V
It can be suitably used as a magnetic head for the HS standard mode or the D2 format of a professional digital VTR.

藍東立且1 近年、磁気記録技術の分野における最近の記録密度の向
上は著しく、これに伴なって例えば電磁変換素子として
の磁気ヘッドに対する狭トラツク化及びコア材料の飽和
磁化の増大化並びに高周波領域における透磁率の改善と
いった要求が高まっている。これらの要求に応える磁気
ヘッドとしてFe−5i −A12合金膜を有した薄膜
積層型磁気ヘッドが注目を浴びている。
In recent years, there has been a remarkable improvement in recording density in the field of magnetic recording technology, and along with this, for example, magnetic heads as electromagnetic conversion elements have become narrower tracks, the saturation magnetization of core materials has increased, and high-frequency There is an increasing demand for improved magnetic permeability in the magnetic field. As a magnetic head that meets these demands, a thin film laminated magnetic head having a Fe-5i-A12 alloy film is attracting attention.

現在、このような薄膜積層型磁気ヘッドは、般にセラミ
ックス等の非磁性基板上にFe−5L−A4合金膜をス
パッタリングで形成し、絶縁層と交互に積層した後に接
合ガラスを用いて他の非磁性基板を堆積して挟み込むこ
とにより磁性コアを形成するといった製造方法が採用さ
れている。
Currently, such thin-film laminated magnetic heads generally consist of Fe-5L-A4 alloy films formed by sputtering on non-magnetic substrates such as ceramics, and then alternately laminated with insulating layers and then bonded with other layers using bonded glass. A manufacturing method has been adopted in which a magnetic core is formed by depositing and sandwiching nonmagnetic substrates.

が ′ しよ とする 本発明者らの研究では、このような製造方法で作製され
た薄膜積層型磁気ヘッドは、トラック幅が30μm以下
とされる、高周波用で且つ高いS/N比の要求される高
密度記録用ヘッド、主としてビデオヘッド、デジタル用
ヘッド等としては極めて有効であるが、トラック幅が3
0μm以上、例えば、トラック幅が32〜58μmとさ
れるVHS標準モード用磁気ヘッド、或はトラック幅が
約40amとされる業務用デジタルVTRのD2フォー
マット用磁気ヘッドとしては利用し得ないことが分かっ
た。
According to research conducted by the present inventors, thin-film laminated magnetic heads manufactured using such a manufacturing method can be used for high frequency applications with a track width of 30 μm or less, and are required to have a high S/N ratio. It is extremely effective as a high-density recording head, mainly a video head, a digital head, etc., but the track width is 3.
It has been found that it cannot be used as a VHS standard mode magnetic head with a track width of 0 μm or more, for example, 32 to 58 μm, or a D2 format magnetic head of a professional digital VTR with a track width of about 40 am. Ta.

つまり、本発明者らの研究実験の結果によると、上述の
ように、基板上に、、Fe−Si−A4合金膜及び非磁
性絶縁膜を複数回積層して積層合金磁性膜を成膜した場
合には、積層合金磁性膜が厚くなると基板に相当大きな
応力が加わり、それによって基板が割れてしまうことを
見出した。従来の製造方法によれば、使用される基板の
種類にもよるが、積層合金磁性膜の全膜厚は、20〜3
0ILmが限度であった。
In other words, according to the results of research experiments conducted by the present inventors, as described above, a multilayer alloy magnetic film was formed by laminating Fe-Si-A4 alloy films and nonmagnetic insulating films multiple times on a substrate. In some cases, it has been found that when the laminated alloy magnetic film becomes thick, a considerably large stress is applied to the substrate, which causes the substrate to crack. According to the conventional manufacturing method, the total film thickness of the laminated alloy magnetic film is 20 to 3 mm, depending on the type of substrate used.
The limit was 0ILm.

従って、本発明の目的は、Fe−5L−A12合金膜及
び非磁性絶縁膜を複数回積層して成膜される積層合金磁
性膜の厚さが、即ち、トラック幅が30μm以上とされ
る、良好な磁気特性を有した磁気ヘッドの製造方法を提
供することである。
Therefore, the object of the present invention is to make the thickness of the laminated alloy magnetic film formed by laminating the Fe-5L-A12 alloy film and the nonmagnetic insulating film multiple times, that is, the track width, to be 30 μm or more. An object of the present invention is to provide a method for manufacturing a magnetic head having good magnetic properties.

を   るための 上記目的は本発明に係る磁気ヘッドの製造方法にて達成
される。要約すれ′ば本発明は、基板上にFe−Si−
Aj2合金膜及び非磁性絶縁膜を複数回積層して積層合
金磁性膜を成膜したセンダスト合金薄膜構造体を作製し
、次に、二つの前記センダスト合金薄膜構造体を、積層
合金磁性膜が対面するように突合わせて、積層ガラスで
両センダスト合金薄膜構造体を接合したことを特徴とす
る磁気ヘッドの製造方法である。
The above objects are achieved by the method of manufacturing a magnetic head according to the present invention. In summary, the present invention provides Fe-Si-
A Sendust alloy thin film structure is prepared by laminating Aj2 alloy films and non-magnetic insulating films multiple times to form a laminated alloy magnetic film, and then the two Sendust alloy thin film structures are stacked so that the laminated alloy magnetic films face each other. This method of manufacturing a magnetic head is characterized in that both sendust alloy thin film structures are joined together with laminated glass by abutting each other so that the magnetic head is abutted against the magnetic head.

次に、第1図を参照すると、本発明に係る磁気ヘッドの
製造方法を説明する製造工程の一実施例が示される。
Next, referring to FIG. 1, an embodiment of a manufacturing process for explaining a method of manufacturing a magnetic head according to the present invention is shown.

第1図を参照すると、例えば非磁性のセラミックス基板
11が準備される(第1図(A))。該基板ll上に、
スパッタリング法によりFe−5i−A12合金膜12
が膜厚1〜20μmにて成膜される。次いで、該Fe−
5L−AI2合金膜12上に非磁性絶縁膜13が膜厚0
゜03〜0.5μmにてスパッタリング法にて形成され
る(第1図(B))。
Referring to FIG. 1, for example, a non-magnetic ceramic substrate 11 is prepared (FIG. 1(A)). On the substrate ll,
Fe-5i-A12 alloy film 12 by sputtering method
is formed to a film thickness of 1 to 20 μm. Then, the Fe-
The non-magnetic insulating film 13 has a film thickness of 0 on the 5L-AI2 alloy film 12.
It is formed by a sputtering method to a thickness of 0.03 to 0.5 μm (FIG. 1(B)).

基板11としては、例えば非磁性セラミックス(例えば
日立金属社製のMN−130)が好適である。
As the substrate 11, for example, non-magnetic ceramics (for example, MN-130 manufactured by Hitachi Metals, Ltd.) are suitable.

また、非磁性絶縁膜13としては5iOa、Aβgon
等が用いられる。
In addition, as the nonmagnetic insulating film 13, 5iOa, Aβgon
etc. are used.

上記工程を繰返して、Fe−Si−A12合金膜12と
非磁性絶縁膜13が必要回数積層され、第1図(C)に
図示するように、積層合金磁性膜14が基板ll上に成
膜され、センダスト合金薄膜構造体15が作製される。
By repeating the above steps, the Fe-Si-A12 alloy film 12 and the non-magnetic insulating film 13 are laminated a necessary number of times, and as shown in FIG. 1(C), a laminated alloy magnetic film 14 is formed on the substrate 11. Then, a sendust alloy thin film structure 15 is produced.

積層合金磁性膜14の最外層は、Fe−5i−A1合金
膜12とされるのが好ましい、このとき、積層合金磁性
膜14の総厚さ(1)は、30μm以下、好ましくは1
5μm以上とされる。
The outermost layer of the laminated alloy magnetic film 14 is preferably the Fe-5i-A1 alloy film 12. In this case, the total thickness (1) of the laminated alloy magnetic film 14 is 30 μm or less, preferably 1
It is assumed to be 5 μm or more.

次いで、前記センダスト合金薄膜構造体15の積層合金
磁性膜14上に積層ガラス16が膜厚0.05〜0.5
μmにてスパッタリング法などで形成される(第1図(
D)) 積層ガラス16としてはS iOw  AAt
 Os  Nag O系のガラス或は5iOi  Bx
Ox  NazO系のガラスが好適である。
Next, a laminated glass 16 is formed on the laminated alloy magnetic film 14 of the Sendust alloy thin film structure 15 with a film thickness of 0.05 to 0.5.
It is formed by sputtering method etc. in μm (Fig. 1 (
D)) As the laminated glass 16, SiOw AAt
Os Nag O glass or 5iOi Bx
Ox NazO type glasses are preferred.

本発明に従えば、このように、積層合金磁性膜14の上
に積層ガラス16が成膜された前記センダスト合金薄膜
構造体15は、積層合金磁性膜14が対面するように突
合わせて、即ち、両センダスト合金薄膜構造体15上の
積層ガラス16同士が密着するように接合され、所定温
度に、例えば700℃の温度に加熱される。該加熱によ
って積層ガラス16が互いに融着し、両センダスト合金
薄膜構造体15は接合され、磁気コアブロック17が形
成される。
According to the present invention, the Sendust alloy thin film structure 15 in which the laminated glass 16 is formed on the laminated alloy magnetic film 14 is butted so that the laminated alloy magnetic film 14 faces each other, that is, The laminated glasses 16 on both Sendust alloy thin film structures 15 are joined so as to be in close contact with each other, and heated to a predetermined temperature, for example, 700°C. By this heating, the laminated glasses 16 are fused to each other, and both sendust alloy thin film structures 15 are joined to form a magnetic core block 17.

このようにして形成された磁気コアブロック17は、接
合された両センダスト合金薄膜構造体15.15の積層
合金磁性膜14.14と積層ガラス16.16とからな
る総積層合金磁性膜の厚さ(T)が30μm以上の厚さ
となることが理解されるであろう。
The thus formed magnetic core block 17 has a total thickness of the laminated alloy magnetic film consisting of the laminated alloy magnetic film 14.14 and the laminated glass 16.16 of both Sendust alloy thin film structures 15.15 joined together. It will be appreciated that (T) will be thicker than 30 μm.

上記説明にて分かるように、本発明によれば、各合金薄
膜構造体15の積層合金磁性膜14は、その厚さが所望
される磁気ヘッドのトラック幅W(第2図)の大略半分
となるように適宜設定される。
As can be seen from the above description, according to the present invention, the laminated alloy magnetic film 14 of each alloy thin film structure 15 has a thickness that is approximately half of the desired track width W of the magnetic head (FIG. 2). It is set appropriately so that

又、上記説明では、接合される両センダスト合金薄膜構
造体15.15は同じ構造のものとして説明したが、例
えば、必要ならば、両センダスト合金薄膜構造体15.
15の積層合金磁性膜14.14の厚さは異なるように
しても良い。
Furthermore, in the above description, both Sendust alloy thin film structures 15.15 to be joined have been described as having the same structure, but for example, if necessary, both Sendust alloy thin film structures 15.15.
The thicknesses of the 15 laminated alloy magnetic films 14.14 may be different.

このようにして作製された磁気コアブロック17は、第
1図(F)に図示されるように、積層した厚さ方向に切
断し、一対のコア半休ブロック18.19が形成される
。このとき、図示されるようにアジマス角θにて切断す
るのが好ましい。
The thus produced magnetic core block 17 is cut in the stacked thickness direction to form a pair of half-core blocks 18 and 19, as shown in FIG. 1(F). At this time, it is preferable to cut at the azimuth angle θ as shown in the figure.

次いで、第2図に図示されるように、少なくとも片方の
コア半休、本実施例ではコア半休18に巻線溝20を形
成した後、両コア半休ブロック18.19の突合せ面1
8a、19aを研摩し、数面に5iOz等の非磁性のギ
ャップスペーサ−21をスパッタリング法などの手段に
て形成しく第1図(F))、その後、第2図に図示され
るように、両コア半休ブロック18.19は前記接合面
18a、19a部にてガラス接着される。
Next, as shown in FIG. 2, after forming a winding groove 20 in at least one of the core halves, in this embodiment the core halves 18, the abutting surfaces 1 of both core halves 18 and 19 are formed.
8a and 19a, and non-magnetic gap spacers 21 of 5 iOz or the like are formed on several faces by sputtering or other means (FIG. 1(F)), and then, as shown in FIG. 2, Both core half-dead blocks 18 and 19 are bonded to glass at the bonding surfaces 18a and 19a.

最後に、テープ摺動面を形成するべくR研摩加工及び他
の成形加工並びに巻線加工が行なわれ、薄膜積層型磁気
ヘッド10が得られる。
Finally, R polishing, other molding, and winding are performed to form a tape sliding surface, and the thin film laminated magnetic head 10 is obtained.

通常、断る薄膜積層型磁気ヘッド10は、上述のように
1つの磁気コアブロック17から製造されるのではなく
、磁気コアブロック17を複数個接合した積層ブロック
より整形加工されるが、積層ブロックを作製する場合に
は、第3図に図示されるように、隣接する磁気コアブロ
ック17の基板11.11が接合ガラスにより互いに接
合される。
Normally, the thin film laminated magnetic head 10 is not manufactured from one magnetic core block 17 as described above, but is shaped from a laminated block in which a plurality of magnetic core blocks 17 are joined. When fabricating, as illustrated in FIG. 3, the substrates 11.11 of adjacent magnetic core blocks 17 are bonded to each other by bonding glass.

次に、本発明を実施例について説明する。Next, the present invention will be described with reference to examples.

実施例1 基板11は、非磁性セラミックス(日立金属社製MN−
130)であり、直径が2インチのものを表面粗さ15
0人にポリッシュして使用した。
Example 1 The substrate 11 is made of non-magnetic ceramics (MN-manufactured by Hitachi Metals).
130), and the surface roughness of the one with a diameter of 2 inches is 15
It was polished and used by 0 people.

該基板11上にスパッタリングにてFe−3L−へβ合
金膜12を膜厚5μmにて成膜した。
A Fe-3L-β alloy film 12 was formed on the substrate 11 by sputtering to a thickness of 5 μm.

続いて、このFe−3L−A4合金膜12の上にスパッ
タリングにて非磁性絶縁膜(Sin、)13を膜厚0.
1μmにて形成した。
Subsequently, a non-magnetic insulating film (Sin) 13 is formed on the Fe-3L-A4 alloy film 12 by sputtering to a thickness of 0.
It was formed with a thickness of 1 μm.

次いで、上記方法にて前記絶縁膜13上に合金磁性膜1
2及び絶縁膜13の順に3回繰り返し、最後にはFe−
5i−Al合金膜12を成膜し、結局は、Fe−3L−
An合金膜12が4層、SiO*絶縁膜13が3層から
なる、センダスト合金薄膜構造体15を作製した。この
センダスト合金薄膜構造体15の積層合金磁性膜14の
総厚さ(1)は20.3μmであった。
Next, the alloy magnetic film 1 is formed on the insulating film 13 using the method described above.
2 and the insulating film 13 three times, and finally the Fe-
5i-Al alloy film 12 is formed, and eventually Fe-3L-
A Sendust alloy thin film structure 15 consisting of four layers of An alloy film 12 and three layers of SiO* insulating film 13 was produced. The total thickness (1) of the laminated alloy magnetic film 14 of this Sendust alloy thin film structure 15 was 20.3 μm.

次に、該積層合金磁性膜14の上に、つまり、最上層の
合金膜12の上に、積層ガラス16を、本実施例ではS
 i Ox −AI2t Ox −Nag O系のガラ
スを通常のスパッタリング法にて0.5μm厚だけ成膜
した。
Next, a laminated glass 16 is placed on top of the laminated alloy magnetic film 14, that is, on top of the uppermost alloy film 12.
A 0.5 μm thick film of iOx-AI2tOx-NagO-based glass was formed by a normal sputtering method.

次いで、積層ガラス16が成膜された、二つの前記セン
ダスト合金薄膜構造体15を、それぞれの積層合金磁性
膜14が、即ち、積層合金磁性膜14上の積層ガラス1
6が対面するように突合わせて、700℃に加熱した。
Next, the two Sendust alloy thin film structures 15 on which the laminated glass 16 has been formed are bonded to each laminated alloy magnetic film 14, that is, the laminated glass 1 on the laminated alloy magnetic film 14.
6 were butted together so that they were facing each other, and heated to 700°C.

これによって、積層ガラス16が溶融し、両センダスト
合金薄膜構造体15.15はしっかりと接合され、磁気
コアブロック17が形成された。
As a result, the laminated glass 16 was melted, and the two Sendust alloy thin film structures 15,15 were firmly joined to form the magnetic core block 17.

該磁気コアブロック17の総積層合金磁性膜厚さ(T)
は41.3μmの厚さであった。
Total laminated alloy magnetic film thickness (T) of the magnetic core block 17
had a thickness of 41.3 μm.

このようにして作製された磁気コアブロック17を使用
して第2図に図示するような磁気ヘッド10を作製し、
磁気特性を見るべく6゜5MHzにおける規格化出力(
En)を測定した。その結果が表1に示される。
A magnetic head 10 as shown in FIG. 2 is manufactured using the magnetic core block 17 manufactured in this way,
To see the magnetic properties, the normalized output at 6°5MHz (
En) was measured. The results are shown in Table 1.

尚、ヘッド出力(El)は、トラック幅(Tw ) 、
巻線数(N)、及びテープとヘッドとの相対速度(V)
に比例し、次式で示される。
Note that the head output (El) is determined by the track width (Tw),
Number of windings (N) and relative speed between tape and head (V)
It is proportional to , and is expressed by the following formula.

Eh oc”l”、 −N−V [am−T −m/s
]しかしながら、本実施例では、従来例との比較におい
て、トラック幅(T、)の違いの影響を除くために次式
で定義される規格化出力(En)を用いて比較した。
Eh oc"l", -N-V [am-T -m/s
However, in this embodiment, in comparison with the conventional example, the normalized output (En) defined by the following equation was used for comparison in order to eliminate the influence of the difference in track width (T, ).

En=E、、/ (T、 ・N−V) [nVo−p / Cum−T −m/s)]表1 上記測定時の相対速度Vは5.8m/sであり、MPテ
ープを使用した。
En=E, , / (T, ・N-V) [nVo-p / Cum-T -m/s)] Table 1 The relative velocity V at the time of the above measurement was 5.8 m/s, and MP tape was used. did.

比較例1 実施例1と同じスパッタ装置を使用し、同じ材料及び成
膜条件にて、基板ll上に、合金磁性膜12及び絶縁膜
13の順に6回繰り返し、最後にはFe−3i−AQ合
金膜12を成膜し、結局は、Fe−5i−A11合金膜
12が7層、Si Oz絶縁膜13が6層からなる、セ
ンダスト合金薄膜構造体15を作製した。このセンダス
ト合金薄膜構造体15の積層合金磁性膜14の総厚さ(
1)は35.6μmであった。
Comparative Example 1 Using the same sputtering equipment as in Example 1 and using the same materials and film forming conditions, the alloy magnetic film 12 and the insulating film 13 were formed on the substrate 11 in this order 6 times, and finally the Fe-3i-AQ An alloy film 12 was formed, and in the end, a Sendust alloy thin film structure 15 consisting of seven layers of the Fe-5i-A11 alloy film 12 and six layers of the SiOz insulating film 13 was produced. The total thickness of the laminated alloy magnetic film 14 of this Sendust alloy thin film structure 15 (
1) was 35.6 μm.

しかしながら、基板11が割れ、それ以上の作業が不可
能であった。
However, the substrate 11 was broken and further work was impossible.

比較例2 実施例1と同じスパッタ装置を使用し、同じ材料及び成
膜条件にて、基板ll上に、合金磁性膜12及び絶縁膜
13の順に3回繰り返し、最後にはFe−Si−AQ合
金膜12を成膜し、結局は、Fa−Si−AA合金膜1
2が4層、Si0g絶縁膜13が3層からなる、センダ
スト合金薄膜構造体15を作製した。このセンダスト合
金薄膜構造体15の積層合金磁性膜14の総厚さ(1)
は実施例1と同じく、20.3μmであった。
Comparative Example 2 Using the same sputtering equipment as in Example 1 and using the same materials and film forming conditions, the alloy magnetic film 12 and the insulating film 13 were formed on the substrate 11 three times in this order, and finally the Fe-Si-AQ The alloy film 12 is formed, and eventually the Fa-Si-AA alloy film 1 is formed.
A Sendust alloy thin film structure 15 was fabricated, which consisted of four layers of SiOg insulating film 2 and three layers of Si0g insulating film 13. Total thickness (1) of the laminated alloy magnetic film 14 of this Sendust alloy thin film structure 15
was 20.3 μm, the same as in Example 1.

次に、該積層合金磁性膜14の上に、つまり、最上層の
合金膜12の上に、積層ガラス16を、本比較例ではS
 i O*  A !l z Os −N a z O
系のガラスを通常のスパッタリング法にて1μm厚だけ
成膜し、前記基板11と同じ材料で形成された他の基板
を積層して磁気コアブロックを作製した。
Next, a laminated glass 16 is placed on top of the laminated alloy magnetic film 14, that is, on top of the uppermost alloy film 12.
i O* A! l z Os −N a z O
A magnetic core block was fabricated by forming a film of 1 μm thick glass using a conventional sputtering method, and laminating another substrate made of the same material as the substrate 11.

このようにして作製された磁気コアブロックを使用して
第2図に図示するような磁気ヘッドを作製し、磁気特性
を見るべく規格化出力(En)を測定した。測定条件は
実施例1と同じとした。結果を表2に示す。
A magnetic head as shown in FIG. 2 was manufactured using the magnetic core block manufactured in this manner, and the normalized output (En) was measured to examine the magnetic properties. The measurement conditions were the same as in Example 1. The results are shown in Table 2.

表2 比較例2は、実施例1と比較すると、巻線数(N)が相
違しているが、これは5 M Hz Jl:おけるイン
ダクタンスを1,9μHに合わせるためである。
Table 2 Compared with Example 1, Comparative Example 2 differs in the number of windings (N), but this is to adjust the inductance at 5 MHz Jl: to 1.9 μH.

表1、表2より、6.5MHzでの規格化出力で比較す
ると本発明に従って製造されたFe−Si−A4合金薄
膜積層型磁気ヘッドは、従来の狭小トラック幅の磁気ヘ
ッドと同等の再生出力値を得ていることが理解される。
From Tables 1 and 2, when comparing the normalized output at 6.5 MHz, the Fe-Si-A4 alloy thin film laminated magnetic head manufactured according to the present invention has a reproduction output equivalent to that of the conventional narrow track width magnetic head. It is understood that a value is obtained.

又、実施例1で得た磁気ヘッドをVHSの装置に搭載し
て実機走行試験(室温、常温60%)を行なったが、積
層ガラス層16への目詰まりはなく、又、偏摩耗もなか
った。
Furthermore, when the magnetic head obtained in Example 1 was mounted on a VHS device and a running test was conducted on an actual machine (room temperature, room temperature 60%), there was no clogging of the laminated glass layer 16, and no uneven wear. Ta.

4艶立激1 以上説明したように、本発明に係る磁気ヘッドの製造方
法は、トラック幅が30μm以上とされる、良好な磁気
特性を有した。Fe−5i−A12合金膜及び非磁性絶
縁膜を複数回積層して成膜された積層型の磁気ヘッドを
効率よく製造することができる。
4. Glossiness 1 As explained above, the method for manufacturing a magnetic head according to the present invention had good magnetic properties with a track width of 30 μm or more. A multilayer magnetic head in which a Fe-5i-A12 alloy film and a nonmagnetic insulating film are laminated multiple times can be efficiently manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A、B、C,D、E、Fは本発明に係る磁気ヘッ
ドの製造方法の一実施例を示す製造工程図である。 第2図は、本発明に従って製造された Fe−5L−Al合金薄膜を利用した薄膜積層磁気ヘッ
ドの一実施例を示す斜視図である。 第3図は、積層ブロックの製造状態を示す図である。  0 1 2 3 4 5 6 7 :薄膜積層磁気ヘッド :基板 :Fe−5i−A℃合金膜 :非磁性絶縁膜 :積層合金磁性膜 :センダスト合金薄膜構造体 :積層ガラス :&ji気コアフコアブ ロ ッ ク 第2図 第3図 2゜ 3゜ 4゜
1A, B, C, D, E, and F are manufacturing process diagrams showing one embodiment of a method for manufacturing a magnetic head according to the present invention. FIG. 2 is a perspective view showing an embodiment of a thin film laminated magnetic head using a Fe-5L-Al alloy thin film manufactured according to the present invention. FIG. 3 is a diagram showing the manufacturing state of the laminated block. 0 1 2 3 4 5 6 7: Thin film laminated magnetic head: Substrate: Fe-5i-A℃ alloy film: Non-magnetic insulating film: Laminated alloy magnetic film: Sendust alloy thin film structure: Laminated glass: &jiki core block Figure 2 Figure 3 2゜3゜4゜

Claims (1)

【特許請求の範囲】[Claims] 1)基板上にFe−Si−Al合金膜及び非磁性絶縁膜
を複数回積層して積層合金磁性膜を成膜したセンダスト
合金薄膜構造体を作製し、次に、二つの前記センダスト
合金薄膜構造体を、積層合金磁性膜が対面するように突
合わせて、積層ガラスで両センダスト合金薄膜構造体を
接合したことを特徴とする磁気ヘッドの製造方法。
1) A Sendust alloy thin film structure is prepared by laminating a Fe-Si-Al alloy film and a nonmagnetic insulating film multiple times on a substrate to form a laminated alloy magnetic film, and then the two Sendust alloy thin film structures A method of manufacturing a magnetic head, characterized in that both sendust alloy thin film structures are joined with laminated glass by abutting the bodies so that the laminated alloy magnetic films face each other.
JP34244489A 1989-12-28 1989-12-28 Production of magnetic head Pending JPH03203010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34244489A JPH03203010A (en) 1989-12-28 1989-12-28 Production of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34244489A JPH03203010A (en) 1989-12-28 1989-12-28 Production of magnetic head

Publications (1)

Publication Number Publication Date
JPH03203010A true JPH03203010A (en) 1991-09-04

Family

ID=18353788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34244489A Pending JPH03203010A (en) 1989-12-28 1989-12-28 Production of magnetic head

Country Status (1)

Country Link
JP (1) JPH03203010A (en)

Similar Documents

Publication Publication Date Title
US5001590A (en) Magnetic head having core halves with a barrier layer therebetween
JPS5870418A (en) Manufacture of magnetic head
JPH03203010A (en) Production of magnetic head
JP3057861B2 (en) Manufacturing method of magnetic head
JPS59203210A (en) Magnetic core and its production
US5584116A (en) Method for fabricating a magnetic head
KR100200861B1 (en) Recording and reproducing magnetic head and the manufacturing method
KR100200809B1 (en) Magnetic head and method of manufacturing the same
JP2810820B2 (en) Magnetic head and method of manufacturing magnetic head
KR100324730B1 (en) Method for fabricating magnetic head
JP3055321B2 (en) Magnetic head and manufacturing method
JPH02137104A (en) Magnetic head and manufacture thereof
JPH0386905A (en) Magnetic head and production of magnetic head
JPH0240113A (en) Manufacture of magnetic head
JPS5952422A (en) Magnetic head core
JPH05290327A (en) Production of magnetic head
JPH113506A (en) Magnetic head
JPS62246110A (en) Composite magnetic head and its production
JPH0643809U (en) Magnetic head
JPS62141609A (en) Manufacture of magnetic head
JPS63300418A (en) Magnetic head and its production
JPH0668106U (en) Magnetic head
JPS63288407A (en) Production of magnetic head
JP2003203307A (en) Magnetic head and its manufacturing method
JPS63304414A (en) Magnetic head