JPH03202703A - Inductance-type displacement sensor - Google Patents

Inductance-type displacement sensor

Info

Publication number
JPH03202703A
JPH03202703A JP34277389A JP34277389A JPH03202703A JP H03202703 A JPH03202703 A JP H03202703A JP 34277389 A JP34277389 A JP 34277389A JP 34277389 A JP34277389 A JP 34277389A JP H03202703 A JPH03202703 A JP H03202703A
Authority
JP
Japan
Prior art keywords
magnetic
coils
coil
sensor
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34277389A
Other languages
Japanese (ja)
Other versions
JP2588034B2 (en
Inventor
Atsushi Nakajima
厚 中島
Yoichi Kanemitsu
金光 陽一
Yuji Shirao
白尾 祐司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
National Aerospace Laboratory of Japan
Ebara Research Co Ltd
Original Assignee
Ebara Corp
National Aerospace Laboratory of Japan
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, National Aerospace Laboratory of Japan, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP34277389A priority Critical patent/JP2588034B2/en
Priority to EP90125305A priority patent/EP0435232B1/en
Priority to DE69019491T priority patent/DE69019491T2/en
Priority to US07/633,849 priority patent/US5194805A/en
Priority to KR1019900022249A priority patent/KR0165893B1/en
Publication of JPH03202703A publication Critical patent/JPH03202703A/en
Application granted granted Critical
Publication of JP2588034B2 publication Critical patent/JP2588034B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To make it possible to measure the displacement of a body to be measured accurately by wiring coils so that the magnetic fluxes generated by the currents with carrier frequencies flowing through coils have the different polarities for every neighboring magnetic poles in concentric circle patterns. CONSTITUTION:A sensor core 10 comprises a material formed of ferromagnetic body. A circular-cylinder-shaped magnetic pole 11 and concentric-circle-shaped magnetic poles 12 and 13 are formed as a unitary body. Sensor coils 16 and 15 are provided between the magnetic poles 11 and 12 and between the magnetic poles 12 and 13, respectively. The coils 15 and 16 are connected in series and constituted so that the magnetic fluxes generated in the respective coils 15 and 16 are aligned in the reverse directions. The change in potential across a dummy coils due to the changes in inductances of the coils 15 and 16 is detected with a detecting circuit, and the displacement of a body to be measured 17 is measured. When a magnetic flux 40 from the outside is inputted into the core 10, the electromotive forces generated in the coils 15 and 16 with the magnetic flux 40 are directed in the reverse directions to each other. Thus, the electromotive forces generated with the magnetic flux 40 are offset, and the noises formed by an external magnetic fields are decreased. Therefore, the displacement of the body to be measured can be accurately measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁性体からなる被測定体の変位を検出するため
の変位センサに関し、特に外部磁界に対して雑音が少な
いインダクタンス形変位センサに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a displacement sensor for detecting the displacement of a measured object made of a magnetic material, and particularly to an inductance type displacement sensor that has little noise in response to external magnetic fields. It is.

〔従来技術〕[Prior art]

従来の円筒状コアを有するインダクタンス形変位センサ
は、第5図(a)、(b)に示す構成のものがあった。
A conventional inductance displacement sensor having a cylindrical core has a configuration shown in FIGS. 5(a) and 5(b).

なお、同図(a)は変位センサの縦断面図、同図(b)
は平面図である。図示するように、変位センサは円柱状
の磁極102と、該磁極102の外周部に位置する円筒
状の磁極101と、その片側を塞ぐ基礎部分103とが
一体的に形成されたセンサコア100を具備し、中央の
磁極102の外周に1個のセンサコイル104を配置し
た構造である。前記1個のセンサコイル104に第6[
Kに示すように外部に設けたダミーコイル105を直列
に接続し、搬送波発生回路106から搬送波をこのセン
サコイル104とダミーコイル105の直列回路に印加
している。
Note that (a) is a longitudinal cross-sectional view of the displacement sensor, and (b) is a longitudinal cross-sectional view of the displacement sensor.
is a plan view. As shown in the figure, the displacement sensor includes a sensor core 100 in which a cylindrical magnetic pole 102, a cylindrical magnetic pole 101 located on the outer periphery of the magnetic pole 102, and a base portion 103 that closes one side of the cylindrical magnetic pole 102 are integrally formed. However, it has a structure in which one sensor coil 104 is arranged around the outer periphery of the central magnetic pole 102. The one sensor coil 104 has a sixth [
As shown in K, an externally provided dummy coil 105 is connected in series, and a carrier wave is applied from a carrier wave generation circuit 106 to the series circuit of the sensor coil 104 and the dummy coil 105.

磁性体からなる被測物体110が変位センサに接近或い
は離れて変位すると、センサコイル1゜4のインダクタ
ンスが変化し、このインダクタンスの変化による電位の
変化を検波回路107で検出することにより、被測物体
110の変位を検出する。
When the measured object 110 made of a magnetic material moves toward or away from the displacement sensor, the inductance of the sensor coil 1.4 changes, and the detecting circuit 107 detects the change in potential due to this change in inductance. The displacement of the object 110 is detected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来構成のインダクタンス形変位セ
ンサを、第7図に示すように外部から磁束120が入る
ような場所で使用する場合に、該磁束120によりセン
サコイル104には相互誘導によって起電力が発生する
。例えは、第6図においてセンサコイル104に起電力
108が発生し、この起電力108が被測物体110の
変位によりインダクタンス変化に伴う電位の変化に重畳
されることになり、変位信号に対して雑音となってしま
うという問題がある。
However, when the inductance type displacement sensor having the above conventional configuration is used in a place where a magnetic flux 120 enters from the outside as shown in FIG. 7, an electromotive force is generated in the sensor coil 104 by mutual induction due to the magnetic flux 120. do. For example, in FIG. 6, an electromotive force 108 is generated in the sensor coil 104, and this electromotive force 108 is superimposed on a change in potential due to a change in inductance due to the displacement of the object to be measured 110. There is a problem that it becomes noise.

本発明は上述の点に鑑みてなされたもので、上記問題点
を除去し、外部磁束とセンサコイルとの相互誘導によっ
て発生する起電力を相殺することにより、外部磁束によ
る雑音を低減したインダクタンス形変位センサを提供す
ることにある。
The present invention has been made in view of the above points, and is an inductance type that eliminates the above problems and reduces noise caused by external magnetic flux by canceling out the electromotive force generated by mutual induction between the external magnetic flux and the sensor coil. An object of the present invention is to provide a displacement sensor.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため本発明は、磁性体で構成される
コアと、該コアに巻線されたコイルを具備し、磁性体か
らなる被測定体の変位を測定するインダクタンス形変位
センサにおいて、コアは同心円筒状の磁極部と該磁極部
の同心円筒状部の片側を塞ぐ基礎部分とを有すると共に
、各々の同心円筒状部と同心円筒状部はコイルで隔てら
れ、更に最外周部と中心部にも磁極を有する形状であり
、コイルは同心円状に少なくとも二つ以上あり、各々の
コイルのインダクタンスが同一であり、該コイルに流れ
る搬送波周波数の電流によって発生する磁束が、互いに
隣合う同心円状の磁極毎に異なる極性となるようにコイ
ルを配線し、同心円状の各々の磁極内部の平均磁束密度
が同一となるようにコイルの巻数と磁極の断面積を設定
することを特徴とする。
In order to solve the above problems, the present invention provides an inductance displacement sensor that measures the displacement of a measured object made of a magnetic material, which includes a core made of a magnetic material and a coil wound around the core. has a concentric cylindrical magnetic pole part and a base part that closes one side of the concentric cylindrical part of the magnetic pole part, and each concentric cylindrical part and the concentric cylindrical part are separated by a coil. There are at least two coils arranged concentrically, and each coil has the same inductance, and the magnetic flux generated by the current at the carrier frequency flowing through the coil is arranged in concentric circles adjacent to each other. The coils are wired so that each magnetic pole has a different polarity, and the number of coil turns and the cross-sectional area of the magnetic poles are set so that the average magnetic flux density inside each concentric magnetic pole is the same.

〔作用〕[Effect]

インダクタンス形変位センサを上記の如く構成すること
により、コイルを隣合う同心円状の磁極毎に異なる極性
となるように配設及び配線するから、センサへ外部から
入る磁束によって発生する起電力は互いに相殺し、外部
磁界による雑音を大幅に低減できる。
By configuring the inductance type displacement sensor as described above, the coils are arranged and wired so that each adjacent concentric magnetic pole has a different polarity, so the electromotive force generated by the magnetic flux entering the sensor from the outside cancels each other out. Therefore, noise caused by external magnetic fields can be significantly reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図及び第2図は本発明に係るインダクタンス形変位
センサの構造を示す図で、第1図はインダクタンス形変
位センサの縦断面図、第2図は平面図である。図におい
て、10はセンサコアであり、該センサコア10は強磁
性体の材料からなり、中央に位置する円柱状の磁極11
と、該磁極11と同心円状の磁極12.磁極13と、該
磁極11.12.13を片側を塞ぐ基礎部14が一体的
に形成されている。lii極11と磁極12との間には
磁極11の外周にセンサコイル16を配置し、磁極12
と磁極13の間には磁極12の外周にセンサコイル15
を配置している。センサコイル15とセンサコイル16
は直列に接続し、それぞれに発生する磁束が互いに逆方
向になるようにする。これにより、センサ自体の搬送波
によって発生する磁束はある瞬時をみると、矢印30,
31.32.33のようになる。
1 and 2 are diagrams showing the structure of an inductance type displacement sensor according to the present invention, where FIG. 1 is a longitudinal sectional view of the inductance type displacement sensor, and FIG. 2 is a plan view. In the figure, 10 is a sensor core, which is made of a ferromagnetic material, and has a cylindrical magnetic pole 11 located at the center.
and a magnetic pole 12 concentric with the magnetic pole 11. A magnetic pole 13 and a base part 14 that closes the magnetic pole 11, 12, 13 on one side are integrally formed. A sensor coil 16 is arranged around the outer periphery of the magnetic pole 11 between the magnetic pole 11 and the magnetic pole 12.
A sensor coil 15 is installed on the outer periphery of the magnetic pole 12 between the magnetic pole 13 and the magnetic pole 13.
are placed. Sensor coil 15 and sensor coil 16
are connected in series so that the magnetic fluxes generated in each are in opposite directions. As a result, the magnetic flux generated by the carrier wave of the sensor itself at a certain moment is as shown by the arrow 30.
31.32.33.

上記構造のインダクタンス形変位センサにおいて、磁性
体材からなる被測物体17がセンサに接近するか或いは
離れることにより、センサコイル16及びセンサコイル
15のインダクタンスが変化する。第3図はセンサ回路
構成を示す図であり、図示するようにセンサコイル15
とセンサコイル16とに外部に設けられたダミーコイル
20を直列に接続した回路に搬送波発生回路18から、
搬送波を印加し、前記センサコイル16及びセンサコイ
ル15のインダクタンスの変化によるダミーコイル20
の両端の電位変化を、検波回路19で検出して被測物体
17の変位を測定する。
In the inductance type displacement sensor having the above structure, the inductance of the sensor coil 16 and the sensor coil 15 changes as the measured object 17 made of a magnetic material approaches or moves away from the sensor. FIG. 3 is a diagram showing the sensor circuit configuration, and as shown in the figure, the sensor coil 15
From the carrier wave generation circuit 18 to a circuit in which a dummy coil 20 provided externally is connected in series to the sensor coil 16,
A dummy coil 20 is created by applying a carrier wave and changing the inductance of the sensor coil 16 and the sensor coil 15.
The detection circuit 19 detects the change in potential across both ends of the detector 19 to measure the displacement of the object 17 to be measured.

上記インダクタンス形変位センサを外部磁界の存在する
場所で使用する場合、例えば第1図に示すように外部か
らの磁束40がセンサコア10に入った場合、この磁束
40によりセンサコイル15及びセンサコイル16に発
生する起電力は第3図に示すように互いに反対方向の起
電力21及び起電力22となる。これにより、外部の磁
束40によりセンサコイル15及びセンサコイル16に
発生する起電力は互いに相殺されるから、外部の磁界に
よる雑音が大幅に低減される。
When the above-mentioned inductance type displacement sensor is used in a place where an external magnetic field exists, for example, when magnetic flux 40 from the outside enters the sensor core 10 as shown in FIG. The generated electromotive forces are an electromotive force 21 and an electromotive force 22 in opposite directions, as shown in FIG. As a result, the electromotive forces generated in the sensor coil 15 and the sensor coil 16 due to the external magnetic flux 40 cancel each other out, so that noise due to the external magnetic field is significantly reduced.

なお、ここでセンサコイル15及びセンサコイル16の
インダクタンスは同一にすると共に、磁極11.磁極1
2及び磁極13内部の平均磁束密度が同一となるように
センサコイル15とセンサコイル16の巻数と各磁極の
断面積を設定する第4図は本発明に係る他のインダクタ
ンス形変位センサの構造を示す図で、同図(a)は縦断
面図、同図(b)はその一部平面図である。図示するよ
うに、本実施例ではセンサコア10の中央部に磁極11
を貫通する中空部10aを形成した構造であり、他は第
1図及び第2図のインダクタンス形変位センサと同一で
ある。
Note that the inductances of the sensor coil 15 and the sensor coil 16 are the same here, and the magnetic poles 11. magnetic pole 1
The number of turns of the sensor coils 15 and 16 and the cross-sectional area of each magnetic pole are set so that the average magnetic flux density inside the magnetic poles 13 and 2 is the same. FIG. 4 shows the structure of another inductance type displacement sensor according to the present invention. In the figures, (a) is a longitudinal sectional view, and (b) is a partial plan view thereof. As shown in the figure, in this embodiment, a magnetic pole 11 is provided at the center of the sensor core 10.
It has a structure in which a hollow portion 10a is formed passing through the sensor, and the other structures are the same as the inductance type displacement sensor shown in FIGS. 1 and 2.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、コイルを隣合う同
心円状の磁極毎に異なる極性となるように配設及び配線
するから、センサの外部から入る磁束によって発生する
起電力は互いに相殺され、外部磁界による雑音を大幅に
低減でき、より正確な被測体の変位を測定することがで
きるという優れた効果が得られる。
As explained above, according to the present invention, since the coils are arranged and wired so that each adjacent concentric magnetic pole has a different polarity, the electromotive force generated by the magnetic flux entering from the outside of the sensor cancels each other out. This provides excellent effects in that noise due to external magnetic fields can be significantly reduced and displacement of the object to be measured can be measured more accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るインダクタンス形変位センサの構
造を示す縦断面図、第2図はその平面図、第3図は本発
明に係るインダクタンス形変位センサの回路図、第4図
は本発明に係る他のインダクタンス形変位センサの構造
を示す図で、同図(a)は縦断面図、同図(b)はその
一部平面図、第5図は従来のインダクタンス形変位セン
サンサ回路図、第7図は外部磁界がある場所で従来のイ
ンダクタンス形変位センサを使用する状態を示す図であ
る。 図中、10・・・・センサコア、11,12.13・・
・・磁極、14・・・・基礎部、15,16・・・・セ
ンサコイル、17・・・・被測物体、18・・・・搬送
波発生回路、19・・・・検波回路、20・・・・ダミ
ーコイル。
FIG. 1 is a longitudinal cross-sectional view showing the structure of an inductance type displacement sensor according to the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a circuit diagram of the inductance type displacement sensor according to the present invention, and FIG. 4 is a diagram showing the structure of an inductance type displacement sensor according to the present invention. FIG. 5 is a diagram showing the structure of another inductance displacement sensor according to the present invention, in which (a) is a longitudinal sectional view, (b) is a partial plan view thereof, and FIG. 5 is a circuit diagram of a conventional inductance displacement sensor; FIG. 7 is a diagram showing a state in which a conventional inductance type displacement sensor is used in a place where an external magnetic field is present. In the figure, 10...sensor core, 11, 12.13...
... Magnetic pole, 14... Foundation part, 15, 16... Sensor coil, 17... Measured object, 18... Carrier wave generation circuit, 19... Detection circuit, 20... ...Dummy coil.

Claims (1)

【特許請求の範囲】[Claims] (1)磁性体で構成されるコアと、該コアに巻線された
コイルを具備し、磁性体からなる被測定体の変位を測定
するインダクタンス形変位センサにおいて、前記コアは
同心円筒状の磁極部と該磁極部の同心円筒状部の片側を
塞ぐ基礎部分とを有すると共に、各々の同心円筒状部と
同心円筒状部はコイルで隔てられ、更に最外周部と中心
部にも磁極を有する形状であり、前記コイルは同心円状
に少なくとも二つ以上あり、各々のコイルのインダクタ
ンスが同一であり、該コイルに流れる搬送波周波数の電
流によって発生する磁束が、互いに隣合う同心円状の磁
極毎に異なる極性となるようにコイルを配線し、前記同
心円状の各々の磁極内部の平均磁束密度が同一となるよ
うに前記コイルの巻数と前記磁極の断面積を設定するこ
とを特徴とするインダクタンス形変位センサ。
(1) In an inductance displacement sensor that is equipped with a core made of a magnetic material and a coil wound around the core, and measures the displacement of a measured object made of a magnetic material, the core has concentric cylindrical magnetic poles. and a base portion that closes one side of the concentric cylindrical portion of the magnetic pole portion, each concentric cylindrical portion and the concentric cylindrical portion are separated by a coil, and further has magnetic poles at the outermost periphery and the center. There are at least two or more coils concentrically arranged, each coil has the same inductance, and the magnetic flux generated by the carrier frequency current flowing through the coil is different for each adjacent concentric magnetic pole. An inductance type displacement sensor characterized in that the coils are wired so as to have the same polarity, and the number of turns of the coil and the cross-sectional area of the magnetic poles are set so that the average magnetic flux density inside each of the concentric magnetic poles is the same. .
JP34277389A 1989-12-29 1989-12-29 Inductance displacement sensor Expired - Lifetime JP2588034B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP34277389A JP2588034B2 (en) 1989-12-29 1989-12-29 Inductance displacement sensor
EP90125305A EP0435232B1 (en) 1989-12-29 1990-12-21 Inductance-type displacement sensor having resistance to external magnetic fields
DE69019491T DE69019491T2 (en) 1989-12-29 1990-12-21 Induction type displacement sensor insensitive to external magnetic fields.
US07/633,849 US5194805A (en) 1989-12-29 1990-12-26 Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
KR1019900022249A KR0165893B1 (en) 1989-12-29 1990-12-28 Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34277389A JP2588034B2 (en) 1989-12-29 1989-12-29 Inductance displacement sensor

Publications (2)

Publication Number Publication Date
JPH03202703A true JPH03202703A (en) 1991-09-04
JP2588034B2 JP2588034B2 (en) 1997-03-05

Family

ID=18356387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34277389A Expired - Lifetime JP2588034B2 (en) 1989-12-29 1989-12-29 Inductance displacement sensor

Country Status (1)

Country Link
JP (1) JP2588034B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264005A (en) * 2000-03-22 2001-09-26 Nippon Signal Co Ltd:The Wheel detector
JP2011089923A (en) * 2009-10-23 2011-05-06 Asahi Kasei Fibers Corp Sensing member and sensor provided with the sensing member
WO2017149975A1 (en) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 Position detecting device
KR20190078519A (en) * 2017-12-26 2019-07-04 가부시키가이샤 에바라 세이사꾸쇼 Magnetic element and eddy current type sensor using the same
JP2019117185A (en) * 2017-12-26 2019-07-18 株式会社荏原製作所 Magnetic element and eddy current sensor using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264005A (en) * 2000-03-22 2001-09-26 Nippon Signal Co Ltd:The Wheel detector
JP2011089923A (en) * 2009-10-23 2011-05-06 Asahi Kasei Fibers Corp Sensing member and sensor provided with the sensing member
WO2017149975A1 (en) * 2016-02-29 2017-09-08 日立オートモティブシステムズ株式会社 Position detecting device
JPWO2017149975A1 (en) * 2016-02-29 2018-10-18 日立オートモティブシステムズ株式会社 Position detection device
KR20190078519A (en) * 2017-12-26 2019-07-04 가부시키가이샤 에바라 세이사꾸쇼 Magnetic element and eddy current type sensor using the same
JP2019117185A (en) * 2017-12-26 2019-07-18 株式会社荏原製作所 Magnetic element and eddy current sensor using the same
US11759912B2 (en) 2017-12-26 2023-09-19 Ebara Corporation Magnetic element and eddy current sensor using the same

Also Published As

Publication number Publication date
JP2588034B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
US7038448B2 (en) Magnetic field sensor
US4245869A (en) Magnetic bearings
US6850053B2 (en) Device for measuring the motion of a conducting body through magnetic induction
US7389702B2 (en) Magnetostrictive torque sensor
US5404101A (en) Rotary sensing device utilizing a rotating magnetic field within a hollow toroid core
KR0165893B1 (en) Inductance-type displacement sensor for eliminating inaccuracies due to external magnetic fields
US5229715A (en) Variable reluctance sensor for electromagnetically sensing the rate of movement of an object
JP4505338B2 (en) Elements for sensing radio frequency magnetic fields
JP3041342B2 (en) Magnetic bearing device
JPH03202703A (en) Inductance-type displacement sensor
US7183767B2 (en) Magnetic sensing element, magnetic sensor, and its manufacturing method
JPH05196651A (en) Instrument transformer for measuring current having magnetic-field sensor
JPH112647A (en) Direct current sensor and method for preventing flowing-out of direct current
JP3110115B2 (en) Magnetic resonance imaging equipment
JP3064293B2 (en) Rotation sensor
JPH02102919A (en) Magnetic bearing device
GB2295459A (en) Alternating current sensor
JP2004077231A (en) Eddy current flaw detecting device
JP3024554B2 (en) Displacement converter
JP2578140Y2 (en) Pickup sensor
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body
JPH03202701A (en) Inductance-type displacement sensor
JPS5930453Y2 (en) Multidirectional magnetization device for magnetic flaw detection
JPH02156111A (en) Linear displacement detector
JPS61230030A (en) Liquid level detector

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14