JPH03200891A - Plzt phosphor - Google Patents

Plzt phosphor

Info

Publication number
JPH03200891A
JPH03200891A JP1338086A JP33808689A JPH03200891A JP H03200891 A JPH03200891 A JP H03200891A JP 1338086 A JP1338086 A JP 1338086A JP 33808689 A JP33808689 A JP 33808689A JP H03200891 A JPH03200891 A JP H03200891A
Authority
JP
Japan
Prior art keywords
plzt
lanthanoids
phosphor
phosphors
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1338086A
Other languages
Japanese (ja)
Inventor
Makoto Morita
森田 眞
Shuichi Okubo
秀一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP1338086A priority Critical patent/JPH03200891A/en
Publication of JPH03200891A publication Critical patent/JPH03200891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Luminescent Compositions (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To provide transparent phosphors having various wavelengths by a simple manufacturing method, by replacing a part or the whole of La of a Pb-La-Zr-Ti-O compound oxide by one or a plurality of other lanthanoids. CONSTITUTION:In manufacturing a compound oxide having a composition shown by the formula (wherein w+x=1; y+z=1) (abbreviated to PLZT hereinafter), a part of or the whole of La is replaced by one or plurality of other lanthanoids (e.g. Pr, Nd, Sm, or Eu). Fluorescent characteristics can thereby be imparted to PLZT. By changing the type of the lanthanoids added, phosphors having various wavelengths can be easily obtained. The addition of a plurality of lanthanoids can give a phosphor having a plurality of emission peaks. Further, the utilization of the electro-optical effect of PLZT can give a phosphor having an optically controllable composite function.

Description

【発明の詳細な説明】 且豆立韮盟見互 本![は、PLZT系蛍光体に間する。[Detailed description of the invention] And Mutate Nitai Mei Mutual Book! [ is between PLZT-based phosphors.

1」b久盗遣」La 従来より発光体、螢光体材料としては■−V族、II−
VI族を中心とする化合物半導体、ZnSを中心とする
EL材料、ランタン族をドープしたガーネット系固体レ
ーザ用材料など様々な材料が実用化されてきた。
1"b Kutazai" La Conventionally, the materials for luminous bodies and phosphors are ■-V group, II-
Various materials have been put into practical use, including compound semiconductors mainly based on VI group, EL materials mainly based on ZnS, and materials for garnet-based solid-state lasers doped with lanthanum group.

また、PLZTはこのような発光体や螢光体としてでな
く、2次の電気光学効果が大きいことを利用した光制御
用デバイス材料として光シヤツター、光偏向器等に応用
研究が進められてきた。
In addition, PLZT has been researched not only as a light emitter or phosphor, but also as a device material for light control that takes advantage of its large second-order electro-optic effect, such as in optical shutters and optical deflectors. .

従って、従来、PLZTが発光体、螢光体として報告さ
れた例はなかった。
Therefore, there have been no reports of PLZT as a light-emitting or fluorescent material.

しかしながら、発明者等がPLZTを研究した結果、P
LZTのLaの一部もしくは全部を他の一部のランタノ
イドに置き換えると蛍光特性を示すことを確認した。
However, as a result of the inventors' research on PLZT, P
It was confirmed that when part or all of La in LZT is replaced with some other lanthanoids, it exhibits fluorescent properties.

五里皇璽底 本発明は、(1)(P bw L ax)(Z ry 
T i z)O。
The present invention consists of (1) (P bw La ax) (Z ry
T i z) O.

(但し、w+x=1 y+z=1)において、Laの一
部又は全部を他の一種類又は複数種のランタノイドに置
き換えたことを特徴とするPLZT系蛍光体、及び(2
)ランクメイドの種類が、Pr、Nd。
(However, w + x = 1 y + z = 1), a PLZT-based phosphor characterized in that part or all of La is replaced with one or more other types of lanthanoid, and (2
) The type of rank maid is Pr, Nd.

Sm、Eu、Gd、Tb%Dy%Ho、Er。Sm, Eu, Gd, Tb%Dy%Ho, Er.

Tm、Ybであることを特徴とする上記(1)に記載の
PLZT系蛍光体、並びに(3)xの範囲がOより大で
あり、かつ0.2よりも小なることを特徴とする上記(
1)記載のPLZT系蛍光体に関する。
PLZT-based phosphor according to (1) above, characterized in that Tm, Yb; and (3) above, characterized in that the range of x is larger than O and smaller than 0.2. (
1) Regarding the PLZT-based phosphor described above.

の 通常PLZTは(P bw L ax) (Z ry 
T 1z)Ol(但し、w+xl y+z=1)で表わ
すことのできる組成を有するペロブスカイト型複合酸化
物である。
The normal PLZT of (P bw L ax) (Z ry
It is a perovskite-type composite oxide having a composition that can be expressed as T 1z)Ol (where w+xl y+z=1).

PLZTの粉体合成にあたっては一般的に酸化物混合法
のような乾式合成法や、共沈法、アルコキシド法、シュ
ウ酸法等種々の湿式法が提案されている。しかし、PL
ZTを螢光体として取り扱うにはこれらの粉体合成プロ
セスにおいて、Laの一部又は全部をLa以外のランタ
ノイドに置き換えることが適当である。
For powder synthesis of PLZT, various dry synthesis methods such as an oxide mixing method, and various wet methods such as a coprecipitation method, an alkoxide method, and an oxalic acid method have generally been proposed. However, P.L.
In order to treat ZT as a fluorescent material, it is appropriate to replace part or all of La with a lanthanoid other than La in these powder synthesis processes.

本発明において上記ランタノイドのうち、より好ましい
ものとしては、Pr、Nd、Sm、Eu、Gd%Tb%
Dy、Ho、Er%Tm、Yoである。他のランタノイ
ドは、好ましい蛍光をもたらさなかったためである。ま
たXは、 Oより大であり、0.2よりも小なることが
より好ましい。
In the present invention, among the above lanthanoids, Pr, Nd, Sm, Eu, Gd%Tb%
Dy, Ho, Er%Tm, and Yo. This is because other lanthanoids did not provide favorable fluorescence. Moreover, it is more preferable that X is larger than O and smaller than 0.2.

常誘電性であると他の機能例えば、電気光学効果を期待
できなくなり、シャッター機能等をもたらせすらいため
である。
This is because if it is paraelectric, other functions such as electro-optical effects cannot be expected, and it cannot even provide a shutter function.

Laの一部又は全部を他のランタノイドに置き換えて合
成された粉体(以下PLZT系粉体と略す)から、続く
成形、焼結工程を経て定形され、焼結体を得る。
A powder synthesized by replacing part or all of La with other lanthanoids (hereinafter abbreviated as PLZT-based powder) is shaped through subsequent molding and sintering steps to obtain a sintered body.

成形はPLZT系粉体を一軸加圧プレス、CIP、スリ
ップキャスト、ドクターブレード等種々の方法にて行う
Molding is performed using various methods such as uniaxial pressure pressing, CIP, slip casting, doctor blade, etc. using PLZT powder.

焼結は成形が終了したPLZT系粉体の成形体をホット
プレス法、常圧焼結法などで行う。ホットプレス法では
1000〜1300℃、50〜aookg/−の条件に
て5〜20時間の焼結を行うことで、緻密質なPLZT
系焼結体を得ることができ、−軸加圧プレス、CIP、
スリップキャスト等で得られた円柱状又は角柱状の成形
体の焼結に適している。
Sintering is performed by hot pressing, pressureless sintering, or the like on the PLZT-based powder compact that has been formed. In the hot press method, dense PLZT is produced by sintering for 5 to 20 hours at 1000 to 1300°C and 50 to aookg/-.
A system sintered body can be obtained by -axial pressure pressing, CIP,
Suitable for sintering cylindrical or prismatic molded bodies obtained by slip casting or the like.

常圧焼結法では、1000〜1300℃pbo含有酸素
雰囲気中にて10−100時間の焼結を行うことで緻密
質なPLZT系焼結体を得ることができた。
In the pressureless sintering method, a dense PLZT-based sintered body could be obtained by performing sintering for 10 to 100 hours at 1000 to 1300° C. in a pbo-containing oxygen atmosphere.

この焼結方法は成形体の形状および寸法に比較的制約が
少ないので、種々の形状の焼結体を得るのに好ましい方
法といえる。
Since this sintering method has relatively few restrictions on the shape and dimensions of the compact, it can be said to be a preferred method for obtaining sintered compacts of various shapes.

このようにして得られた焼結体に200〜350nmの
紫外光を照射すると第1表に示すような種々の波長での
蛍光を示す。
When the sintered body thus obtained is irradiated with ultraviolet light of 200 to 350 nm, it exhibits fluorescence at various wavelengths as shown in Table 1.

以下余白 去」14L PbO,La、O,、ZrO,、T i O,およびE
u、O,の粉体をそれぞれ(Pb*、s La−、as
 Eu*、e+)(Zr、、 as Tie、 sm)
Os組成となるように秤量し、ボールミルにてアルコー
ル湿式混合した後、900℃、2時間の仮焼を行い、そ
の後、ボールミルにてアルコール湿式粉砕にて所定の上
記組成を有する粉体を得た。
14L PbO, La, O,, ZrO,, T i O, and E
Powders of u and O, respectively (Pb*, s La-, as
Eu*, e+) (Zr,, as Tie, sm)
The powder was weighed so as to have the Os composition, mixed with alcohol wet in a ball mill, calcined for 2 hours at 900°C, and then wet-milled with alcohol in a ball mill to obtain a powder having the above-determined composition. .

前記粉体60gを直径40IIII11の金型にて一軸
加圧プレス後、CIPにて等方的に加圧した成形体を得
た。
60 g of the powder was uniaxially pressed using a mold with a diameter of 40III11, and then isotropically pressed using CIP to obtain a molded body.

次に、前記成形体をPbO含有酸素雰囲気中にて120
0℃、50時間の常圧焼結を行った。
Next, the molded body was placed in an oxygen atmosphere containing PbO for 120 minutes.
Pressureless sintering was performed at 0° C. for 50 hours.

更に得られた焼結体より厚さ0.3mmのウェハを切り
出し、両面研磨機により両面鏡面状態のウェハを作製し
た。
Further, a wafer with a thickness of 0.3 mm was cut from the obtained sintered body, and a wafer having mirror surfaces on both sides was produced using a double-sided polisher.

このように作製したウェハを蛍光分光光度計にて、紫外
光(200〜300nm)を照射し、蛍光スペクトルを
測定したときの最強線とそのピークの波長位置を第2図
に示した。
The wafer thus prepared was irradiated with ultraviolet light (200 to 300 nm) using a fluorescence spectrophotometer, and the fluorescence spectrum was measured. The strongest line and the wavelength position of its peak are shown in FIG.

1」0連1 Pb0%La、O,、ZrO,、Tie、およびNd、
O,、Eu、O,の粉末をそれぞれCPb*、@ La
m、@II Nd0.m** Eu@、Ill、)(z
r@、@It Tls、am)Os組成となるように秤
量し、ボールミルにて20時間のアルコール湿式混合、
900℃、2時間の仮焼、更にボールミルにてアルコー
ル湿式粉砕を行い、上記組成の粉末を得た。
1” 0 series 1 Pb0%La, O,, ZrO,, Tie, and Nd,
The powders of O,, Eu, and O are respectively CPb* and @La
m, @II Nd0. m** Eu@, Ill, )(z
r@, @It Tls, am) Weighed so as to have the Os composition, and wet-mixed with alcohol in a ball mill for 20 hours.
Calcination was performed at 900° C. for 2 hours, followed by alcohol wet pulverization in a ball mill to obtain a powder having the above composition.

この粉体60gを円柱状に一軸加圧プレス、CIP成形
し、PbO含有酸素雰囲気中にて1200℃、50時間
の常圧焼結を行った。
60 g of this powder was subjected to uniaxial pressure pressing and CIP molding into a cylindrical shape, and normal pressure sintering was performed at 1200° C. for 50 hours in a PbO-containing oxygen atmosphere.

この焼結体より厚さ0.3wunのウェハを切り出し、
両面を鏡面研磨した後、実施例Iと同様に蛍光分光光度
計にて紫外光(200〜300nm)を照射し、蛍光ス
ペクトルを測定した。
A wafer with a thickness of 0.3 wun was cut out from this sintered body,
After mirror-polishing both sides, as in Example I, ultraviolet light (200 to 300 nm) was irradiated using a fluorescence spectrophotometer to measure the fluorescence spectrum.

この結果、610.910.1060%+340nmの
発光ピークが認められ、複数のランタノイドの混合物か
らの蛍光も効果的であることが判明した。
As a result, an emission peak of 610.910.1060%+340 nm was observed, indicating that fluorescence from a mixture of multiple lanthanoids is also effective.

且里皇羞呈 (1)  P L Z T製造工程に若干の変更を加え
るだけで比較的透明なPLZT系蛍光体を提供すること
ができる。
Relatively transparent PLZT-based phosphor can be provided by simply making some changes to the PLZT manufacturing process.

(2)  添加するランタノイドの種類を変更すること
により、種々の波長の蛍光体を容易に得ることができる
(2) By changing the type of lanthanoid added, phosphors with various wavelengths can be easily obtained.

(3)  複数のランタノイドを添加することにより、
複数の発光ピークを有する蛍光体を得ることができる。
(3) By adding multiple lanthanoids,
A phosphor having multiple emission peaks can be obtained.

(4)  P L Z Tの電気光学効果を利用し、光
制御が可能な複合的機能をもった蛍光体を得ることがで
きる。
(4) By utilizing the electro-optical effect of PLZT, it is possible to obtain a phosphor with multiple functions that can be controlled by light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Euを添加したPLZTの発光特性の一例を
示す。 第2図は、蛍光スペクトルを測定したときの最強線とそ
のピークの波長位置を示した一例である。
FIG. 1 shows an example of the luminescent characteristics of PLZT doped with Eu. FIG. 2 is an example showing the strongest line and the wavelength position of its peak when a fluorescence spectrum is measured.

Claims (2)

【特許請求の範囲】[Claims] (1)PLZTの組成式 (PbwLax)(ZryTiz)O_3(但し、w+
x=1 y+z=1)において、Laの一部又は全部を
他の一種類又は複数種のランタノイドに置き換えたこと
を特徴とするPLZT系蛍光体。
(1) Compositional formula of PLZT (PbwLax) (ZryTiz)O_3 (however, w+
x=1 y+z=1), a PLZT-based phosphor characterized in that part or all of La is replaced with one or more other types of lanthanoids.
(2)ランタノイドの種類が、Pr、Nd、Sm、Eu
、Gd、Tb、Dy、Ho、Er、Tm、Yoであるこ
とを特徴とする特許請求の範囲第1項に記載のPLZT
系蛍光体。(3)xの範囲が0より大であり、かつ0.
2よりも小なることを特徴とする特許請求の範囲第1項
に記載のPLZT系蛍光体。
(2) Types of lanthanoids are Pr, Nd, Sm, Eu
, Gd, Tb, Dy, Ho, Er, Tm, Yo.
system phosphor. (3) The range of x is greater than 0, and 0.
2. The PLZT-based phosphor according to claim 1, wherein the PLZT-based phosphor is smaller than 2.
JP1338086A 1989-12-28 1989-12-28 Plzt phosphor Pending JPH03200891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338086A JPH03200891A (en) 1989-12-28 1989-12-28 Plzt phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338086A JPH03200891A (en) 1989-12-28 1989-12-28 Plzt phosphor

Publications (1)

Publication Number Publication Date
JPH03200891A true JPH03200891A (en) 1991-09-02

Family

ID=18314774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338086A Pending JPH03200891A (en) 1989-12-28 1989-12-28 Plzt phosphor

Country Status (1)

Country Link
JP (1) JPH03200891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110156A1 (en) * 2009-03-23 2010-09-30 株式会社ノリタケカンパニーリミテド Fluorescent zirconia material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110156A1 (en) * 2009-03-23 2010-09-30 株式会社ノリタケカンパニーリミテド Fluorescent zirconia material
JP2010222466A (en) * 2009-03-23 2010-10-07 Noritake Co Ltd Fluorescent zirconia material
US8685278B2 (en) 2009-03-23 2014-04-01 Noritake Co., Limited Fluorescent zirconia material

Similar Documents

Publication Publication Date Title
KR102391310B1 (en) Near-infrared fluorescent powder and light-emitting device containing the fluorescent powder
KR102606173B1 (en) Ceramic wavelength converter assembly and method of manufacturing the same
KR101228849B1 (en) Luminescent ceramic for a light emitting device
CN110041074B (en) Upconversion luminescent transparent ferroelectric ceramic material and preparation method and application thereof
US20080123698A1 (en) Tb-DOPED LUMINESCENT COMPOUND, LUMINESCENT COMPOSITION AND LUMINESCENT BODY CONTAINING THE SAME, LIGHT EMITTING DEVICE AND SOLID-STATE LASER DEVICE
JP5526313B2 (en) Translucent terbium oxide sintered body for magneto-optical element
US8298442B2 (en) Method of manufacturing phosphor translucent ceramics and light emitting devices
RU2007148434A (en) ELECTROLUMINESCENT DEVICE
CN101796159A (en) The luminescent device that comprises composite SIAlON-based ceramic material
JPH0225864B2 (en)
CN109896851B (en) Ceramic composite with concentration gradient, preparation method and light source device
CN113213928A (en) Fluorescent ceramic, preparation method and application thereof
CN109384465A (en) A kind of preparation method of samarium doping potassium-sodium niobate crystalline ceramics
CN108558400B (en) Preparation method of barium calcium zirconate titanate-based transparent ceramic
CN109485417A (en) A kind of erbium/lanthanum relied on fluorescence temperature is co-doped with the preparation method of potassium-sodium niobate crystalline ceramics
CN108863360A (en) A kind of preparation method of Er ions potassium-sodium niobate-strontium titanates crystalline ceramics
CN104944943B (en) A kind of BNT bases no-lead electrostrictive material and preparation method with the characteristics of luminescence
JPH03200891A (en) Plzt phosphor
CN114804873B (en) Transparent electro-optic ceramic material with high electro-optic coefficient and high temperature stability and preparation method thereof
US5139689A (en) Method for preparing plzt transparent ceramic
CN108484168A (en) A kind of red, transparent fluorescence ceramics and preparation method thereof
JP2006312579A (en) Translucent ceramic and its manufacturing method and optical component and optical device
CN113956040B (en) Transparent photoelectric ceramic material with ultrahigh voltage coefficient and ultrahigh photoluminescence performance and preparation method thereof
CN111099896A (en) Dysprosium-doped potassium sodium niobate-based transparent ceramic for white light LED and preparation method thereof
CN113173786B (en) Transparent fluorescent ferroelectric ceramic material and preparation method and application thereof