JPH0319951B2 - - Google Patents

Info

Publication number
JPH0319951B2
JPH0319951B2 JP12158480A JP12158480A JPH0319951B2 JP H0319951 B2 JPH0319951 B2 JP H0319951B2 JP 12158480 A JP12158480 A JP 12158480A JP 12158480 A JP12158480 A JP 12158480A JP H0319951 B2 JPH0319951 B2 JP H0319951B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
output
frequency
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12158480A
Other languages
Japanese (ja)
Other versions
JPS5746428A (en
Inventor
Nobuhiko Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP12158480A priority Critical patent/JPS5746428A/en
Publication of JPS5746428A publication Critical patent/JPS5746428A/en
Publication of JPH0319951B2 publication Critical patent/JPH0319951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、速度計用発電機を使用して回転機の
回転速度を検出する速度継電器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a speed relay that detects the rotational speed of a rotating machine using a speedometer generator.

回転機速度制御や保護のために、速度計用発電
機の出力電圧が回転速度に比例することを利用し
て該出力電圧と整定値との比較による検出が従来
から一般に採用されている。この電圧測定方式を
静電形速度継電器に適用するのに、第1図に示す
従来回路では種々の不都合があつた。第1図では
速度計用発電機1の出力を整流回路2で全波整流
し、コンデンサ3で平滑して電圧整定用可変抵抗
器4の入力とし、この抵抗器4の出力を比較入力
とする正帰還型レベル検出回路(例えばシユミツ
ト回路)5によつてオン・オフ出力を得て出力リ
レー5を付勢又は復帰させる構成にされている。
Conventionally, for rotating machine speed control and protection, detection by comparing the output voltage of a speedometer generator with a set value has been generally employed, taking advantage of the fact that the output voltage of a speedometer generator is proportional to the rotational speed. When this voltage measurement method is applied to an electrostatic speed relay, the conventional circuit shown in FIG. 1 has various disadvantages. In Fig. 1, the output of the speedometer generator 1 is full-wave rectified by the rectifier circuit 2, smoothed by the capacitor 3, and used as the input of the voltage-setting variable resistor 4, and the output of this resistor 4 is used as the comparison input. A positive feedback type level detection circuit (for example, a Schmitt circuit) 5 obtains an on/off output to energize or restore the output relay 5.

この回路において、整流回路2の整流出力電圧
VCは、第2図に波形図に示すように可変抵抗器
4とコンデンサCの時定数によるリツプル電圧
VRを含み、このリツプル電圧VR(リツプル率)は
発電機1の出力周波数即ち測定対象回転機の速度
が高くなるほど指数関数的に小さくなる。即ち、
第2図のaに示す波形でのリツプル率VR/VP
対して、同図のbに示す2倍の周波数でのリツプ
ル率VR′/VP′はVRとVR′が約1/2になると共にVP
とVP′の2倍になり、リツプル率は周波数が2倍
になると約1/4になる。このとき、抵抗器4で電
圧VCを同じにするとリツプル電圧VRは約1/4にな
る。結果的に電圧VCは第3図に示すように周波
数が高くなるにつれて非線形に高くなる。第4図
はリツプル電圧VRの周波数特性を示す。
In this circuit, the rectified output voltage of rectifier circuit 2
V C is the ripple voltage due to the time constant of variable resistor 4 and capacitor C as shown in the waveform diagram in Figure 2.
This ripple voltage V R (ripple rate) decreases exponentially as the output frequency of the generator 1, that is, the speed of the rotating machine to be measured increases. That is,
In contrast to the ripple rate V R /V P in the waveform shown in a of Figure 2, the ripple rate V R ′/V P ′ at twice the frequency shown in b in the same figure is determined by the difference between V R and V R ′. When it becomes about 1/2, V P
is twice V P ′, and the ripple rate becomes approximately 1/4 when the frequency is doubled. At this time, if the voltage V C is made the same by the resistor 4, the ripple voltage V R becomes approximately 1/4. As a result, the voltage V C increases non-linearly as the frequency increases, as shown in FIG. FIG. 4 shows the frequency characteristics of the ripple voltage V R.

上述のことから、第1図の速度継電器を試験調
整するには、整定電圧に合わせて速度計用発電機
1の周波数も変える必要があるし、速度計用発電
機1の出力電圧と周波数の組み合わせが多様にあ
ることから試験調整時と実際に使用する場合とで
異なる発電機の場合には回転機装着時に再調整す
る必要性が出てくる。
From the above, in order to test and adjust the speed relay shown in Figure 1, it is necessary to change the frequency of the speedometer generator 1 in accordance with the set voltage, and also to change the output voltage and frequency of the speedometer generator 1. Since there are a variety of combinations, if the generator differs between test adjustment and actual use, it will be necessary to readjust it when the rotating machine is installed.

また、リツプル電圧VRは、前述のように周波
数によつて指数関数的に変化するのに対して、レ
ベル検出回路5の正帰還量が一定であることか
ら、周波数の変化によつてリレー6の動作,復帰
幅(ヒステリシス幅)が等価的に変化したことに
なり、動作値の整定を可変にすれば動作復帰後も
変化してしまう。
Furthermore, while the ripple voltage V R changes exponentially depending on the frequency as described above, since the amount of positive feedback of the level detection circuit 5 is constant, the ripple voltage V R changes depending on the frequency. This means that the operation and return width (hysteresis width) have changed equivalently, and if the setting of the operation value is made variable, it will change even after the operation is returned.

こうした問題を解消するものとして、第5図に
概念的に示すように、周波数検出回路7とパワー
増幅器8を有し、発電機1の周波数を直接に検出
する方式があるが、この方式には次に示すような
欠点がある。
To solve these problems, there is a method that has a frequency detection circuit 7 and a power amplifier 8 and directly detects the frequency of the generator 1, as conceptually shown in FIG. It has the following drawbacks.

(1) 周波数検出回路7としては入力の電圧変動や
波形歪に影響されることなく周波数を正確に検
出するためには、回路が複雑になるし、微分回
路等を使用するためにノイズに弱くなつてしま
うなど信頼性に劣る。
(1) The frequency detection circuit 7 needs to be complex in order to accurately detect the frequency without being affected by input voltage fluctuations or waveform distortion, and is susceptible to noise because it uses a differentiating circuit, etc. It is unreliable and can get used to it.

(2) 種々の速度計用発電機の定格周波数と整定に
適合するためには検出回路7内の各部定数要素
部品を変更した多種類のものを用意する必要が
あり汎用性に劣る。
(2) In order to adapt to the rated frequencies and settings of various speedometer generators, it is necessary to prepare a wide variety of constant element components in the detection circuit 7, which results in poor versatility.

(3) 直流速度計用発電機には適用できない。(3) Not applicable to DC speedometer generators.

(4) 試験、調整には可変周波数の発振器や電力増
幅器等を必要とし、試験調整に手間取るしその
後の現地での点検調整にも特殊な試験器具を用
意する必要がある。
(4) Testing and adjustment require variable frequency oscillators, power amplifiers, etc., which takes time and requires the preparation of special test equipment for subsequent on-site inspection and adjustment.

従来の他の速度継電器としては、メータ形継電
器を使つたものがあるが、動作力が微弱で接点の
接触不良が起き易く不安定であるし、動作時間が
遅くエンジン発電機のように急速な速度立ち上が
りになる発電機の速度検出には不適当であつた。
Other conventional speed relays include those that use meter-type relays, but the operating force is weak and the contacts are prone to contact failure, making them unstable. It was unsuitable for detecting the speed of a generator whose speed is rising.

本発明の目的は、試験調整を容易にして応答
性,精度良く確実に速度検出できるようにした速
度継電器を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a speed relay that facilitates testing and adjustment and enables reliable speed detection with good responsiveness and accuracy.

第6図は本発明の一実施例を示すブロツク図で
ある。速度計用発電機1の出力平滑回路を持たな
い全波整流回路9により整流され、電圧調整回路
10の入力とされる。電圧調整回路10は分圧回
路を有し、この分圧回路によつて発電機1の定格
電圧に応じて変わる入力電圧を適当な電圧レベル
に調整するもので、整定回路も含めた後段の回路
11〜13の回路定数を任意の発電機1に対して
変更不要にする。電圧調整回路10の出力VI
整定値eRと共に差分検出回路11の入力とされ、
この差分検出回路11において基準量とされる整
定値eRとの差が検出される。この差分(VI−eR
は積分回路12の入力とされ、差分平均値の正,
負によつて積分回路12の出力電圧VOの直流レ
ベルはリツプルを含んだまま上昇又は下降する積
分信号に変換される。積分回路12の出力VOは、
基準電圧eSを有する正帰還型レベル検出回路(例
えばシユミツト回路)13の入力とされ、VO
瞬時値が基準電圧eSを越えたか否かの検出がなさ
れる。シユミツト回路13の出力VPはパワー増
幅器14を経てリレー6の付勢,消勢信号にされ
る。
FIG. 6 is a block diagram showing one embodiment of the present invention. The output of the speedometer generator 1 is rectified by a full-wave rectifier circuit 9 without a smoothing circuit, and is input to a voltage adjustment circuit 10. The voltage adjustment circuit 10 has a voltage dividing circuit, and this voltage dividing circuit adjusts the input voltage, which varies depending on the rated voltage of the generator 1, to an appropriate voltage level. To make it unnecessary to change circuit constants 11 to 13 for any generator 1. The output V I of the voltage adjustment circuit 10 is input to the difference detection circuit 11 together with the set value e R ,
This difference detection circuit 11 detects the difference between the set value e R and the reference value. This difference (V I −e R )
is input to the integrator circuit 12, and the positive,
Due to the negative value, the DC level of the output voltage V O of the integrating circuit 12 is converted into an integral signal that rises or falls while containing ripples. The output V O of the integrating circuit 12 is
It is input to a positive feedback level detection circuit (for example, a Schmitt circuit) 13 having a reference voltage eS , and it is detected whether the instantaneous value of V O exceeds the reference voltage eS . The output V P of the Schmitt circuit 13 is passed through a power amplifier 14 and used as an activation/deactivation signal for the relay 6 .

こうした構成における具体的な回路は第7図に
示し、各部ブロツクに対応づけて示す。
A specific circuit in such a configuration is shown in FIG. 7, and is shown in association with each block.

第6図又は第7図において、電圧調整回路10
の出力電圧VIは第8図a又はdに示すように全
波調整波形になり、この電圧VIと整定値eRの差分
検出値を積分回路12を通すことで、差分の平均
値が負であれば出力電圧VOは第8図b又はeに
示すようにリツプルを含んだまま直流レベルが上
昇する。積分回路12の出力電圧VOの瞬時値が
レベル検出回路13の基準電圧eSを越えると該検
出回路13に正帰還がかかつて基準電圧eSがヒス
テリシス幅だけ下り、この幅を継電動作周波数に
おいてVOのリツプル分以上に設計しておくこと
で第8図c又はfに示すようにレベル検出回路1
3の出力VPはチヤタリングを起こすことなくオ
フからオンに切り換わり、リレー6を動作させ
る。
In FIG. 6 or 7, the voltage adjustment circuit 10
The output voltage V I has a full-wave adjusted waveform as shown in Figure 8 a or d, and by passing the detected difference between this voltage V I and the set value e R through the integrating circuit 12, the average value of the difference can be calculated. If it is negative, the DC level of the output voltage VO increases while containing ripples as shown in FIG. 8b or e. When the instantaneous value of the output voltage V O of the integrating circuit 12 exceeds the reference voltage e S of the level detection circuit 13, positive feedback is generated in the detection circuit 13 and the reference voltage e S falls by the hysteresis width, and this width is used for relay operation. By designing the frequency to be higher than the ripple of V O , the level detection circuit 1 can be adjusted as shown in Figure 8 c or f.
3's output V P switches from OFF to ON without causing any chattering, and operates relay 6.

ここで、積分回路12の出力VOはそのリツプ
ル分が電圧VIが同じでもその周波数が変化する
ことで周波数に逆比例して大きくなる。一方、発
電機1の出力は周波数と電圧が比例関係にあり、
第8図aとdに2対1の周波数比での全波整流波
形を示すように周波数が低いときには出力電圧も
比例して低くなる。従つて、試験,調整時に電圧
調整回路のVIを適当なレベルに設定して基準電
圧eRを調整して整定した後、新たに基準電圧eR
1/2に変化させて速度整定(回転数検出)を1/2に
下げた場合にはリレー動作点での周波数も1/2以
下に下げたことになるが、それに比例して入力電
圧VIも1/2になつてVOのリツプル分(絶対値)は
リレー動作限界点では常に一定で動作時の過渡的
なチヤタリングも生じない。
Here, the ripple component of the output V O of the integrating circuit 12 increases in inverse proportion to the frequency as the frequency changes even if the voltage V I remains the same. On the other hand, the output of generator 1 has a proportional relationship between frequency and voltage.
As shown in FIGS. 8a and 8d, which show full-wave rectified waveforms with a frequency ratio of 2:1, when the frequency is low, the output voltage also decreases proportionally. Therefore, during testing and adjustment, after setting V I of the voltage adjustment circuit to an appropriate level and adjusting and settling the reference voltage e R , the reference voltage e R is newly changed to 1/2 and the speed is set ( If the rotation speed detection) is reduced to 1/2, the frequency at the relay operating point will also be reduced to less than 1/2, but proportionally the input voltage V I will also be reduced to 1/2, resulting in V O The ripple component (absolute value) of is always constant at the relay operating limit point, and no transient chattering occurs during operation.

例えば、第8図aに示す基準電圧eRで整定する
リレー動作限界点に対して、電圧VIが基準電圧eR
を境とする斜線部分の面積AとBが一致するとき
には電圧VIのレベル(周波数に比例)がリレー
動作限界点にあり、積分回路12の出力VOはリ
ツプル電圧を有して同じレベルを保つ。そして、
発電機1の周波数がリレー動作限界点よりも上昇
すると面積A>Bになつて積分回路12の出力
VOは同図bに示すようにリツプル分を含んだま
ま上昇してリレ動作出力VPを得ることができる。
このときのリツプル電圧VR以上にレベル検出回
路13のヒステリシス幅VHを大きくしておくこ
とでチヤタリングのないリレー出力VPを得るこ
とができる。
For example, for the relay operation limit point set by the reference voltage e R shown in Figure 8a, the voltage V I is set at the reference voltage e R
When the areas A and B of the shaded part bordering on the area A and B match, the level of the voltage V I (proportional to the frequency) is at the relay operation limit, and the output V O of the integrating circuit 12 has a ripple voltage and is at the same level. keep. and,
When the frequency of the generator 1 rises above the relay operating limit point, the area A>B becomes and the output of the integrating circuit 12
As shown in Figure b, V O increases while including the ripple component, and the relay operation output V P can be obtained.
By making the hysteresis width V H of the level detection circuit 13 larger than the ripple voltage V R at this time, a relay output V P without chattering can be obtained.

ここで、基準電圧eR(リレー動作限界点)を1/2
に新たに整定して速度整定を1/2にした場合には、
同図dに示すように入力電圧VIも発電機1の周
波数と電圧の比例関係から1/2になり、積分回路
12の出力電圧VOはリレー動作限界点を越える
周波数では同図eに示すように周波数が1/2にな
るがbと同じリツプル分を有して上昇し、同じ基
準電圧eS及びヒステリシス幅を持つレベル検出回
路13にしてリレー動作限界点は変化しないし、
チヤタリングも生じない。
Here, the reference voltage e R (relay operating limit point) is 1/2
If you newly set the speed to 1/2 and set the speed to 1/2,
As shown in Figure d, the input voltage V I also becomes 1/2 due to the proportional relationship between the frequency and voltage of the generator 1, and the output voltage V O of the integrating circuit 12 becomes 1/2 at the frequency exceeding the relay operating limit point. As shown, the frequency becomes 1/2, but increases with the same ripple as b, and the relay operation limit point does not change with the level detection circuit 13 having the same reference voltage e S and hysteresis width.
No chattering occurs either.

この点、第1図の従来構成では全波整流波形を
平滑した後にレベル比較するため、リツプル電圧
(又はリツプル率)は第4図に示すように周波数
変化に対して指数関数的に変化し、発電機1の電
圧が周波数に比例して変化するも、リツプル電圧
は指数関数的に変化して第3図に示す非直線的電
圧VCとなる。このため、従来構成では、検出周
波数(リレー動作限界点)を変える前の電圧VC
に含まれるリツプル電圧と変えた後のリツプル電
圧に指数関数的な変化があり、レベル検出回路5
のヒステリシス幅が同じままで動作、復帰幅が変
化するし、リツプルの大きさによつてはチヤタリ
ングを生じる。
In this regard, in the conventional configuration shown in Fig. 1, since the levels are compared after smoothing the full-wave rectified waveform, the ripple voltage (or ripple rate) changes exponentially with respect to frequency changes, as shown in Fig. 4. Although the voltage of the generator 1 changes in proportion to the frequency, the ripple voltage changes exponentially and becomes a non-linear voltage V C as shown in FIG. Therefore, in the conventional configuration, the voltage V C before changing the detection frequency (relay operating limit point)
There is an exponential change in the ripple voltage after changing the ripple voltage included in the level detection circuit 5.
While the hysteresis width remains the same, the operation and return widths change, and chattering may occur depending on the size of the ripple.

以上のことから、本実施例では検出周波数を変
えるのに、基準電圧eRの調整による整定に、レベ
ル検出回路の基準電圧eS及びそのヒステリシス幅
を一定かつリツプル分よりもわずか大きい幅に調
整したまま基準電圧eRの新たな調整によつて出力
VPにチヤタリングを生じることはない。故に、
レベル検出回路13の基準電圧eSをVOのリツプ
ル分のピークより少し上にくるように設定するこ
とで、発電機1の出力の緩やかな変化に対しても
動作限界点を越えると速やかに動作する速度継電
器特性になる。
From the above, in this embodiment, in order to change the detection frequency, the reference voltage e S of the level detection circuit and its hysteresis width are adjusted to a constant value and slightly larger than the ripple. Output by new adjustment of reference voltage eR
No chattering occurs in V P. Therefore,
By setting the reference voltage e S of the level detection circuit 13 to be slightly above the peak of the ripple component of VO , even if the output of the generator 1 gradually changes, it will be detected immediately when the operating limit point is exceeded. Becomes the operating speed relay characteristics.

また、差分検出回路11には正復帰量なく構成
されることから、リレー動作と復帰の幅はなく、
動作値が復帰値となる。しかも出力にはチヤタリ
ングがないことから制御継電器としての速度継電
器に最適である。
In addition, since the difference detection circuit 11 is configured without a normal return amount, there is no width between relay operation and return.
The operating value becomes the return value. Moreover, since there is no chattering in the output, it is ideal for speed relays as control relays.

また、リレー動作値はVI−eRが負になつた時の
入力値で決まり、VIは完全な全波整流波形であ
るから動作値は周波数に無関係であり、試験,調
整は発電機1の代わりに商用周波数の電圧を入力
とした調整が可能で、試験調整の手間を大幅に省
くことができるし、現地でも簡単に試験可能で保
守性も優れる。
In addition, the relay operating value is determined by the input value when V I −e R becomes negative, and since V I is a complete full-wave rectified waveform, the operating value is independent of frequency, and testing and adjustment are performed using the generator. Instead of 1, it is possible to make adjustments using the commercial frequency voltage as input, which greatly reduces the effort required for test and adjustment, and allows for easy testing on-site, as well as excellent maintainability.

また、発電機1の種々の周波数,電圧の組み合
わせに対しても電圧調整回路のVI調整のみで済
み、回路部品の標準化を可能にして汎用性の高い
速度継電器になる。また、電圧検出方式であるか
ら、周波数検出方式のように微分回路がなく、ノ
イズやサージに対して安定で小さな入力に対して
も安定に動作する。
Further, even for various combinations of frequencies and voltages of the generator 1, only the V I adjustment of the voltage adjustment circuit is required, making it possible to standardize circuit components, resulting in a highly versatile speed relay. In addition, since it is a voltage detection method, it does not require a differentiating circuit unlike frequency detection methods, and is stable against noise and surges, and operates stably even with small inputs.

また、応答性については積分回路12の遅れ分
のみであり、その遅れ時間も小さく設定して上述
までの作用効果を充分に満足し、エンジン発電機
など速度変化率の大きい対象機器の制御用に適用
しても確実な速度検出が可能になる。
In addition, the responsiveness is limited to only the delay of the integrating circuit 12, and the delay time is set small to fully satisfy the above-mentioned effects, making it suitable for controlling target equipment with a large speed change rate such as an engine generator. Even when applied, reliable speed detection becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の速度継電器回路図、第2図〜第
4図は第1図の動作を説明するための図、第5図
は従来の他の速度継電器回路図、第6図は本発明
の一実施例を示すブロツク図、第7図は第6図の
具体的回路図、第8図は第6図又は第7図の要部
波形図である。 9……全波整流回路、10……電圧調整回路、
11……差分検出回路、12……積分回路、13
……レベル検出回路、14……パワー増幅器。
Fig. 1 is a circuit diagram of a conventional speed relay, Figs. 2 to 4 are diagrams for explaining the operation of Fig. 1, Fig. 5 is a circuit diagram of another conventional speed relay, and Fig. 6 is a circuit diagram of the present invention. 7 is a specific circuit diagram of FIG. 6, and FIG. 8 is a waveform diagram of the main part of FIG. 6 or 7. 9... Full wave rectifier circuit, 10... Voltage adjustment circuit,
11...Difference detection circuit, 12...Integrator circuit, 13
... Level detection circuit, 14 ... Power amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 速度計用発電機の出力を全波整流する整流回
路と、この整流回路の出力を調整する電圧調整回
路と、この電圧調整回路の出力との比較基準量と
しての整定値を持つて該出力との差分を検出する
差分検出回路と、この差分検出回路の出力を積分
する積分回路と、この積分回路の出力を検出入力
とし該入力に含まれるリツプル分以上のヒステリ
シス幅を持つ正帰還型レベル検出回路と、このレ
ベル検出回路の出力を動作,復帰入力とするリレ
ー回路とを備えたことを特徴とする速度継電器。
1. A rectifier circuit that performs full-wave rectification of the output of the speedometer generator, a voltage adjustment circuit that adjusts the output of this rectification circuit, and a set value as a reference quantity for comparison with the output of this voltage adjustment circuit. a difference detection circuit that detects the difference between the two, an integration circuit that integrates the output of this difference detection circuit, and a positive feedback type level that uses the output of this integration circuit as a detection input and has a hysteresis width greater than the ripple included in the input. A speed relay comprising a detection circuit and a relay circuit that uses the output of the level detection circuit as an operation/reset input.
JP12158480A 1980-09-02 1980-09-02 Speed relay Granted JPS5746428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12158480A JPS5746428A (en) 1980-09-02 1980-09-02 Speed relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12158480A JPS5746428A (en) 1980-09-02 1980-09-02 Speed relay

Publications (2)

Publication Number Publication Date
JPS5746428A JPS5746428A (en) 1982-03-16
JPH0319951B2 true JPH0319951B2 (en) 1991-03-18

Family

ID=14814853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12158480A Granted JPS5746428A (en) 1980-09-02 1980-09-02 Speed relay

Country Status (1)

Country Link
JP (1) JPS5746428A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219036A (en) * 1984-04-16 1985-11-01 エービー テトラパック Manufacture of laminated sheet material for packaging food
JP2602056B2 (en) * 1988-04-19 1997-04-23 大日本印刷株式会社 Method of forming envelope pasting part in paper container

Also Published As

Publication number Publication date
JPS5746428A (en) 1982-03-16

Similar Documents

Publication Publication Date Title
EP0077118B1 (en) Motor power factor controller with a reduced voltage starter
US4346342A (en) Current limiting voltage regulator
GB1576062A (en) Speed control of universal-type electric motors
US4063164A (en) Method and apparatus for detection of short circuits by phase monitoring traveling wave signals
US2600308A (en) Speed-regulating control system
US4366433A (en) Output voltage-drop detecting apparatus technical field
US4589048A (en) Apparatus for detecting ground fault in variable-voltage variable-frequency power system
JPH0319951B2 (en)
JPS6050085B2 (en) Automatic matching method and device for anode load resistance with antenna
US2457792A (en) Antihunting motor control circuit
US4216421A (en) Apparatus and method for the thermal simulation of a constant load electric motor
EP0051903B1 (en) Three phase power factor controller
US3684954A (en) Single frequency moisture gauge with logarithmic feedback
GB2137360A (en) Electromagnetic flowmeter
CA1115344A (en) Voltage regulator for a.c. generator
US3961255A (en) Measurement bandwidth enhancement in phase lock loops
US2920263A (en) Frequency regulating system
US3683690A (en) Variable time constant altitude rate device
US3551772A (en) Closed control system having means responsive to the amplitude of selfoscillations to modify one or more parameters of the system
JPS5926794Y2 (en) switching regulator
JPS6316691Y2 (en)
JP2600799B2 (en) AC motor magnetic flux detector
KR950006603B1 (en) Voltage compensation device of high voltage induction heating cooker
JPH0345632B2 (en)
JPS6337599B2 (en)