JPH03197920A - Polarized light source - Google Patents

Polarized light source

Info

Publication number
JPH03197920A
JPH03197920A JP33664989A JP33664989A JPH03197920A JP H03197920 A JPH03197920 A JP H03197920A JP 33664989 A JP33664989 A JP 33664989A JP 33664989 A JP33664989 A JP 33664989A JP H03197920 A JPH03197920 A JP H03197920A
Authority
JP
Japan
Prior art keywords
light
beam splitter
transparent plate
light source
polarizing beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33664989A
Other languages
Japanese (ja)
Inventor
Noriji Ooishi
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP33664989A priority Critical patent/JPH03197920A/en
Priority to DE69025924T priority patent/DE69025924T2/en
Priority to PCT/JP1990/001699 priority patent/WO1991010153A1/en
Priority to EP91901553A priority patent/EP0460241B1/en
Publication of JPH03197920A publication Critical patent/JPH03197920A/en
Priority to US08/017,968 priority patent/US5359455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a projection light beam from generating irregular in brightness when linearly polarized light is formed efficiently while using a light source having random polarization by providing a light reflecting means which guide four light beams to the prism array formed surface and its opposite-side surface of a transparent plate so that light transmitted and the light which has not transmitted through a 1/2-wavelength plate are superposed one over the other. CONSTITUTION:A reflecting mirror 7 and the transparent plate 1 are arranged so that two kinds of light components are put one over the other on the transparent plate 1; and a light component from one polarization beam splitter 4 which have its plane of polarization rotated and a light component from the other polarization beam splitter 4 with does not have its plane of rotation rotated are superposed one over the other by one half on the transparent plate 1. Further, a light component from one polarization beam splitter 4 which does not have its plane of polarization rotated and a light component from the other polarization beam splitter 4 which has its plane of polarization rotated are superposed one over the other by the other half on the transparent plate 1. Consequently, the linearly polarized light can be generated efficiently from the light source for random polarization without generating any irregularity in brightness by using the small-sized device.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ランダムな偏光特性をもった光ビームな直線
偏光に変える偏光光源装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a polarized light source device that converts a light beam into linearly polarized light having random polarization characteristics.

[従来の技術] 例えば、液晶プロジェクタ−の光源として、また光源の
映り込みを嫌う照明(ガラス越しの照明や水面を通した
照明等)に直線偏光光源装置が役立つことが知られてい
る。
[Prior Art] For example, it is known that a linearly polarized light source device is useful as a light source for a liquid crystal projector, or for illumination where reflection of the light source is avoided (lighting through glass, lighting through water, etc.).

この様な直線偏光光源装置としては、従来ランダムな偏
光特性の光源(例えばハロゲンランプ、キセノンランプ
、メタルハライドランプ等)と偏光板との組合わせが用
いられており、上記光源からの光を偏光板に通すことに
よって直線偏光が作られている。しかして、この際、偏
光板に入射する光のうち透過光の偏光面と垂直な偏光面
を持つ偏光成分がカットされるため、利用できる光量(
透過光量)は光源光の高々50%である。
Conventionally, such a linearly polarized light source device uses a combination of a light source with random polarization characteristics (for example, a halogen lamp, xenon lamp, metal halide lamp, etc.) and a polarizing plate, and the light from the light source is passed through the polarizing plate. Linearly polarized light is created by passing it through the At this time, among the light incident on the polarizing plate, the polarized component whose polarization plane is perpendicular to the polarization plane of the transmitted light is cut, so the amount of light that can be used (
The amount of transmitted light) is at most 50% of the light source light.

この様に、偏光板を用いた偏光光源装置では損失が大き
いという問題点がある。
As described above, a polarized light source device using a polarizing plate has a problem in that the loss is large.

この損失を避ける方法として、先ず光源光を偏光ビーム
スプリッタ−で2つの直線偏光成分に分け、その一方の
偏光面を90°回転させてから他方に合流させる方法が
考えられる。
A conceivable method for avoiding this loss is to first split the light source light into two linearly polarized components using a polarizing beam splitter, rotate one of the polarized planes by 90 degrees, and then merge the two linearly polarized components into the other.

この考えを実現した例として、特開昭63−19791
3号公報、実開昭63−187101号公報、特開昭6
3−271313号公報、実開昭63−150922号
公報および特開昭63−168622号公報に記載のも
のがある。
An example of realizing this idea is Japanese Patent Laid-Open No. 63-19791
Publication No. 3, Japanese Utility Model Publication No. 187101/1983, Japanese Patent Application Publication No. 1983
There are those described in JP-A No. 3-271313, JP-A-63-150922, and JP-A-63-168622.

上記特開昭63−197913号公報及び実開昭63−
187101号公報に記載のものでは、偏光ビームスプ
リッタ−で分けられた2つの直線偏光成分のうちの一方
を2つの反射面で順次反射させて偏光面を回転させてい
る。この様に反射によって偏光面を回転させることは波
長依存性をもたない点で好ましい。しかしながら、反射
光の光路な確保するために装置のサイズが太き(なり、
好ましくない。
The above-mentioned Japanese Unexamined Patent Publication No. 197913/1983 and Utility Model Application No. 63-
In the device described in Japanese Patent No. 187101, one of two linearly polarized light components separated by a polarizing beam splitter is sequentially reflected by two reflecting surfaces to rotate the plane of polarization. Rotating the plane of polarization by reflection in this manner is preferable because it does not have wavelength dependence. However, in order to ensure a clear optical path for the reflected light, the size of the device must be large.
Undesirable.

また、上記特開昭63−271313号公報及び実開昭
63−150922号公報に記載のものは、装置のサイ
ズが大きくなるため、かなり用途は制限される。
Furthermore, the devices described in Japanese Patent Application Laid-Open No. 63-271313 and Japanese Utility Model Application No. 63-150922 are large in size, so that their applications are considerably limited.

特開昭63−168622号公報に記載のものでは、偏
光面の回転にTN液晶を用いることにより比較的小型で
且つ極めて簡単な構造で前記の機能を実現している。但
し、ここでは偏光ビームスプリッタ−によって分けられ
た2つの光が空間的に分離した状態で出射ビームを構成
するために、液晶層を通過する際に受ける若干の減衰等
により出射ビームに明るさのむらを生ずるという難点が
ある。
The device described in Japanese Unexamined Patent Publication No. 63-168622 uses a TN liquid crystal to rotate the plane of polarization, thereby realizing the above function with a relatively small and extremely simple structure. However, in this case, since the two lights separated by the polarizing beam splitter constitute the output beam in a spatially separated state, the output beam may have uneven brightness due to slight attenuation received when passing through the liquid crystal layer. The problem is that it causes

[発明が解決しようとする課題] 本発明の目的は、ランダム偏光の光源を用いて効率よく
直線偏光を作る際に、出射ビームに明るさのむらが生じ
にくい偏光光源装置を提供することある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a polarized light source device that is less likely to cause brightness unevenness in an emitted beam when linearly polarized light is efficiently produced using a randomly polarized light source.

[課題を解決するための手段] 本発明の請求項1に記載の偏光光源装置は、光源と、該
光源から発せられる光を2方向に分岐するプリズムと、
該分岐手段からの2つの分岐光のそれぞれについてp偏
光成分光及びS偏光成分光の一方を反射させ且つ他方を
透過させる偏光ビームスプリッタ−と、該偏光ビームス
プリッタ−からの反射光及び透過光のうちの一方を偏光
面の90°回転を伴って透過させる坏波長板と、上記偏
光ビームスプリッタ−によって分けられて得られた4つ
の光を通過させ合成させるため片面にプリズム列が形成
されている透明板と、該透明板の上記プリズム列形成面
と反対側の面へと上記4つの光を上記%波長板を透過し
た光と透過しない光とが重なる様に導く光反射手段とを
有することを特徴とする、偏光光源装置、 である。
[Means for Solving the Problems] A polarized light source device according to claim 1 of the present invention includes a light source, a prism that branches light emitted from the light source into two directions,
a polarizing beam splitter that reflects one of the p-polarized component light and the s-polarized component light and transmits the other of the two branched lights from the splitting means; A prism array is formed on one side to pass and combine the four lights obtained by dividing them by the polarizing beam splitter and the polarizing wave plate that transmits one of them with a 90° rotation of the polarization plane. comprising a transparent plate and a light reflecting means for guiding the four lights to a surface of the transparent plate opposite to the prism row forming surface so that the light that has passed through the % wavelength plate and the light that has not passed overlap. A polarized light source device, characterized by:

また、請求項2に記載の偏光光源装置は、光源と、該光
源から発せられる光を2方向に分岐するプリズムと、該
分岐手段からの2つの分岐光のそれぞれについてp偏光
成分光及びS偏光成分光の一方を反射させ且つ他方を透
過させる偏光ビームスプリッタ−と、該偏光ビームスプ
リッタ−からの反射光及び透過光のうちの一方を偏光面
の90°回転を伴って透過させるTN液晶セルと、上記
偏光ビームスプリッタ−によって分けられて得られた4
つの光を通過させ合成させるため片面にプリズム列が形
成されている透明板と、該透明板の上記プリズム列形成
面と反対側の面へと上記4つの光を上記TN液晶セルを
透過した光と透過しない光とが重なる様に導く光反射手
段とを有することを特徴とする、偏光光源装置、である
The polarized light source device according to claim 2 further includes a light source, a prism that branches light emitted from the light source into two directions, and p-polarized component light and S-polarized light for each of the two branched lights from the splitting means. A polarizing beam splitter that reflects one of the component lights and transmits the other, and a TN liquid crystal cell that transmits one of the reflected light and the transmitted light from the polarizing beam splitter with a 90° rotation of the plane of polarization. , obtained by dividing by the above polarizing beam splitter.
A transparent plate having a prism array formed on one side for passing and combining the four lights, and the light transmitted through the TN liquid crystal cell to transmit the four lights to the surface of the transparent plate opposite to the surface on which the prism array is formed. This is a polarized light source device characterized by having a light reflecting means for guiding light and non-transmitted light so that they overlap.

[作用] 本発明の偏光光源装置は、光源からの光を2方向に分岐
し、次に各分岐光について偏光ビームスプリッタ−で2
つの直線偏光成分に分け、その−方の偏光面を90”回
転させ、かくして得られた4つの光のうち偏光面回転を
受けた光と受けない光とを合流させるものであり、偏光
面回転のための手段として%波長板あるいはTN液晶セ
ルを用い、上記偏光面回転を受けた光と受けない光(こ
れらの光の偏光面は揃えられている)とを反射面等の光
反射手段によって重なりあう様に導き、ここに光出射側
の面にプリズム列が形成されている透明板を配置し、該
透明板によって平行な直線偏光出射光を得るものである
[Operation] The polarized light source device of the present invention splits light from a light source into two directions, and then splits each branched light into two directions using a polarized beam splitter.
It separates the light into two linearly polarized components, rotates the negative plane of polarization by 90'', and combines the light that has undergone polarization plane rotation and the light that has not undergone polarization plane rotation among the four light beams obtained in this way. As a means for this purpose, a wavelength plate or a TN liquid crystal cell is used, and the light that has undergone the rotation of the polarization plane and the light that has not been rotated (the polarization planes of these lights are aligned) are reflected by a light reflecting means such as a reflective surface. A transparent plate having an array of prisms formed on the surface on the light exit side is arranged here so that parallel linearly polarized light is emitted from the transparent plate.

[実施例] 以下、実施例を用いて本発明を説明する。尚、以下の実
施例における坏波長板をTN液晶セルに置き換えたもの
が請求項2の実施例となる。
[Example] The present invention will be described below using Examples. Incidentally, an embodiment according to claim 2 is obtained by replacing the wave plate in the following embodiments with a TN liquid crystal cell.

以下の実施例では、光源からのランダム偏光を2方向に
分岐する手段として透明板の片面に形成された微小プリ
ズム列を用いており、これにより装置の小型化を図って
いる。もちろん、1つのプリズムを用いて同様の機能を
果たすこともできる。
In the following embodiments, a micro prism array formed on one side of a transparent plate is used as a means for splitting randomly polarized light from a light source into two directions, thereby reducing the size of the device. Of course, a single prism can also be used to perform the same function.

第1図及び第2図はいずれも請求項1の実施例の装置の
平面図であり、第3図は第1図の装置の斜視図である。
1 and 2 are both plan views of the apparatus according to the embodiment of claim 1, and FIG. 3 is a perspective view of the apparatus of FIG. 1.

第1図の実施例において、光源5からの光は曲面鏡6で
平行光とされ、該平行光は片面にプリズム列の形成され
た透明板2で2方向に分岐せしめられる。各分岐光はそ
れぞれ別のプリズム型偏光ビームスプリッタ−4に入射
し、該入射光のうちp偏光成分(図中、実線で示されて
いる)は偏光ビームスプリッタ−4を透過し、坏波長板
3で偏光面を回転せしめられてS偏光成分となる。この
光線は、反射鏡7で反射せしめられ、更に透明板lに入
射し、該透明板に形成されたプリズムで屈折せしめられ
て出射光となる。一方、偏光ビームスプリッタ−4に入
射した光のうちS偏光成分(図中、破線で示されている
)は、該偏光ビームスプリッタ−で反射せしめられ、更
に反射鏡7で反射せしめられた後、透明板lに入射し、
該透明板に形成されたプリズムで屈折せしめられて出射
光となる。
In the embodiment shown in FIG. 1, light from a light source 5 is converted into parallel light by a curved mirror 6, and the parallel light is split into two directions by a transparent plate 2 having an array of prisms formed on one side. Each branched light is incident on a separate prism-type polarizing beam splitter 4, and the p-polarized component (indicated by a solid line in the figure) of the incident light is transmitted through the polarizing beam splitter 4, 3, the plane of polarization is rotated and becomes an S-polarized component. This light beam is reflected by a reflecting mirror 7, further incident on a transparent plate l, and is refracted by a prism formed on the transparent plate to become an output light. On the other hand, the S-polarized component (indicated by a broken line in the figure) of the light incident on the polarizing beam splitter 4 is reflected by the polarizing beam splitter, further reflected by the reflecting mirror 7, and then incident on the transparent plate l,
The light is refracted by a prism formed on the transparent plate and becomes an emitted light.

以上により、光源5からの光の2つの偏光成分が、S偏
光となって出射される。
As a result of the above, the two polarized light components of the light from the light source 5 are emitted as S-polarized light.

ここで、2枚の反射鏡7及び2つの偏光ビームスプリッ
タ−4の反射面はいずれも平行であり、これらは透明板
1と垂直に配置されている。従って、透明板2によって
分岐された光は、それぞれ2つの偏光ビームスプリッタ
−4に同じ角度(図では45°)で入射する様に設定さ
れている。
Here, the reflecting surfaces of the two reflecting mirrors 7 and the two polarizing beam splitters 4 are parallel, and are arranged perpendicularly to the transparent plate 1. Therefore, the lights split by the transparent plate 2 are set to be incident on the two polarizing beam splitters 4 at the same angle (45° in the figure).

第2図の実施例は、局波長板3が偏光ビームスプリッタ
−4で反射せしめられるS偏光成分の光路中に置かれて
いる点を除き、上記第1図の実施例と同様である。尚、
この場合は、出射光はp偏光となる。
The embodiment of FIG. 2 is similar to the embodiment of FIG. 1 above, except that the local wavelength plate 3 is placed in the optical path of the S-polarized light component reflected by the polarizing beam splitter 4. still,
In this case, the emitted light becomes p-polarized light.

以上の装置において、上記反射鏡7及び透明板1は、2
種類の光成分(V2波長板3で偏光面回転を受けた成分
と該偏光面回転を受けない成分)が透明板1上にて重な
る様に配置されている。そして、一方の偏光ビームスプ
リッタ−4からの偏光面回転を受けた光成分と他方の偏
光ビームスプリッタ−4からの偏光面回転を受けない光
成分とが透明板1上の一方の半分で重なり、また上記−
方の偏光ビームスプリッタ−4からの偏光面回転を受け
ない光成分と上記他方の偏光ビームスプリッタ−4から
の偏光面回転を受けた光成分とが透明板1上の他方の半
分で重なる様にされている。
In the above device, the reflecting mirror 7 and the transparent plate 1 are
Different types of light components (components subjected to polarization plane rotation by the V2 wavelength plate 3 and components not subjected to the polarization plane rotation) are arranged so as to overlap on the transparent plate 1. Then, the light component that has undergone polarization plane rotation from one polarizing beam splitter 4 and the light component that has not undergone polarization plane rotation from the other polarizing beam splitter 4 overlap on one half of the transparent plate 1, Also above-
The light component from one polarizing beam splitter 4 that has not undergone polarization plane rotation and the light component that has undergone polarization plane rotation from the other polarization beam splitter 4 overlap on the other half of the transparent plate 1. has been done.

例えば、第4図の比較例に示す様に、小型化をはかるた
め透明板1の設置位置を変えた場合には、偏光ビームス
プリッタ−4を透過した光成分は透明板1の周辺部から
出射し、偏光ビームスプリッタ−4により反射せしめら
れた光成分は該偏光ビームスプリッタ−の中央部から出
射するが、これら2つの光成分は、 ・偏光ビームスプリッタ−4のS偏光に対する反射率と
p偏光に対する透過率とが厳密には等しくないこと、 ・坏波長板3での反射や吸収によるロスがあること、 ・坏波長板3に位相差角の波長依存性があること、 等によって、強度及びスペクトルが異なるため、出射光
にむらを生じ、好ましくない。
For example, as shown in the comparative example in FIG. 4, when the installation position of the transparent plate 1 is changed in order to achieve miniaturization, the light component that has passed through the polarizing beam splitter 4 is emitted from the periphery of the transparent plate 1. The light component reflected by the polarizing beam splitter 4 is emitted from the center of the polarizing beam splitter, and these two light components are: - The reflectance of the polarizing beam splitter 4 for S-polarized light and the p-polarized light The transmittance is not strictly equal to Since the spectra are different, the emitted light becomes uneven, which is not preferable.

上記第1図及び第2図の場合には、これら2つの光成分
が出射面(透明板1)で−様に混ざりあうので、上記第
4図の場合の様な問題は起こらない。
In the case of FIGS. 1 and 2 above, these two light components mix in a negative manner at the exit surface (transparent plate 1), so the problem as in the case of FIG. 4 does not occur.

本発明の透明板lに形成されるプリズムの形状は、第5
図から分かる通り、透明板1の法線と平行な出射光を得
るために、プリズム面と透明板の法線とのなす角θが、
以下の式(1)を満足する様に選べばよい。
The shape of the prism formed on the transparent plate l of the present invention is
As can be seen from the figure, in order to obtain emitted light parallel to the normal line of the transparent plate 1, the angle θ between the prism surface and the normal line of the transparent plate is
It may be selected so as to satisfy the following equation (1).

尚、ここで、nlは透明板1の屈折率、βは透明板1へ
光線が入射する際の入射角である。
Note that here, nl is the refractive index of the transparent plate 1, and β is the incident angle at which the light ray is incident on the transparent plate 1.

また、第5図において、α≧θとなる様にn及びβを選
ぶことが好ましい。もしαくθであれば、入射光の一部
がプリズムのもう一方の傾斜面での反射により方向を変
え、平行な出射光とならないため、効率の低下をまねく
Further, in FIG. 5, it is preferable to select n and β so that α≧θ. If α and θ, a part of the incident light changes its direction due to reflection on the other inclined surface of the prism and does not become parallel outgoing light, resulting in a decrease in efficiency.

一方、本発明の透明板2に形成されるプリズムの形状は
、第6図から分かる通り、プリズム面と透明板2の法線
とのなす角δが、以下の式(2)を満足する様に選べば
よい。
On the other hand, as can be seen from FIG. 6, the shape of the prism formed on the transparent plate 2 of the present invention is such that the angle δ between the prism surface and the normal to the transparent plate 2 satisfies the following equation (2). All you have to do is choose.

尚、ここで、n2は透明板2の屈折率である。Note that here, n2 is the refractive index of the transparent plate 2.

第6図において、γ〉δであれば、入射光の一部がプリ
ズムのもう一方の傾斜面での反射により方向を変え出射
角がβとならないため、効率の低下をまねく。従って、
γ≦δとなる様にn2及びδを選ぶのが好ましい。
In FIG. 6, if γ>δ, part of the incident light changes direction due to reflection on the other inclined surface of the prism, and the output angle does not become β, resulting in a decrease in efficiency. Therefore,
It is preferable to select n2 and δ so that γ≦δ.

尚、2つの透明板1.2を同じ材質で作る場合には、n
+=nzであるので、上記式(1)。
In addition, when the two transparent plates 1.2 are made of the same material, n
Since +=nz, the above formula (1).

(2)から、γ=α、δ=θであり、形成するプリズム
は相似形となる。更に、上記α≧θ、γ≦δの条件下で
は、γ=α=δ=θとなり、上記式(1)をθについて
解けば、 θ= cos−’ ((1+ !F■7)/4r++)
 ・・・(3)となる。
From (2), γ=α and δ=θ, and the prisms to be formed have similar shapes. Furthermore, under the conditions of α≧θ and γ≦δ, γ=α=δ=θ, and solving the above equation (1) for θ, θ= cos-' ((1+ !F■7)/4r++ )
...(3).

上記第1図及び第2図の実施例においては、β=45°
であるから、n + ” n 2のときには、上記式(
3)からn+ =nz = 1.54となり、屈折率1
.54の材料を用いればよいことが分かる。また、β=
45°のときに、透明板1と透明板2とを異なる材料で
作る場合にはn1≦1.54、n2≧1.54となる様
に材料を選定すればよい。
In the embodiment shown in FIGS. 1 and 2 above, β=45°
Therefore, when n + ” n 2, the above formula (
3), n+ = nz = 1.54, and the refractive index is 1.
.. It can be seen that 54 materials may be used. Also, β=
When the angle is 45°, when transparent plate 1 and transparent plate 2 are made of different materials, the materials may be selected so that n1≦1.54 and n2≧1.54.

本発明の偏光光源装置に用いられる偏光ビームスプリッ
タ−は、消光比、及び消光比の角度依存性、波長依存性
等の点からプリズム型偏光ビームスプリッタ−を用いる
のが好ましいが、単色光に対して用いる場合については
、有効な波長範囲が狭いミラー型偏光ビームスプリッタ
−を使用することも可能である。
As the polarizing beam splitter used in the polarizing light source device of the present invention, it is preferable to use a prism-type polarizing beam splitter from the viewpoint of extinction ratio, angular dependence of extinction ratio, wavelength dependence, etc. However, for monochromatic light, For applications where the wavelength range is narrow, it is also possible to use a mirror-type polarizing beam splitter with a narrow effective wavelength range.

第7図はミラー型偏光ビームスプリッタ−8を用いた実
施例であるが、該偏光ビームスプリッタ−は入射角を任
意に選べるため、2つの反射鏡6を平行に配置したまま
でβを任意に選択すイ)ことができる。本実施例は、β
〉45°の実施例である。
FIG. 7 shows an example using a mirror type polarizing beam splitter 8. Since the incident angle of this polarizing beam splitter can be arbitrarily selected, β can be arbitrarily set while the two reflecting mirrors 6 are arranged in parallel. (Choose a) I can do it. In this example, β
>45°.

本発明の請求項1に記載の坏波長板としては、雲母、水
晶等の無機物の結晶を所定の厚さに成形したものや、ポ
リカーボネート、ポリエステル等の複屈折を示す高分子
フィルムを所定の倍率に延伸したもの等が用いられる。
The crystalline wave plate according to claim 1 of the present invention may be formed by molding inorganic crystals such as mica or quartz to a predetermined thickness, or by forming a polymer film exhibiting birefringence such as polycarbonate or polyester at a predetermined magnification. A stretched material is used.

また、請求項2に記載のTN液晶セルは、ラビング等に
よって一軸配向処理を行った一対の透明基板を、配向軸
が互いに直交する様に向かい合わせ、これらの間にネマ
ティック液晶を充填させたもので、液晶分子の分子軸は
これらの基板の間で90’捩れたヘリカル構造を形成し
、入射偏光光の偏光面をこのヘリカル構造に沿って回転
させるものである。
Further, the TN liquid crystal cell according to claim 2 is a cell in which a pair of transparent substrates subjected to uniaxial alignment treatment by rubbing or the like face each other so that their alignment axes are perpendicular to each other, and nematic liquid crystal is filled between them. The molecular axes of the liquid crystal molecules form a 90' twisted helical structure between these substrates, and the plane of polarization of incident polarized light is rotated along this helical structure.

このTN液晶セルを用いたものは、偏光面を回転させる
性質が波長依存性を持たない点で、白色光源に使用する
のに好ましい。しかしながら、セルを通過する際の光の
損失を少なくする様注意しなければならず、また液晶の
温度特性に注意しなければならない等、坏波長板に比較
して取扱がやや難しい。
A device using this TN liquid crystal cell is preferable for use as a white light source because the property of rotating the plane of polarization has no wavelength dependence. However, it is somewhat difficult to handle compared to a crystal wave plate, as care must be taken to reduce the loss of light when passing through the cell, and attention must be paid to the temperature characteristics of the liquid crystal.

一方、%波長板は、偏光面の回転効率に波長依存性があ
るものの、可視光全域にそこそこの効果(80%以上)
を示し、白色光に適用することも十分可能である。
On the other hand, the % wave plate has a wavelength dependence in the rotation efficiency of the polarization plane, but has a moderate effect (over 80%) over the entire visible light range.
It is also possible to apply it to white light.

上記第1図、第2図及び第7図の実施例で用いられる反
射鏡7は、基板に金属または誘電体多層膜を蒸着したも
の等が用いられるが、これらの他にも第8図に断面図を
示す様な微小な直角プリズムを片面に形成した屈折率f
1以上の透明板を用いることもできる。
The reflecting mirror 7 used in the embodiments shown in FIGS. 1, 2, and 7 above is made of a substrate with a metal or dielectric multilayer film deposited on it. Refractive index f with a minute right-angle prism formed on one side as shown in the cross-sectional view
One or more transparent plates can also be used.

本発明の説明図には、光源に曲面ミラーを使ったビーム
光源を用いたが、レンズを用いたビーム光源であっても
、全(同様であることはいうまでもない。
In the explanatory drawings of the present invention, a beam light source using a curved mirror is used as a light source, but it goes without saying that the same applies to a beam light source using a lens.

[発明の効果] 以上説明した様に、本発明による偏光光源装置は、ラン
ダム偏光の光源から小型の簡単な装置を用いて、明るさ
むらを生ずることなしに直線偏光の光を効率よ(作るこ
とを可能にした。
[Effects of the Invention] As explained above, the polarized light source device according to the present invention efficiently generates linearly polarized light from a randomly polarized light source using a small and simple device without causing uneven brightness. made it possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第7図はいずれも本発明の偏光光源
装置の平面図である。 第3図は本発明の偏光光源装置の斜視図である。 第4図は比較例の偏光光源装置の平面図である。 第5図及び第6図はいずれもプリズムを形成した透明板
における光通過状態を示す図である。 第8図は反射鏡の一例を示す断面図である。 第3図 1.2・・・プリズムを形成した透明板、3・・・%波
長板、 4・・・プリズム型偏光ビームスプリッタ−5・・・光
源、   6・・・曲面鏡、7・・・反射鏡、 8・・・ミラー型偏光ビームスプリッタ−第4図
1, 2, and 7 are all plan views of the polarized light source device of the present invention. FIG. 3 is a perspective view of the polarized light source device of the present invention. FIG. 4 is a plan view of a polarized light source device of a comparative example. FIG. 5 and FIG. 6 are both diagrams showing the state of light passing through a transparent plate in which a prism is formed. FIG. 8 is a sectional view showing an example of a reflecting mirror. Figure 3 1.2...Transparent plate with prism formed, 3...% wavelength plate, 4...Prism type polarizing beam splitter-5...Light source, 6...Curved mirror, 7...・Reflector, 8...Mirror type polarizing beam splitter - Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、該光源から発せられる光を2方向に分岐
するプリズムと、該分岐手段からの2つの分岐光のそれ
ぞれについてp偏光成分光及びs偏光成分光の一方を反
射させ且つ他方を透過させる偏光ビームスプリッターと
、該偏光ビームスプリッターからの反射光及び透過光の
うちの一方を偏光面の90°回転を伴って透過させるに
波長板と、上記偏光ビームスプリッターによって分けら
れて得られた4つの光を通過させ合成させるため片面に
プリズム列が形成されている透明板と、該透明板の上記
プリズム列形成面と反対側の面へと上記4つの光を上記
に波長板を透過した光と透過しない光とが重なる様に導
く光反射手段とを有することを特徴とする、偏光光源装
置。
(1) A light source, a prism that splits light emitted from the light source into two directions, and a prism that reflects one of the p-polarized component light and the s-polarized component light and reflects the other of the two branched lights from the splitting means. A polarizing beam splitter that transmits the polarizing beam splitter, a wavelength plate that transmits one of the reflected light and the transmitted light from the polarizing beam splitter with a 90° rotation of the plane of polarization, and a polarizing beam splitter that is divided by the polarizing beam splitter. A transparent plate having a prism array formed on one side to pass and synthesize the four lights, and a wavelength plate that transmits the four lights to the surface of the transparent plate opposite to the surface on which the prism array is formed. A polarized light source device comprising a light reflecting means for guiding light and untransmitted light so that they overlap.
(2)光源と、該光源から発せられる光を2方向に分岐
するプリズムと、該分岐手段からの2つの分岐光のそれ
ぞれについてp偏光成分光及びs偏光成分光の一方を反
射させ且つ他方を透過させる偏光ビームスプリッターと
、該偏光ビームスプリッターからの反射光及び透過光の
うちの一方を偏光面の90°回転を伴って透過させるT
N液晶セルと、上記偏光ビームスプリッターによって分
けられて得られた4つの光を通過させ合成させるため片
面にプリズム列が形成されている透明板と、該透明板の
上記プリズム列形成面と反対側の面へと上記4つの光を
上記TN液晶セルを透過した光と透過しない光とが重な
る様に導く光反射手段とを有することを特徴とする、偏
光光源装置。
(2) A light source, a prism that splits light emitted from the light source into two directions, and a prism that reflects one of the p-polarized component light and the s-polarized component light and reflects the other of the two branched lights from the splitting means. A polarizing beam splitter to transmit, and a T to transmit one of reflected light and transmitted light from the polarizing beam splitter with a 90° rotation of the plane of polarization.
N liquid crystal cell, a transparent plate having a prism row formed on one side for passing and combining the four lights obtained by being separated by the polarizing beam splitter, and a side of the transparent plate opposite to the surface on which the prism row is formed. A polarized light source device comprising: a light reflecting means for guiding the four lights to the plane of the TN liquid crystal cell so that the light that has passed through the TN liquid crystal cell and the light that has not passed through the cell overlap.
JP33664989A 1989-12-26 1989-12-27 Polarized light source Pending JPH03197920A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33664989A JPH03197920A (en) 1989-12-27 1989-12-27 Polarized light source
DE69025924T DE69025924T2 (en) 1989-12-26 1990-12-26 OPTICAL DEVICE FOR GENERATING POLARIZED LIGHT
PCT/JP1990/001699 WO1991010153A1 (en) 1989-12-26 1990-12-26 Optical apparatus for generating polarized light
EP91901553A EP0460241B1 (en) 1989-12-26 1990-12-26 Optical apparatus for generating polarized light
US08/017,968 US5359455A (en) 1989-12-26 1993-02-12 Polarization forming optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33664989A JPH03197920A (en) 1989-12-27 1989-12-27 Polarized light source

Publications (1)

Publication Number Publication Date
JPH03197920A true JPH03197920A (en) 1991-08-29

Family

ID=18301351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33664989A Pending JPH03197920A (en) 1989-12-26 1989-12-27 Polarized light source

Country Status (1)

Country Link
JP (1) JPH03197920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39243E1 (en) 1996-12-18 2006-08-22 Seiko Epson Corporation Optical element, polarization illumination device, and projector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39243E1 (en) 1996-12-18 2006-08-22 Seiko Epson Corporation Optical element, polarization illumination device, and projector
USRE40251E1 (en) 1996-12-18 2008-04-22 Seiko Epson Corporation Optical element, polarization illumination device, and projector

Similar Documents

Publication Publication Date Title
JP7411255B2 (en) Light-guiding optics employing polarized internal reflectors
US5808709A (en) Illuminator with polarization separating anisotropic layer between light guide and reflector
JP2747349B2 (en) Lighting system for liquid crystal display system
US5359455A (en) Polarization forming optical device
US5856855A (en) Edge-lit illumination system containing cholesteric polarizer and diffuser behind waveguide
US5453859A (en) Polarization beam splitter and projection display apparatus
KR950006508A (en) Optical components having phase-forming, color- and polarization-selective reflections, including cholesterol liquid crystals, methods for their preparation and use thereof
KR20040097367A (en) Image display unit
US6078363A (en) Image display apparatus
US6142633A (en) Polarized light illuminator and projection type image display apparatus
JPH03156421A (en) Polarized light source device
US5506642A (en) Projector with plastic mirror
US5900973A (en) Optical polarization device and projection system of liquid crystal valve type utilizing such a device
US6094240A (en) Liquid crystal display polarizing beam splitter with specific incidence angle
JPH03197920A (en) Polarized light source
JPH03196015A (en) Polarized light source device
US20230288706A1 (en) Optical elements for reducing visual artifacts in diffractive waveguide displays and systems incorporating the same
JP6995169B2 (en) 3D image projection device
JPH03157621A (en) Polarization light source
RU2321031C1 (en) Reflecting prism for bringing plane of polarization in rotation
US7180666B2 (en) Polarized light illumination device
JPH04139416A (en) Polarized light generating optical device
JPH0458215A (en) Polarized light generating optical device
JPH0458214A (en) Polarized light generating optical device
US20240036429A1 (en) Electrically controlled optical screen