JPH03197685A - Magnetic fielded microwave plasma device - Google Patents

Magnetic fielded microwave plasma device

Info

Publication number
JPH03197685A
JPH03197685A JP1337913A JP33791389A JPH03197685A JP H03197685 A JPH03197685 A JP H03197685A JP 1337913 A JP1337913 A JP 1337913A JP 33791389 A JP33791389 A JP 33791389A JP H03197685 A JPH03197685 A JP H03197685A
Authority
JP
Japan
Prior art keywords
plasma
substrate
space
control plate
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337913A
Other languages
Japanese (ja)
Inventor
Masahiko Toki
雅彦 土岐
Yasuaki Nagao
長尾 泰明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fujitsu Ltd
Original Assignee
Fuji Electric Co Ltd
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fujitsu Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1337913A priority Critical patent/JPH03197685A/en
Publication of JPH03197685A publication Critical patent/JPH03197685A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To stably form a thin film of the desired film thickness distribution and quality in the magnetic fielded microwave plasma device by arranging a plasma current control plate between a plasma space and a plasma transport space in which plasma is introduced and a substrate to be treated is arranged. CONSTITUTION:In the magnetic fielded microwave plasma device, the wheel- shaped plasma current control plate 18 having radial ribs is arranged between a plasma producing chamber 3 also used as the plasma producing space and microwave resonator, and the plasma transport space 8 in which a substrate 11 to be treated is arranged. A carrier gas such as N2, O2 and Ar in conformity to the purpose is supplied to the chamber 3 from a pipe 4, a microwave is supplied from a waveguide 1, an electron cyclotron resonance is formed in the chamber 3 by an exciting solenoid 6 provided outside to produce plasma, hence the gaseous silane supplied into the space 3 from an inlet pipe 12 is activated, and an Si-based thin film is formed on the substrate 11. In this case, the density of the plasma current in the chamber 3 is uniformized by the control plate 18, and the Si-based thin film uniform in thickness is easily formed on the substrate 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、LSI製造装置に代表される半導体製造装
置のなかでとくに低温成膜を必要とする超LSI成膜工
程に用いる有磁場マイクロ波プラズマ方式の乾式薄膜加
工装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a magnetic field microwave system used in a VLSI film formation process that requires low-temperature film formation in semiconductor manufacturing equipment typified by LSI manufacturing equipment. This invention relates to a plasma type dry thin film processing device.

〔従来の技術〕[Conventional technology]

低温成膜における膜質の向上を目的としてマイクロ波と
磁場との共鳴効果を用いた有磁場マイクロ波プラズマ方
式によるCVD、エツチング装置が研究されている。
For the purpose of improving film quality during low-temperature film formation, research has been conducted on CVD and etching equipment using a magnetic field microwave plasma system that uses the resonance effect of microwaves and a magnetic field.

第4図にこの種の薄膜加工装置の従来の構成例を示す。FIG. 4 shows an example of the conventional configuration of this type of thin film processing apparatus.

プラズマが生成されるプラズマ空間を形成する。マイク
ロ波共撮器を兼ねたプラズマ生成室3と被処理半導体ウ
ェーハが置かれる処理室9とを真空排気しておき、プラ
ズマ生成室3へ目的に応じてN2 + 02 + Ar
等のキャリヤガス(プラズマ生成用ガス)をガス供給手
段4を通じて流したところへマイクロ波を導波管1.マ
イクロ波導入窓2を介して送り込む。プラズマ生成室3
の外部にはプラズマ生成室3を同軸にとり巻く励磁ソレ
ノイド6が配置され、共振器内部にECR(電子サイク
ロトロン共鳴)条件を満たす磁場が発生していると有磁
場マイクロ波プラズマが発生する。このプラズマが開ロ
アから処理室9内に押し出され半導体ウェーハ(以下単
に基板とも記す)11が載置される基板台10へ向かう
プラズマ輸送空間にシランガスをガス供給手段12を通
じて送りこんでこのガスを上記プラズマにより活性化す
ると、発生した活性種の作用により半導体ウェーハ11
の表面にシリコン系薄膜が形成される。
A plasma space is formed in which plasma is generated. The plasma generation chamber 3, which also serves as a microwave co-imaging device, and the processing chamber 9, in which the semiconductor wafer to be processed is placed, are evacuated, and N2 + 02 + Ar is injected into the plasma generation chamber 3 according to the purpose.
A carrier gas (plasma generation gas) such as . The microwave is fed through the microwave introduction window 2. Plasma generation chamber 3
An excitation solenoid 6 coaxially surrounding the plasma generation chamber 3 is disposed outside the resonator, and when a magnetic field satisfying ECR (electron cyclotron resonance) conditions is generated inside the resonator, magnetic field microwave plasma is generated. This plasma is pushed out into the processing chamber 9 from the open lower, and silane gas is fed into the plasma transport space through the gas supply means 12 toward the substrate table 10 on which the semiconductor wafer (hereinafter simply referred to as a substrate) 11 is placed. When activated by plasma, the semiconductor wafer 11 is activated by the action of the generated active species.
A silicon-based thin film is formed on the surface.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような構成の従来装置において、ンレノイドの励磁
電流は、プラズマ生成室3の内部にECR条件を満たす
磁場を形成するように値を設定するのであるが、その値
の取り方によって基板表面に形成される薄膜の膜厚分布
および膜質に変化が生じる。膜厚分布としては直径8イ
ンチのウエノ・面内で不均一度が±5%以内であること
、また膜質としては屈折率、耐ふつ酸エッチレート等が
優れていることが重要であり、従来の装置では一般に所
望の膜厚分布と膜質とを同時に確保することは困難であ
った。
In the conventional device with such a configuration, the excitation current of the lenoid is set to a value so as to form a magnetic field that satisfies the ECR conditions inside the plasma generation chamber 3, but depending on how the value is taken, it may be difficult to form a magnetic field on the substrate surface. Changes occur in the film thickness distribution and film quality of the thin film. It is important that the film thickness distribution be within ±5% of the non-uniformity within the surface of the 8-inch diameter wafer, and that the film quality be excellent in terms of refractive index, hydrofluoric acid etch rate, etc. In general, it is difficult to simultaneously ensure the desired film thickness distribution and film quality with this apparatus.

この発明の目的は、従来装置の構成を大きく変えること
なく、所望の膜厚分布と膜質とが同時に得られる有磁場
マイクロ波プラズマ装置の構成を提供することである。
An object of the present invention is to provide a configuration of a magnetic field microwave plasma apparatus that can simultaneously obtain desired film thickness distribution and film quality without significantly changing the configuration of the conventional apparatus.

磁場とマイクロ波との共鳴効果を用いてプラズマを生成
するプラズマ空間と、プラズマ空間のプラズマが被処理
基板へ向かって流れるプラズマ輸送空間とを備えた有磁
場マイクロ波プラズマ装置を、プラズマが流れるプラズ
マ輸送空間にプラズマ流の断面中プラズマ密度が最も高
い部分を被処理基板から遮蔽する制御板が配された構成
とするものとする。
A magnetic field microwave plasma device is equipped with a plasma space that generates plasma using the resonance effect of a magnetic field and microwaves, and a plasma transport space in which the plasma in the plasma space flows toward the substrate to be processed. A control plate is arranged in the transport space to shield a portion of the cross section of the plasma flow where the plasma density is highest from the substrate to be processed.

〔作用〕[Effect]

有磁場マイクロ波プラズマ装置をこのように構成すると
、被処理基板への薄膜形成時に、(1)ンレノイドの励
磁電流は膜質を重視し良い膜質が得られるように選ぶ。
When the magnetic field microwave plasma apparatus is configured in this way, when forming a thin film on the substrate to be processed, (1) the excitation current of the nlenoid is selected with emphasis on film quality so that good film quality can be obtained;

(2)制御板により生じつる被処理基板上の膜質分布の
不均一を補償するため、成膜時のガス圧は従来の装置に
比べて高くとる。
(2) In order to compensate for non-uniform film quality distribution on the substrate to be processed caused by the control plate, the gas pressure during film formation is set higher than in conventional equipment.

(3)制御板により生じうる膜質の低下を補償するため
に被処理基板にはRFバイアスを印加する。
(3) Apply an RF bias to the substrate to be processed to compensate for the deterioration in film quality that may occur due to the control board.

等の運転モードとすることにより、所望の膜厚分布と膜
質とを同時に得ることができる。すなわち、膜質を重視
して励磁電流を設定すると、励磁ソレノイドが形成する
磁力線に沿ってプラズマ輸送空間を流れるプラズマ流内
のプラズマ密度は、プラズマ流断面の中央部で大きく半
径方向に小さくなる分布となり、制御板が無い場合に膜
成長速度が著しく大きくなる被処理基板中央部は、プラ
ズマ流の中央部が制御板により被処理基板から遮蔽され
ているために、制御板背面側中央部のプラズマ密度が稀
薄となり、まわりのプラズマがこの稀薄となった領域へ
拡散しつつ磁力線に沿って次第にプラズマ密度を増して
行くため、プラズマ流が被処理基板に到達した時点では
周辺と同じようなプラズマ密度となり、形成される薄膜
の膜厚分布が均一化する。従って、成膜時のガス圧を高
くとり、かつ被処理基板にRFバイアスを印加すること
により、膜質のよい、膜厚分布の均一な薄膜を形成する
ことができ、しかもガス圧が高いことから成膜速度も向
上する効果が得られる。
By using such operation modes, desired film thickness distribution and film quality can be obtained at the same time. In other words, if the excitation current is set with emphasis on film quality, the plasma density in the plasma flow flowing through the plasma transport space along the lines of magnetic force formed by the excitation solenoid will be distributed such that it becomes larger in the center of the plasma flow cross section and becomes smaller in the radial direction. , in the center of the substrate to be processed, where the film growth rate increases significantly when there is no control plate, because the center of the plasma flow is shielded from the substrate to be processed by the control plate, the plasma density at the center of the back side of the control plate is lower. becomes diluted, and the surrounding plasma diffuses into this diluted region and gradually increases the plasma density along the magnetic field lines, so when the plasma flow reaches the substrate to be processed, it has the same plasma density as the surrounding area. , the thickness distribution of the formed thin film becomes uniform. Therefore, by increasing the gas pressure during film formation and applying an RF bias to the substrate to be processed, it is possible to form a thin film with good film quality and uniform thickness distribution. The effect of increasing the film formation rate can also be obtained.

〔実施例〕〔Example〕

第1図に本発明の有磁場マイクロ波プラズマ装置に用い
られる制御板構造のいくつかの実施例を示す。同図AI
 、A2.A3は、放射状にリブを有する車輪状の制御
板構造を示し、AI、A2はいずれも単一の素材1例え
ばアルミ、酸化アルミ等で作製した制御板を、またA3
は、外周縁側をアルミ。
FIG. 1 shows several embodiments of control plate structures used in the magnetic field microwave plasma apparatus of the present invention. Same figure AI
, A2. A3 shows a wheel-shaped control plate structure with radial ribs, and AI and A2 both have control plates made of a single material 1, such as aluminum or aluminum oxide.
The outer edge side is aluminum.

内側を酸化アルミで作製した制御板を示す。この構造に
よれば、プラズマ流の断面中プラズマ密度が最も高くな
る部分を被処理基板から遮蔽する部分が制御板の中央部
に形成され、また各リブ相互間に形成される三角形状の
孔はその周方向長さの合計がリブの幅によって減少する
割合が中央部に近いほど大きくなり、膜質分布をより一
層均−化する働きをする。また、車輪の輪の半径方向の
幅やリブの周方向の幅と数などは、プロセス条件に応じ
て最適のものを選択して用いる。
This shows a control board whose inside is made of aluminum oxide. According to this structure, a part that shields the part where the plasma density is highest in the cross section of the plasma flow from the substrate to be processed is formed in the center of the control board, and the triangular holes formed between each rib are The rate at which the total length in the circumferential direction is reduced by the width of the rib increases as it approaches the center, and serves to further equalize the film quality distribution. Further, the radial width of the wheel ring, the circumferential width and number of ribs, etc. are selected and used optimally depending on the process conditions.

第1図Bl、B2.B3は中央部に円形の遮蔽部が形成
され、またこの遮蔽部を挾んで半円の円弧状長孔が1つ
の全円状に形成され、さらにその外側に次々に同心のリ
ング幅を介しつつ半円の円弧状長孔がその突合わせ位置
を90°づつ変えかつ孔幅を広げながら形成された制御
板構造を示す。ここで、Bl、B2はいずれも単一の素
材2例えばアルミ。
Figure 1 Bl, B2. In B3, a circular shielding part is formed in the center, and a semicircular arc-shaped long hole is formed in one full circular shape sandwiching this shielding part, and furthermore, concentric ring widths are formed one after another on the outside. This figure shows a control plate structure in which semicircular arcuate long holes are formed by changing their abutting positions in 90° increments and widening the hole width. Here, Bl and B2 are both a single material 2, such as aluminum.

酸化アルミ等で作製した制御板を、またB3は外周縁側
をアルミ、内側を酸化アルミで作製した制御板を示す。
B3 shows a control plate made of aluminum oxide, etc., and B3 shows a control plate made of aluminum on the outer peripheral edge side and aluminum oxide on the inside.

この構造の場合にも、中央の遮蔽部に近いほど、同心の
リング幅によりプラズマ流の通過面積が減る割合が大き
くなり、膜厚分布が効果的に均一化される。
In the case of this structure as well, the closer to the central shielding part, the greater the rate at which the plasma flow passage area is reduced due to the concentric ring width, and the film thickness distribution is effectively made uniform.

第2図に、第1図のように形成された制御板が配された
有磁場マイクロ波プラズマ装置構成の一実施例を示す。
FIG. 2 shows an embodiment of the configuration of a magnetic field microwave plasma apparatus in which a control plate formed as shown in FIG. 1 is arranged.

図中、第4図と同一の部材には同一符号を付し、説明を
省略する。この実施例では、制御板18は、従来装置(
第4図)における、単純な円形の孔が形成されたアパー
チャ17の位置にアパーチャに代って取り付けられ、装
置の構成を実質的に変えることなく膜厚分布の均一化を
可能にしている。
In the figure, the same members as in FIG. 4 are designated by the same reference numerals, and their explanations will be omitted. In this embodiment, the control board 18 is a conventional device (
A simple circular hole is installed in place of the aperture 17 in FIG. 4), making it possible to make the film thickness distribution uniform without substantially changing the configuration of the device.

第3図はこの発明を、プラズマ室と処理室との2室構造
をとらないでプラズマ空間とプラズマ輸送空間とが1つ
の空間のごとく連続した有磁場マイクロ波プラズマ装置
に適用した場合の装置構成の一実施例を示す。この装置
は、導波管21の端部に形成され励磁ソレノイド26に
よりとり囲まれたマイクロ波共振器内に誘電体からなる
ベルジャnを挿入し、このベルジャnの下方の開放端側
に被処理基板31が配される真空チャンバ四を結合した
ものであり、N2+02+Ar等のキャリアガス(プラ
ズマ生成用ガス)をガス供給手段24を通じて流したと
ころへマイクロ波を導波管21を介して共振器内に送り
込み、励磁コイルあにより共振器内にECR条件を満た
す磁場を形成させると、ベルジャn内部のプラズマ空間
乙に有磁場マイクロ波プラズマが発生し、このプラズマ
は励磁ソレノイド26が形成する磁力線に沿いプラズマ
空間羽と被処理基板31との間のプラズマ輸送空間を被
処理基板31へ向かって流れる。制御板37は第2図の
実施例の場合と同様、プラズマ空間からプラズマ輸送空
間へのほぼ移行領域に配され、装置の構成は従来と比べ
大きく変わることはない。
Figure 3 shows an apparatus configuration in which the present invention is applied to a magnetic field microwave plasma apparatus in which the plasma space and the plasma transport space are continuous as if they were one space, instead of having a two-chamber structure of a plasma chamber and a processing chamber. An example is shown below. In this device, a bell jar n made of a dielectric material is inserted into a microwave resonator formed at the end of a waveguide 21 and surrounded by an excitation solenoid 26, and the lower open end side of the bell jar n is to be treated. It is a combination of four vacuum chambers in which a substrate 31 is arranged, and a carrier gas (plasma generation gas) such as N2+02+Ar is passed through a gas supply means 24, and microwaves are passed through a waveguide 21 into the resonator. When a magnetic field that satisfies the ECR conditions is formed in the resonator using the excitation coil A, a magnetic field microwave plasma is generated in the plasma space B inside the Belljar, and this plasma follows the magnetic field lines formed by the excitation solenoid 26. The plasma flows toward the substrate 31 to be processed through the plasma transport space between the plasma space vane and the substrate 31 to be processed. As in the case of the embodiment shown in FIG. 2, the control plate 37 is disposed almost in the transition region from the plasma space to the plasma transport space, and the configuration of the apparatus is not significantly different from the conventional one.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明においては、磁場とマイク
ロ波との共鳴効果を用いてプラズマを生成するプラズマ
空間と、プラズマ空間のプラズマが被処理基板へ向かっ
て流れるプラズマ輸送空間とを備えた有磁場マイクロ波
プラズマ装置を、プラズマが流れるプラズマ輸送空間に
プラズマ流の断面中プラズマ密度が最も高い部分を被処
理基板から遮蔽する制御板が配された構成としたので、
プラズマ空間に磁場を形成する励磁ソレノイドの励磁電
流を、被処理基板上に良好な膜質が得られる値に設定し
てプラズマ輸送空間を流れるプラズマ流のプラズマ密度
をプラズマ流断面の中央部で高く半径方向に小さくなる
分布としても、プラズマ密度の高い中央部は制御板によ
り流れを遮ぎられるから、制御板背面側中央部に形成さ
れた。プラズマ密度の稀薄な領域へまわりのプラズマが
拡散しつつ磁力線に沿って次第にプラズマ密度を増して
行く流れが形成され、プラズマ流が被処理基板に到達し
た時点では基板上のプラズマ密度が均一化され、膜厚の
より均一な薄膜が形成される。
As described above, the present invention includes a plasma space that generates plasma using the resonance effect of a magnetic field and microwaves, and a plasma transport space in which plasma in the plasma space flows toward the substrate to be processed. The magnetic field microwave plasma apparatus has a configuration in which a control plate is disposed in the plasma transport space where plasma flows to shield the part of the cross section of the plasma flow where the plasma density is highest from the substrate to be processed.
The excitation current of the excitation solenoid that forms a magnetic field in the plasma space is set to a value that provides good film quality on the substrate to be processed, and the plasma density of the plasma flow flowing through the plasma transport space is set to a high radius in the center of the plasma flow cross section. Even if the distribution decreases in the direction, the flow is blocked by the control plate in the central part where the plasma density is high, so it is formed in the central part on the back side of the control board. A flow is formed that gradually increases the plasma density along the lines of magnetic force while the surrounding plasma diffuses into an area with low plasma density, and when the plasma flow reaches the substrate to be processed, the plasma density on the substrate is uniform. , a thin film with a more uniform thickness is formed.

また、プラズマ流断面の中央部を遮蔽することによる膜
質の低下は、ガス圧を高くとり、かつ被処理基板にRF
バイアスを印加する等の運転モードとすることにより補
償され、装置の構成を大きく変えることなく、低温成膜
において膜厚が均一で膜質の良い薄膜を基板上に形成す
ることができる。
In addition, deterioration of film quality due to shielding the central part of the plasma flow cross section is caused by increasing the gas pressure and applying RF to the substrate to be processed.
This is compensated for by using an operating mode such as applying a bias, and a thin film with uniform thickness and good quality can be formed on a substrate at low temperature without significantly changing the configuration of the apparatus.

また、ガス圧を高くとることによる成膜速度の向上も合
わせて得られる効果がある。
In addition, there is also the effect of increasing the film formation rate by increasing the gas pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の有磁場マイクロ波プラズマ装置に用い
られる制御板構造の2系列の実施例を示す説明図、第2
図および第3図はそれぞれ、第1図に示すごとき構造の
制御板を有する有磁場マイクロ波プラズマ装置の縦断面
図、第4図は従来の有磁場マイクロ波プラズマ装置の構
成例を示す縦断面3である。 1.21・・・導波管、3・・・プラズマ生成室(プラ
ズマ空間)、6,26・・・励磁ソレノイド、8・・・
プラズマ輸送空間、11 、31・・・基板(被処理基
板)、18 、37・・・制御板、田・・・プラズマ空
間。 1 1 Z 2 3 3 夢 図 第 図 第 図
FIG. 1 is an explanatory diagram showing two series of embodiments of the control plate structure used in the magnetic field microwave plasma apparatus of the present invention;
3 and 3 are respectively longitudinal cross-sectional views of a magnetic field microwave plasma device having a control plate having the structure shown in FIG. 1, and FIG. 4 is a vertical cross-sectional view showing an example of the configuration of a conventional magnetic field microwave plasma device. It is 3. 1.21... Waveguide, 3... Plasma generation chamber (plasma space), 6, 26... Excitation solenoid, 8...
Plasma transport space, 11, 31...Substrate (substrate to be processed), 18, 37...Control board, field...Plasma space. 1 1 Z 2 3 3 Dream diagram diagram diagram

Claims (1)

【特許請求の範囲】[Claims] 1)磁場とマイクロ波との共鳴効果を用いてプラズマを
生成するプラズマ空間と、プラズマ空間のプラズマが被
処理基板へ向かって流れるプラズマ輸送空間とを備えた
有磁場マイクロ波プラズマ装置において、プラズマが流
れるプラズマ輸送空間にプラズマ流の断面中プラズマ密
度が最も高い部分を被処理基板から遮蔽する制御板が配
され、被処理基板に到達するプラズマの被処理基板上密
度分布が均一となるようにプラズマの流れが制御される
ことを特徴とする有磁場マイクロ波プラズマ装置。
1) In a magnetic field microwave plasma device equipped with a plasma space that generates plasma using the resonance effect of a magnetic field and microwaves, and a plasma transport space in which the plasma in the plasma space flows toward the substrate to be processed, the plasma is generated. A control plate is arranged in the flowing plasma transport space to shield the part of the cross section of the plasma flow where the plasma density is highest from the substrate to be processed. A magnetic field microwave plasma device characterized in that the flow of is controlled.
JP1337913A 1989-12-26 1989-12-26 Magnetic fielded microwave plasma device Pending JPH03197685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337913A JPH03197685A (en) 1989-12-26 1989-12-26 Magnetic fielded microwave plasma device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337913A JPH03197685A (en) 1989-12-26 1989-12-26 Magnetic fielded microwave plasma device

Publications (1)

Publication Number Publication Date
JPH03197685A true JPH03197685A (en) 1991-08-29

Family

ID=18313173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337913A Pending JPH03197685A (en) 1989-12-26 1989-12-26 Magnetic fielded microwave plasma device

Country Status (1)

Country Link
JP (1) JPH03197685A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689875A (en) * 1992-09-08 1994-03-29 Mitsubishi Electric Corp Plasma reaction equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689875A (en) * 1992-09-08 1994-03-29 Mitsubishi Electric Corp Plasma reaction equipment

Similar Documents

Publication Publication Date Title
US5242539A (en) Plasma treatment method and apparatus
US5505780A (en) High-density plasma-processing tool with toroidal magnetic field
US6422172B1 (en) Plasma processing apparatus and plasma processing method
US6497783B1 (en) Plasma processing apparatus provided with microwave applicator having annular waveguide and processing method
US6870123B2 (en) Microwave applicator, plasma processing apparatus having same, and plasma processing method
US5591268A (en) Plasma process with radicals
JP2570090B2 (en) Dry etching equipment
JP2004506339A (en) Externally excited toroidal plasma source
US5916820A (en) Thin film forming method and apparatus
JP3640204B2 (en) Plasma processing apparatus and plasma processing method
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JPH1074600A (en) Plasma processing equipment
JPS61213377A (en) Method and apparatus for plasma deposition
US5292395A (en) ECR plasma reaction apparatus having uniform magnetic field gradient
US5433788A (en) Apparatus for plasma treatment using electron cyclotron resonance
JP2524461B2 (en) High density plasma processing equipment
JPH11204297A (en) Plasma treating device and plasma treating method
JPH03197685A (en) Magnetic fielded microwave plasma device
JP2000150472A (en) Plasma process device
JPH0250429A (en) Plasma processing apparatus
EP0997927A2 (en) Microwave applicator with annular waveguide, plasma processing apparatus having the same, and plasma processing method
JPH0717147Y2 (en) Plasma processing device
JP2953222B2 (en) Microwave plasma processing equipment
JPH0896990A (en) Plasma treatment device and plasma treatment method
JP3796265B2 (en) Plasma processing method, plasma processing apparatus, semiconductor device manufacturing method, and microwave dispersion plate