JPH03197640A - High purity tantalum material and its production and tantalum target using the same - Google Patents

High purity tantalum material and its production and tantalum target using the same

Info

Publication number
JPH03197640A
JPH03197640A JP33480589A JP33480589A JPH03197640A JP H03197640 A JPH03197640 A JP H03197640A JP 33480589 A JP33480589 A JP 33480589A JP 33480589 A JP33480589 A JP 33480589A JP H03197640 A JPH03197640 A JP H03197640A
Authority
JP
Japan
Prior art keywords
tantalum
target
high purity
purity
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33480589A
Other languages
Japanese (ja)
Other versions
JP3031474B2 (en
Inventor
Minoru Obata
稔 小畑
Yoshiko Kobanawa
小塙 佳子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1334805A priority Critical patent/JP3031474B2/en
Publication of JPH03197640A publication Critical patent/JPH03197640A/en
Application granted granted Critical
Publication of JP3031474B2 publication Critical patent/JP3031474B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high purity Ta material usable for semiconductor device by melting Ta refined by an iodide decomposition method in high vacuum. CONSTITUTION:Ta is refined by an iodide decomposition method. This Ta is melted in high vacuum of <=5X10<-5>mbar, by which a high purity Ta material in which oxygen content is regulated to <=50ppm and also the contents of Fe, Ni, and Cr are regulated to <=0.05ppm, respectively, is obtained. If the Ta refined by an iodide decomposition method is further refined by an electron beam melting method, a high purity Ta ingot minimal in contamination with oxygen and nitrogen can be prepared. By using this Ta material, a Ta target of arbitrary shape can be produced.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体装置に使用される高純度タンタルとそ
の製造方法及びそれを用いたスパッタターゲットに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to high-purity tantalum used in semiconductor devices, a manufacturing method thereof, and a sputter target using the same.

(従来の技術) 現在、VLSIの蓄積キャパシタ材料として、SiO□
に代わり酸化タンタル(ra2os)薄膜が検討されて
いる。Ta、0.はSiO□に比べ約6倍の比誘電率を
持つので、キャパシタ面積を小さくすることができる。
(Prior art) Currently, SiO□ is used as storage capacitor material for VLSI.
Instead, tantalum oxide (RA2OS) thin films are being considered. Ta, 0. has a dielectric constant about six times that of SiO□, so the capacitor area can be reduced.

しかしTa、 O,はSin、に比ベリーク電流が大き
い、あるいは薄膜化したときに実効的な比誘電率が下が
ってしまう5等の理由から、これまで使われなかった。
However, Ta, O, and O have not been used until now because they have a larger leakage current than Sin, or because the effective dielectric constant decreases when the film is made thinner.

 このTa2O,薄膜は反応性スパッタリング法、CV
D法などにより成膜されるが、反応性スパッタリングの
場合には、タンクルターゲットを用いてアルゴン、酸素
混合気体中スパッタリングを行ない成膜される。
This Ta2O thin film was produced by reactive sputtering method, CV
The film is formed by method D or the like, but in the case of reactive sputtering, the film is formed by sputtering in a mixed gas of argon and oxygen using a tank target.

一方VLSIの電極材料として、Mo、 Wなどの高融
点金属シリサイドが使われてきているが、次期の電極材
料としてTaシリサイドが検討されてきているeTaシ
リサイド膜を形成するには、いくつかの方法があるが、
多結晶シリコン上にTa膜をつけ、その後シリコンとT
aを反応させ自己整合的にTaシサイドを形成する際に
は、純Taターゲットが使われる。
On the other hand, high melting point metal silicides such as Mo and W have been used as electrode materials for VLSIs, but Ta silicide is being considered as the next electrode material.There are several methods to form eTa silicide films. There is, but
A Ta film is applied on polycrystalline silicon, and then silicon and T
A pure Ta target is used when reacting a to form Ta oxide in a self-aligned manner.

一般にVLSIに用いられる金属材料中の次のような不
純物は素子に悪影響を及ぼすので、高純度であることが
要求される。
Generally, the following impurities in metal materials used in VLSI devices have a negative effect on the device, so they are required to be highly pure.

a、 Na、 K等のアルカリ金属(界面特性の劣化)
b、U、Th等の放射性元素(ソフトエラー)c、 F
e、 Cr等の重金属(界面接合のトラブル)ところで
、現在工業的に製造されているタンタルターゲットは、
電解法などにより精製したタンタルを溶解してタンタル
インゴットとし、それをターゲットに加工している。し
かしながら、上述の元素を多量に含有しているためLS
I用としては使用できない。これらの元素は極微量でも
素子の特性に悪影響を及ぼすので、さらにタンタルを高
純度化し、これを用いたタンタルターゲットを製造mす
る必要があった。
Alkali metals such as a, Na, and K (deterioration of interfacial properties)
b, radioactive elements such as U, Th (soft errors) c, F
Heavy metals such as e, Cr (problems with interfacial bonding) By the way, the tantalum targets currently manufactured industrially are:
Tantalum refined by electrolytic methods is melted into tantalum ingots, which are then used as targets for processing. However, because it contains large amounts of the above-mentioned elements, LS
It cannot be used for I. Since even trace amounts of these elements adversely affect the characteristics of the device, it was necessary to further purify tantalum and manufacture tantalum targets using it.

(発明が解決しようとする課題) 従来の技術で製造したタンタルは不純物濃度が高く、L
SI用材料として使用できない。そこで、本発明では半
導体装置に使用可能な高純度タンタル材とその製造方法
及びそれを用いたタンタルターゲットを提供することを
目的とする。
(Problem to be solved by the invention) Tantalum manufactured using conventional technology has a high impurity concentration and
Cannot be used as SI material. Therefore, an object of the present invention is to provide a high-purity tantalum material that can be used in semiconductor devices, a method for manufacturing the same, and a tantalum target using the same.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) すなわち、本発明は、酸素含有量が50ppm以下、鉄
、ニッケル、クロムの各元素の含有量が0、05ppm
以下であることを特徴とする高純度タンタル材及びこれ
を用いたタンクルターゲットである。
(Means for Solving the Problems) That is, the present invention has an oxygen content of 50 ppm or less, and a content of each element of iron, nickel, and chromium of 0.05 ppm.
A high purity tantalum material and a tankle target using the same, characterized by the following:

さらに本発明は、この高純度タンタル材の製造方法であ
って、ヨウ化物分解法により精製したタンタルを5×1
0″” mbar以下の真空中で溶解することを特徴と
する高純度タンタル材の製造方法である。
Furthermore, the present invention provides a method for producing this high-purity tantalum material, in which tantalum purified by an iodide decomposition method is
This is a method for producing high-purity tantalum material, which is characterized by melting in a vacuum of 0"" mbar or less.

(作用) LSIの集積度の上昇、素子の微細化に対応して、電気
抵抗の増大による信号遅延が問題になってきている。こ
のようなことを背景に、次期電極材料は、電気抵抗が低
いことが求められる。ところで、高融点金属シリサイド
膜中の酸素は、電気抵抗を増加させる。特に近年、成膜
プロセス中の汚染が非常に少なくなり、ターゲット中の
不純物がそのまま膜中の不純物濃度に反映するようにな
ってきている。そこで我々は、Taターゲット中の酸素
濃度と反応性Taシリサイド膜の比抵抗の関係を詳細に
調べた。
(Function) In response to the increase in the degree of integration of LSIs and the miniaturization of elements, signal delay due to an increase in electrical resistance has become a problem. Against this background, next-generation electrode materials are required to have low electrical resistance. By the way, oxygen in the high melting point metal silicide film increases electrical resistance. Particularly in recent years, contamination during the film formation process has become extremely low, and impurities in the target are now directly reflected in the impurity concentration in the film. Therefore, we investigated in detail the relationship between the oxygen concentration in the Ta target and the resistivity of the reactive Ta silicide film.

まず多結晶シリコン上に0.1−のTa−一一一一膜を
成膜し1000℃でランプアニールしTaシリサイド膜
を形成した。Taターゲットの酸素濃度は、それぞれ3
0ppm、 50ppm、 1100pp、 250p
pm、 400ppmである。他の不純物は、はぼ同等
の濃度である。このようにして成膜したTaシリサイド
膜の比抵抗と酸素濃度の関係を示したのが、第1図であ
る。この結果から明らかなように酸素を100pp+m
以上含むと比抵抗が酸素濃度の増加とともに高くなる。
First, a 0.1 - Ta-1111 film was formed on polycrystalline silicon and lamp annealed at 1000° C. to form a Ta silicide film. The oxygen concentration of the Ta target is 3
0ppm, 50ppm, 1100pp, 250p
pm, 400 ppm. Other impurities are at approximately equivalent concentrations. FIG. 1 shows the relationship between the resistivity and oxygen concentration of the Ta silicide film formed in this manner. As is clear from this result, oxygen was added at 100pp+m
If it is included above, the specific resistance increases as the oxygen concentration increases.

このように、反応性Taシリサイド膜の比抵抗を低く抑
えるには、Taターゲット中の酸素濃度は、50ppm
以下でなければならない。
In this way, in order to keep the specific resistance of the reactive Ta silicide film low, the oxygen concentration in the Ta target should be 50 ppm.
Must be less than or equal to

一方Sin、に代わる蓄積キャパシタ材料としてTa2
O,を用いる場合、最も大きい問題は、リーク電流が大
きい点である。最近リーク電流がターゲット中の不純物
濃度と関連のあることがわかってきた。特に膜厚が非常
に薄くなってきた場合に、微量不純物の影響が顕著にな
ってくる。そこでリーク電流に与える重金属不純物の影
響について調べるため、製造プロセスの異なる3種類の
ターゲットを用いて反応性スパッタによりTa、Os薄
膜を作製した。それぞれの鉄、ニッケル、クロムの濃度
を第1表に示す。
On the other hand, Ta2 is used as a storage capacitor material instead of Sin.
The biggest problem when using O, is that the leakage current is large. Recently, it has been found that leakage current is related to the impurity concentration in the target. Particularly when the film thickness becomes very thin, the influence of trace impurities becomes noticeable. Therefore, in order to investigate the influence of heavy metal impurities on leakage current, Ta and Os thin films were fabricated by reactive sputtering using three types of targets with different manufacturing processes. Table 1 shows the respective concentrations of iron, nickel, and chromium.

第1表 この第1表に示した以外の元素の濃度はA、B。Table 1 The concentrations of elements other than those shown in Table 1 are A and B.

C共にほぼ同等である。またその膜厚は、すべて約15
nmとした。このそれぞれの膜の電界とリーク電流密度
の関係を第2図に示す。鉄、ニッケル。
Both C and C are almost equivalent. The thickness of all films is approximately 15
It was set as nm. FIG. 2 shows the relationship between the electric field and leakage current density of each film. iron, nickel.

クロムの濃度が最も低いターゲットAを用いて成膜した
Ta2O,は、ターゲットB、Cを用いたものに比べて
リーク電流が極めて低く重金属元素の低減が、リーク電
流を抑えるのに有効であり、それぞれの濃度を0.05
PPIl以下とする必要がある。
The Ta2O film formed using target A, which has the lowest concentration of chromium, has an extremely low leakage current compared to those using targets B and C. Reduction of heavy metal elements is effective in suppressing leakage current. Each concentration is 0.05
It is necessary to keep it below PPIl.

このようにVLSI用のタンタルターゲットは、ナトリ
ウム、カリウムおよびウラン、トリウムの低減も重要で
あるが、酸素9重金属元素の濃度も低くしなければなら
ない、こうした仕様を満たす高純度ターゲットは以下の
ようなプロセスにより製造することができる。
In this way, it is important for tantalum targets for VLSI to reduce sodium, potassium, uranium, and thorium, but it is also important to reduce the concentration of oxygen9 heavy metal elements.High-purity targets that meet these specifications are as follows. It can be manufactured by a process.

上述のような高純度タンクルターゲットは、ヨウ化物分
解法と電子ビーム溶解を組み合わせることにより製造し
た高純度タンタル材より得ることができる。このヨウ化
物分解法は化学輸送法の一種であり、タンタルをはじめ
チタ、ン、ジルコニウム、ハフニウム等の活性金属の精
製に使用される方法である。精製は次式〇、■の反応を
利用して行われる。
A high-purity tantalum target as described above can be obtained from a high-purity tantalum material produced by a combination of iodide decomposition and electron beam melting. This iodide decomposition method is a type of chemical transport method, and is a method used for purifying active metals such as tantalum, titanium, zirconium, hafnium, etc. Purification is carried out using the reactions of the following formulas 〇 and ②.

Ta   + 5/2 I2  →  Tal5 (3
00〜700℃) ■Tal5   →Ta + 5/
2 I2 (80(1〜1500℃) ■すなわち、タ
ンタルはヨウ素と300〜700℃の温度でTaI、を
生成する(0式)、さらにTaI、は800〜1500
℃の高温で前記0式に示すようにタンタルとヨウ素に分
解する性質を有する。第3図は、このヨウ化物分解法に
よる高純度タンタルの製造装置の一例である図中の1は
、原料のタンタル4とヨウ素5を収容する反応容器であ
る。2はフィラメントであり、7a、7bの接続子を介
して電源6に接続され、通電加熱により800〜150
0℃の温度に加熱される。反応容器全体は恒温槽3の中
に入れられ、300〜700℃に保持される。この温度
範囲においては、前述のように0式の反応によって、タ
ンタルとヨウ素が反応してTa1.を生成する。 Ta
l5はフィラメント上で0式に従いヨウ素とタンタルに
分解し、フィラメント上にタンタルが析出し、ヨウ素は
再び原料のタンタルと反応してタンタルをフィラメント
上に運ぶ。この際に、原料のタンタル中の不純物はタン
タルよりヨウ素との反応性が低いため原料中に残存し、
原理的には純粋なタンタルのみがフィラメント上に運ば
れる2ヨウ化物分解法による高純度タンタルは、このよ
うな原理で精製が行われる。各種金属ヨウ化物の蒸気圧
は温度に大きく依存し、タンタルヨウ化物の生成温度(
300〜700℃)においてはNa + K * U 
+丁り、 Fe。
Ta + 5/2 I2 → Tal5 (3
00~700℃) ■Tal5 → Ta + 5/
2 I2 (80 (1 to 1500°C)) ■That is, tantalum produces TaI with iodine at a temperature of 300 to 700°C (formula 0), and TaI is 800 to 1500°C.
It has the property of decomposing into tantalum and iodine at a high temperature of °C as shown in the above formula 0. FIG. 3 shows an example of an apparatus for producing high-purity tantalum using this iodide decomposition method. Reference numeral 1 in the figure is a reaction vessel containing tantalum 4 and iodine 5 as raw materials. 2 is a filament, which is connected to the power source 6 through the connectors 7a and 7b, and is heated to a temperature of 800 to 150 by heating with electricity.
It is heated to a temperature of 0°C. The entire reaction vessel is placed in a constant temperature bath 3 and maintained at a temperature of 300 to 700°C. In this temperature range, as mentioned above, tantalum and iodine react by the reaction of equation 0, resulting in Ta1. generate. Ta
l5 decomposes into iodine and tantalum on the filament according to the formula 0, tantalum is precipitated on the filament, and the iodine reacts with the raw material tantalum again to transport tantalum onto the filament. At this time, impurities in the raw material tantalum remain in the raw material because they have lower reactivity with iodine than tantalum.
High-purity tantalum is purified by the diiodide decomposition method, in which only pure tantalum is transported onto the filament, based on this principle. The vapor pressure of various metal iodides greatly depends on temperature, and the formation temperature of tantalum iodide (
300-700℃), Na + K * U
+Ding, Fe.

Crのヨウ化物の蒸気圧は非常に低くこれより精製効果
が高くなる。
The vapor pressure of Cr iodide is very low and the purification effect is higher than this.

一方、電子ビーム溶解法は、蒸気圧の差を利用して不純
物を分離する方法である。特に蒸気圧の高いナトリウム
、カリウムなどは精製効果が高い。
On the other hand, the electron beam melting method is a method of separating impurities using a difference in vapor pressure. Particularly effective in refining substances such as sodium and potassium, which have high vapor pressure.

前述したヨウ化物分解法で精製されたチタンは、電子ビ
ーム溶解によりさらに精製される。溶解は。
Titanium purified by the iodide decomposition method described above is further purified by electron beam melting. As for dissolution.

5 X 10−’+mbar以下の高真空中で行われる
ため酸素や窒素による汚染も少なく高純度のタンタルイ
ンドに仕上げる。
Since the process is carried out in a high vacuum of 5 x 10-'+mbar or less, there is little contamination by oxygen or nitrogen, resulting in highly pure tantalum ind.

(実施例) 第3図に示すハステロイ製の反応容器内に原料として市
販のタンタルとヨウ素を入れ、約550℃に加熱した恒
温槽の中にいれた。直径2.0mのタンタル製フィラメ
ントを直接通電加熱により約1000℃に加熱しフィラ
メント上にタンタルを析出させた。105時間後フィラ
メントが直径25amまで成長した。このようにして製
造した高純度タンタルをI X 10−’mbarの真
空中で電子ビーム溶解を行ないさらに精製した。その後
鍛造9撮械加工によりターゲットに仕上げた。原料、ヨ
ウ化物分解法後、電子ビーム溶解後の分析値を第2表に
示す。
(Example) Commercially available tantalum and iodine as raw materials were placed in a Hastelloy reaction vessel shown in FIG. 3, and placed in a constant temperature bath heated to about 550°C. A tantalum filament with a diameter of 2.0 m was heated to about 1000° C. by direct current heating to precipitate tantalum on the filament. After 105 hours, the filament had grown to a diameter of 25 am. The high purity tantalum thus produced was further purified by electron beam melting in a vacuum of I x 10 mbar. After that, it was finished into a target by forging 9-photo machining. Table 2 shows the analytical values for the raw materials, after iodide decomposition, and after electron beam melting.

(以下余白) この表に示されているように、ヨウ化物分解法と電子ビ
ーム溶解とを組合わせることにより、各々の元素の含有
量を大幅に低減することができる。
(Left below) As shown in this table, by combining the iodide decomposition method and electron beam melting, the content of each element can be significantly reduced.

次いでこのターゲットを用いて多結晶シリコン上に0.
1zのTa薄膜をスパッタリング法により成膜し100
0℃でランプアニールしTaシリサイド膜を作製した。
This target is then used to deposit 0.00% on polycrystalline silicon.
A Ta thin film of 1z was deposited by sputtering method.
A Ta silicide film was produced by lamp annealing at 0°C.

4端子法により膜の比抵抗を測定したところ35.2μ
辞房省であった。
The specific resistance of the membrane was measured using the 4-terminal method and was 35.2μ.
It was the Ministry of Education.

また、上述のターゲットを用いて反応性スパッタにより
Ta、 O,膜を成膜し、電界をかけてその時のリーク
電流を測定したところ、2.5μ■の時IX 10−”
 A−Cal−7のリーク電流密度であった。
In addition, when a Ta, O, film was formed by reactive sputtering using the above-mentioned target, and the leakage current was measured by applying an electric field, it was found that IX 10-'' at 2.5μ■
It was the leakage current density of A-Cal-7.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ヨウ化物分解法によりタンタルを電子
ビーム溶解することにより、従来よりさらに高純度なタ
ンタル材を製造することができ、これより高純度のタン
タルターゲットが得られる。
According to the present invention, by electron beam melting tantalum using an iodide decomposition method, it is possible to produce a tantalum material with higher purity than in the past, and a tantalum target with higher purity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反応性Taシリサイド膜比抵抗とTaターゲッ
ト中の酸素濃度の関係を示す特性図、第2図はTa、 
0.薄膜のリーク電流の電界強さ依存性を示す特性図、
第3図は従来のヨウ化物分解法の製造装置の概略図であ
る。 1・・・反応容器、    2・・・フィラメント3・
・・恒温槽、     4・・・タンタル5・・・ヨウ
素、     6・・・電源7a、 7b・・・接続子
Figure 1 is a characteristic diagram showing the relationship between the specific resistance of the reactive Ta silicide film and the oxygen concentration in the Ta target.
0. Characteristic diagram showing the dependence of thin film leakage current on electric field strength,
FIG. 3 is a schematic diagram of a production apparatus for a conventional iodide decomposition method. 1... Reaction container, 2... Filament 3.
... Constant temperature chamber, 4 ... Tantalum, 5 ... Iodine, 6 ... Power supply 7a, 7b ... Connector

Claims (4)

【特許請求の範囲】[Claims] (1) 酸素含有量が50ppm以下、鉄,ニッケル,
クロムの各元素の含有量が0.05ppm以下であるこ
とを特徴とする高純度タンタル材。
(1) Oxygen content is 50 ppm or less, iron, nickel,
A high-purity tantalum material characterized in that the content of each element of chromium is 0.05 ppm or less.
(2) ヨウ化物分解法により精製したタンタルを5×
10^−^5mbar以下の真空中で溶解することを特
徴とする請求項1記載の高純度タンタル材の製造方法。
(2) Tantalum purified by iodide decomposition method 5x
2. The method for producing high-purity tantalum material according to claim 1, characterized in that the melting is carried out in a vacuum of 10^-^5 mbar or less.
(3) 電子ビーム溶解法により溶解することを特徴と
する請求項2記載の高純度タンタル材の製造方法。
(3) The method for producing high-purity tantalum material according to claim 2, characterized in that the melting is performed by an electron beam melting method.
(4) 請求項1記載の高純度タンタル材を用いてなる
ことを特徴とするタンタルターゲット。
(4) A tantalum target characterized by using the high-purity tantalum material according to claim 1.
JP1334805A 1989-12-26 1989-12-26 Method for manufacturing high-purity tantalum material, tantalum target, thin film, and semiconductor device Expired - Lifetime JP3031474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334805A JP3031474B2 (en) 1989-12-26 1989-12-26 Method for manufacturing high-purity tantalum material, tantalum target, thin film, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1334805A JP3031474B2 (en) 1989-12-26 1989-12-26 Method for manufacturing high-purity tantalum material, tantalum target, thin film, and semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP29470698A Division JP3207393B2 (en) 1989-12-26 1998-10-02 High-purity tantalum material, tantalum target using the same, thin film and semiconductor device formed using the same

Publications (2)

Publication Number Publication Date
JPH03197640A true JPH03197640A (en) 1991-08-29
JP3031474B2 JP3031474B2 (en) 2000-04-10

Family

ID=18281427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334805A Expired - Lifetime JP3031474B2 (en) 1989-12-26 1989-12-26 Method for manufacturing high-purity tantalum material, tantalum target, thin film, and semiconductor device

Country Status (1)

Country Link
JP (1) JP3031474B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999061670A1 (en) * 1998-05-27 1999-12-02 The Alta Group, Inc. Tantalum sputtering target and method of manufacture
WO2000031310A1 (en) * 1998-11-25 2000-06-02 Cabot Corporation High purity tantalum and products containing the same like sputter targets
US6723187B2 (en) 1999-12-16 2004-04-20 Honeywell International Inc. Methods of fabricating articles and sputtering targets
US6863750B2 (en) 2000-05-22 2005-03-08 Cabot Corporation High purity niobium and products containing the same, and methods of making the same
WO2004097869A3 (en) * 2003-04-25 2005-06-30 Cabot Corp A method of forming sintered valve metal material
US7101447B2 (en) 2000-02-02 2006-09-05 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
JP2008540823A (en) * 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method for manufacturing or reprocessing sputter targets and x-ray anodes
JP2008540822A (en) * 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method and coated product on substrate surface
US7481864B2 (en) 2004-01-14 2009-01-27 Cabot Corporation Conversion of Ta2O5 to Ta metal
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
US8382920B2 (en) 2006-03-07 2013-02-26 Global Advanced Metals, Usa, Inc. Methods of producing deformed metal articles
US8961867B2 (en) 2008-09-09 2015-02-24 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US9108273B2 (en) 2011-09-29 2015-08-18 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
WO2017164301A1 (en) * 2016-03-25 2017-09-28 Jx金属株式会社 Ti-Ta ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
US9783882B2 (en) 2007-05-04 2017-10-10 H.C. Starck Inc. Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
CN114457314A (en) * 2021-09-29 2022-05-10 中国船舶重工集团公司第七一八研究所 Preparation method of high-purity tantalum target material

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566161B1 (en) 1998-05-27 2003-05-20 Honeywell International Inc. Tantalum sputtering target and method of manufacture
US6958257B2 (en) 1998-05-27 2005-10-25 Honeywell International Inc. Tantalum sputtering target and method of manufacture
EP1090153A1 (en) * 1998-05-27 2001-04-11 The Alta Group, Inc. Tantalum sputtering target and method of manufacture
EP1090153A4 (en) * 1998-05-27 2001-09-05 Alta Group Inc Tantalum sputtering target and method of manufacture
US6323055B1 (en) 1998-05-27 2001-11-27 The Alta Group, Inc. Tantalum sputtering target and method of manufacture
US6955938B2 (en) 1998-05-27 2005-10-18 Honeywell International Inc. Tantalum sputtering target and method of manufacture
US7102229B2 (en) 1998-05-27 2006-09-05 Honeywell International Inc. Capacitor containing high purity tantalum
KR100438670B1 (en) * 1998-05-27 2004-07-02 허니웰 인터내셔널 인크. Tantalum sputtering target and method of manufacture
WO1999061670A1 (en) * 1998-05-27 1999-12-02 The Alta Group, Inc. Tantalum sputtering target and method of manufacture
EP1496130A1 (en) * 1998-11-25 2005-01-12 Cabot Corporation High purity tantalum for producing sputter targets
WO2000031310A1 (en) * 1998-11-25 2000-06-02 Cabot Corporation High purity tantalum and products containing the same like sputter targets
US6348113B1 (en) 1998-11-25 2002-02-19 Cabot Corporation High purity tantalum, products containing the same, and methods of making the same
US6723187B2 (en) 1999-12-16 2004-04-20 Honeywell International Inc. Methods of fabricating articles and sputtering targets
US6878250B1 (en) 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US7101447B2 (en) 2000-02-02 2006-09-05 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
US6863750B2 (en) 2000-05-22 2005-03-08 Cabot Corporation High purity niobium and products containing the same, and methods of making the same
US7485256B2 (en) 2003-04-25 2009-02-03 Cabot Corporation Method of forming sintered valve metal material
WO2004097869A3 (en) * 2003-04-25 2005-06-30 Cabot Corp A method of forming sintered valve metal material
US7481864B2 (en) 2004-01-14 2009-01-27 Cabot Corporation Conversion of Ta2O5 to Ta metal
JP2008540823A (en) * 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method for manufacturing or reprocessing sputter targets and x-ray anodes
JP2008540822A (en) * 2005-05-05 2008-11-20 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Coating method and coated product on substrate surface
US8382920B2 (en) 2006-03-07 2013-02-26 Global Advanced Metals, Usa, Inc. Methods of producing deformed metal articles
US8974611B2 (en) 2006-03-07 2015-03-10 Global Advanced Metals, Usa, Inc. Methods of producing deformed metal articles
US9783882B2 (en) 2007-05-04 2017-10-10 H.C. Starck Inc. Fine grained, non banded, refractory metal sputtering targets with a uniformly random crystallographic orientation, method for making such film, and thin film based devices and products made therefrom
US8961867B2 (en) 2008-09-09 2015-02-24 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
US9120183B2 (en) 2011-09-29 2015-09-01 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets
US9293306B2 (en) 2011-09-29 2016-03-22 H.C. Starck, Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
US9412568B2 (en) 2011-09-29 2016-08-09 H.C. Starck, Inc. Large-area sputtering targets
US9108273B2 (en) 2011-09-29 2015-08-18 H.C. Starck Inc. Methods of manufacturing large-area sputtering targets using interlocking joints
WO2017164301A1 (en) * 2016-03-25 2017-09-28 Jx金属株式会社 Ti-Ta ALLOY SPUTTERING TARGET AND PRODUCTION METHOD THEREFOR
JPWO2017164301A1 (en) * 2016-03-25 2018-04-05 Jx金属株式会社 Ti-Ta alloy sputtering target and manufacturing method thereof
CN108291295A (en) * 2016-03-25 2018-07-17 捷客斯金属株式会社 Ti-Ta alloy sputtering targets and its manufacturing method
CN114457314A (en) * 2021-09-29 2022-05-10 中国船舶重工集团公司第七一八研究所 Preparation method of high-purity tantalum target material

Also Published As

Publication number Publication date
JP3031474B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
JPH03197640A (en) High purity tantalum material and its production and tantalum target using the same
JPS62280335A (en) High-purity titanium material and its production
US6036741A (en) Process for producing high-purity ruthenium
WO2000004202A1 (en) Method for preparing high purity ruthenium sputtering target and high purity ruthenium sputtering target
JP2002516918A (en) Tantalum sputtering target and manufacturing method
TWI356852B (en)
US4610720A (en) Method for preparing high purity vanadium
JP3974945B2 (en) Titanium sputtering target
US4005990A (en) Superconductors
US4225367A (en) Production of thin layers of polycrystalline silicon on a liquid layer containing a reducing agent
JPS6283306A (en) Transparent bn type ceramic material
JP4198811B2 (en) Manufacturing method of high purity titanium
JPH05214521A (en) Titanium sputtering target
JPH01290766A (en) Ti-containing high-purity ta target and its production
JP3207393B2 (en) High-purity tantalum material, tantalum target using the same, thin film and semiconductor device formed using the same
JP2000212678A (en) High purity tantalum for thin film formation and its production
JPS62287513A (en) Transparent conducting film and manufacture thereof
US7481864B2 (en) Conversion of Ta2O5 to Ta metal
CN114438472A (en) Large-size ultra-pure vanadium sputtering target material for integrated circuit chip and preparation process thereof
JPH03291391A (en) Production of high purity titanium
JP2919309B2 (en) High-purity titanium material for target, target and thin film formed using the same
JP2014169502A (en) INDIUM OR ALLOY CONTAINING INDIUM WITH REDUCED AMOUNT OF α RAY
JPS63105962A (en) Manufacture of thin film of solid electrolyte
JPS6270529A (en) Purifying method for tungsten or molybdenum
JPS61107728A (en) Thin film forming material and manufacture therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

EXPY Cancellation because of completion of term