JPH0319724A - Finishing method for gear face of toothed wheel - Google Patents

Finishing method for gear face of toothed wheel

Info

Publication number
JPH0319724A
JPH0319724A JP14814589A JP14814589A JPH0319724A JP H0319724 A JPH0319724 A JP H0319724A JP 14814589 A JP14814589 A JP 14814589A JP 14814589 A JP14814589 A JP 14814589A JP H0319724 A JPH0319724 A JP H0319724A
Authority
JP
Japan
Prior art keywords
gear
cutter
working
tooth
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14814589A
Other languages
Japanese (ja)
Inventor
Chikanori Irikura
入倉 親教
Tsuyoshi Makita
蒔田 強
Yoshihiro Suzuki
好博 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP14814589A priority Critical patent/JPH0319724A/en
Publication of JPH0319724A publication Critical patent/JPH0319724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Processing (AREA)

Abstract

PURPOSE:To increase a working accuracy by working while contracting the axial interval of a cutter and working gear in the radial direction according to the gear thickness decrease part of the work gear during from the working start to the completion. CONSTITUTION:In order to cause no unnecessary backlash working executed while contracting the axial interval of a cutter 6 and work gear 1 in the radial direction according to the gear thickness decrease part of a work gear 1 during a period from the work start to the completion. Thus no hammering phenome non is generated on the biting face of the cutter 6 and work gear 1 because of no unnecessarily large biting backlash being caused, the inconvenience of the cutter 6 side like the fall of abrasive grains of CBN, etc., and the peeling off of an electrodeposition, etc., is constrained and also the errors like the undulation of the working gear face, gear face pitch error and deflection of the gear groove can be reduced and the working accuracy can be increased. Also it can be composed at low cost because it is unnecessary to take a rotation synchronism between the cutter 6 and work gear 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は精度を持った歯車歯面の仕上加工方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for finishing gear tooth surfaces with precision.

(従来の技術) 従来歯切りした歯車の歯面を仕上げ加工するに際し、歯
幅方向に多くの溝を設けたシェービングカッターを用い
たり、歯車歯形の歯面に砥粒のついたカッター等を用い
たりして、これを歯切り後の歯車に噛み合せて回転させ
歯面を仕上げるような加工法が知られている。ところが
一般的に前省のシェービング加工法は、歯切りした加工
歯車に対し浸炭焼入れ或は高周波焼入れ等の熱処理を施
した後には適用出来ないため、シェービングによって高
精度に加工していても熱処理時の歪によって再び精度を
低下させるという問題があり、近年ではより高い精度の
歯車加工には、後者の歯車歯形の歯面に砥粒を被着した
カッターが用いられる例が多い。そしてこのようなカッ
ターとしては例えば高硬質の立方窒化朋素(CBN)等
の微細粒子をニッケル等の結合材によって歯車形母材の
歯面に電気メッキ或は化学メッキして砥石として構成し
、浸炭焼入れ或は高周波焼入れ等熱処理を施した後の加
工歯車の歯面仕上げに用いている。すなわちこのような
CBN等被着カッターを加工歯車と噛合させた後カッタ
ーを回転させることにより、カッターの砥粒と加工歯車
の歯面間に相対すべりが起りカッターによって加工歯車
を連れまねすだけで加工歯車の歯面が削り取られ、歯面
仕上げが行なわれる。
(Conventional technology) When finishing the tooth surface of a gear that has been conventionally cut, a shaving cutter with many grooves in the tooth width direction or a cutter with abrasive grains on the tooth surface of the gear tooth profile is used. There is a known machining method in which the gear is meshed with a gear after cutting and rotated to finish the tooth surface. However, in general, the shaving method described in the previous section cannot be applied after the machined gear has been subjected to heat treatment such as carburizing and quenching or induction hardening. There is a problem in that the accuracy is reduced again due to distortion, and in recent years, cutters with abrasive grains coated on the tooth surface of the gear tooth profile are often used for higher precision gear machining. Such a cutter is constructed by electroplating or chemically plating fine particles of highly hard cubic boron nitride (CBN) or the like on the tooth surface of a gear-shaped base material using a binder such as nickel to form a grindstone. It is used for finishing the tooth surface of machined gears after heat treatment such as carburizing and induction hardening. In other words, by rotating the cutter after meshing the CBN-coated cutter with the machining gear, a relative slip occurs between the abrasive grains of the cutter and the tooth surface of the machining gear, and the cutter simply pulls the machining gear. The tooth surface of the machined gear is ground down and the tooth surface is finished.

(発明が解決しようとする課題) このような砥粒を被着せしめたカッターは熱処理後のワ
ークにも適用出来るため、シェービング加工法のように
熱処理後の歪の問題は生起しないが、反面他の不具合発
生の要因となっていた。すなわちこのようなカッターは
通常砥粒とワーク歯面の相対すへり速度を大きくずるた
め高回転で回転させられるが、カッターによって加工歯
車を連れまわすだけで加工歯車の歯面が削り取られ、こ
の削り取り量は半径方向へのいわゆる切り込みがなくて
も相当量に達する。このため加工が進み研削量が多くな
るにつれてカッターと加工歯車のかみ合いにパックラッ
シュが生じ、カッター側にはCBN等砥粒の脱落、CB
N等電着層の剥離等の悪影響を与え、加工歯車側には歯
面のうねり、歯面ビッチ誤差の増大、歯みぞの振れとい
った精度誤差等の不具合が生じることとなっていた。こ
のカッターの回転数と加工量(オーバーボールマイナス
量)の関係は第4図に示すとおりであり、横軸に示すカ
ッター回転数(rpm)の上昇に伴ない、縦軸に示すオ
ーバーボール径マイナス量(IITI1)が増大する状
態となっていた。又この時加工ざれる加工歯車の歯溝の
振れは第5図に示すように横軸に示すカッター回転数(
rpm)が2000rpm以上では、縦軸に示す歯溝の
振れ(mm)が大きくなり、破線で示すDIN8級のよ
うな高い精度を必要とする歯車には適用し得ないことと
なる。尚、この第4図,第5図の加工条件はカッターの
切り込み量はOm+nとし、スパークアウトタイムを2
秒に設定したものであり、モジュール2、歯数27、ね
じれ角左36度の加工歯車に対し、歯数97、ねじれ角
右31度、CBN粒度#140のカッターで加工してい
る。
(Problem to be solved by the invention) Since the cutter coated with such abrasive grains can be applied to workpieces after heat treatment, the problem of distortion after heat treatment does not occur as in the shaving process, but on the other hand, This was the cause of the problem. In other words, such a cutter is normally rotated at high speed in order to greatly change the relative sliding speed between the abrasive grains and the tooth surface of the workpiece. The amount reaches a considerable amount even without a so-called cut in the radial direction. For this reason, as the machining progresses and the amount of grinding increases, pack lash occurs in the meshing of the cutter and the machining gear, and abrasive grains such as CBN fall off on the cutter side, and CB
This has adverse effects such as peeling off of the electrodeposited layer of N, etc., and causes problems such as accuracy errors such as waviness of the tooth surface, increased tooth surface pitch error, and runout of the tooth groove on the processed gear side. The relationship between the rotation speed of this cutter and the processing amount (overball minus amount) is as shown in Figure 4. As the cutter rotation speed (rpm) shown on the horizontal axis increases, the overball diameter minus the amount shown on the vertical axis increases. The amount (IITI1) was increasing. In addition, the runout of the tooth groove of the machining gear that is being machined at this time is determined by the cutter rotational speed (
rpm) of 2000 rpm or more, the runout (mm) of the tooth space shown on the vertical axis becomes large, and the method cannot be applied to gears that require high precision such as DIN 8 class shown by the broken line. The processing conditions shown in Figures 4 and 5 are as follows: the depth of cut of the cutter is Om+n, and the spark out time is 2.
A gear with module 2, 27 teeth, and a helix angle of 36 degrees to the left is machined using a cutter with 97 teeth, a helix angle of 31 degrees to the right, and a CBN grain size of #140.

方カッター側と加工歯車側間に回転同期をとりながら加
工する方法も知られ、この方法では連れまわり抵抗によ
るワーク南面の研削は行なわれないので、カッター軸若
しくはワーク軸を夫々の軸間を詰める方向に移動しなけ
ればワーク歯面の研削は行なわれない。従って両者の間
に必要以上の噛み合いバックラッシュが生じることもな
く、カッターのCBN等の砥粒の脱落、CBN等の電着
層の剥離、ワーク歯面のうねり、歯面ピッチ誤差の増大
及び歯溝の振れの増大等の不具合が起こりにくい。この
カッター軸とワーク軸の回転同期をとる方法は機械的な
方法と電気的方法の2通りがあるが前者の場合設備が複
雑化し、後者の場合には高速回転同期が難しいという難
点があり、しかも両者共に設備価格が高くなるという不
具合があった。
A method is also known in which machining is performed while synchronizing the rotation between the cutter side and the machining gear side, and since this method does not grind the south face of the workpiece due to co-rotation resistance, the distance between the cutter shaft or workpiece shaft is narrowed. Unless it moves in the direction, the workpiece tooth surface will not be ground. Therefore, there is no occurrence of backlash due to excessive meshing between the two, resulting in the drop of abrasive grains such as CBN from the cutter, peeling of the electrodeposited layer of CBN, etc., waviness of the workpiece tooth surface, increase in tooth surface pitch error, etc. Problems such as increased groove runout are less likely to occur. There are two ways to synchronize the rotation of the cutter axis and workpiece axis: mechanical and electrical. However, the former requires complicated equipment, and the latter has the disadvantage that high-speed rotation synchronization is difficult. Moreover, both had the problem of increased equipment costs.

(課題を解決するための手段) かかる課題を解決するkめ、本発明は歯車歯形の歯面に
砥粒を被着したカッターで加工歯車を連れまわして加工
するような仕上加工方法において、加工中不必要なバッ
クラッシュを生ゼしぬないよう加工開始から終了までの
間、カッター軸と加工歯車軸の軸間隔を加工歯車の歯厚
減少分に応して半径方向に縮めながら加工することとし
た。
(Means for Solving the Problem) In order to solve the problem, the present invention provides a finishing method in which a cutter with abrasive grains coated on the tooth surface of a gear tooth profile is used to carry out the processing. During machining, the distance between the cutter shaft and the machining gear shaft should be reduced in the radial direction according to the reduction in the tooth thickness of the machining gear, from the start to the end of machining, in order to avoid unnecessary backlash. And so.

(作用) 不必要に大きい噛み合いバックラッシュが生じないため
、カッターと加工歯車の噛合面にたたき合い現象が発生
せず、CBN等砥粒の脱落、電着等の剥離等といったカ
ッター側の不具合が抑制ざれるとともに、加工歯面のう
ねり、歯面ビッチ誤差、歯みぞの振れといった誤差を少
なくすることが出来、加工精度が高まる。
(Function) Since unnecessarily large meshing backlash does not occur, there is no knocking phenomenon on the meshing surfaces of the cutter and processed gear, and problems on the cutter side such as falling off of abrasive grains such as CBN, peeling off of electrodeposition, etc. At the same time, it is possible to reduce errors such as waviness of the machined tooth surface, tooth surface pitch error, and runout of the tooth groove, increasing machining accuracy.

(実施例) 本発明の歯車歯面の仕上加工方法の実施例について添付
した図面を用いて説明する。
(Example) An example of the finishing method for a gear tooth surface of the present invention will be described with reference to the attached drawings.

第1図は本発明の加工法で加工する状態を示す加工装置
の斜視図、第2図.第3図は従来の方法との加工精度の
比較を示し、第2図が歯溝の振れ、第3図が累積ピッチ
誤差を示す。
Fig. 1 is a perspective view of a processing device showing a state in which processing is performed using the processing method of the present invention, and Fig. 2. Fig. 3 shows a comparison of machining accuracy with the conventional method, Fig. 2 shows the runout of the tooth space, and Fig. 3 shows the cumulative pitch error.

歯切り加工の施された加工歯車1は第1図に示すように
テーブル2上の左右のセンタ台3.3で保持され、治具
4によって加工歯車軸を中心として回転可能に支えられ
ている。この加工歯車1の上方にはカッターヘッド5が
臨み、このカッターヘット5にはカッター6が設けられ
て加工歯車1に対して離接自在とされている。
As shown in FIG. 1, the machined gear 1 that has been subjected to gear cutting is held on the left and right center stands 3.3 on the table 2, and is supported by a jig 4 so as to be rotatable about the machined gear shaft. . A cutter head 5 faces above the processing gear 1, and a cutter 6 is provided on the cutter head 5 so that it can move toward and away from the processing gear 1.

このカッター6は本実施例の場合、回転方向が自在とな
り、モジュール2、歯数97、歯幅17+nm,ねじれ
角右31度、CBN粒度#200の諸元としている。ま
た このカッターヘッド5には加工部に切削油を吹きつ
けるため切削油パイプ7を設けている。以上のような加
工具によって従来の方法と本発明の方法とで仕上げ加工
を試みた。
In this embodiment, the cutter 6 can be rotated in any direction, and has the following specifications: module 2, number of teeth 97, face width 17+nm, helix angle 31 degrees to the right, and CBN grain size #200. The cutter head 5 is also provided with a cutting oil pipe 7 for spraying cutting oil onto the machining section. Using the above-mentioned processing tool, finishing processing was attempted using the conventional method and the method of the present invention.

まず従来のやり方で10個の加工歯車を加工した。すな
わち加工歯車1とカッター6の歯部を軸間距l!llO
.lmmのバックラッシュで噛み合させ、研削油を吹き
つけながらカッター6の回転を開始し、最初に時計回転
方向に500rpm/secの割合いで、2,500r
pmまで引き上げた。2,500rpm到達後、切り込
み速度1.0+Ilm/n+inで0.1mmの切り込
みを行なった後その位置で2secのスパーク・アウト
(そのままで回転させること)を行ないカッター回転を
停止させた。次いで今度は反時計回転方向に50Orp
m/secの割合いで2.50Orpmまで引き上げス
パーク・アウトを2 SeC行なって両面の加工を完了
した。この結果これらの加工歯車のオーバーボール径の
マイナス量は019〜0.21mmであり、10個の加
工歯車の歯溝の振れ(m+n)は第2図の破線に、累積
ピッチ誤差(μ)は第3図の破線に夫々示すとおりとな
った。尚第3図中一方は右歯面の値を他の一方は左歯面
の値を示す。
First, 10 gears were machined using the conventional method. In other words, the distance between the teeth of the processing gear 1 and the cutter 6 is l! llO
.. The cutter 6 was engaged with a backlash of 1 mm, and the cutter 6 was started rotating while spraying grinding oil, and the cutter 6 was first rotated clockwise at a rate of 500 rpm/sec for 2,500 r.
It was raised to pm. After reaching 2,500 rpm, a cut of 0.1 mm was made at a cutting speed of 1.0+Ilm/n+in, and then a 2-sec spark out (rotation continued) was performed at that position to stop the cutter rotation. Next, turn 50 orps counterclockwise.
The spark was pulled up to 2.50 Orpm at a rate of m/sec and spark-out was performed for 2 SeC to complete the processing on both sides. As a result, the minus amount of the overball diameter of these machined gears is 0.19 to 0.21mm, the tooth groove runout (m+n) of the 10 machined gears is shown by the broken line in Figure 2, and the cumulative pitch error (μ) is The results are as shown by the broken lines in Figure 3. In Fig. 3, one side shows the value of the right tooth flank, and the other side shows the value of the left tooth flank.

次に本発明のやり方で10個の加工歯車を加工した。前
述の例と同様カッターと加工歯車を軸間距l!lO.1
m+nのバックラッシュで噛合させ、研削油を吹きつけ
ながらカッター回転を時計回転方向側に500rpm/
secの割合いで、2,500rpmまで引き上げ、今
回はこの回転引き上げ中も次のような割合いで切り込み
を与えた。まず0〜500rpII1の間は0.2mm
/minで、 500〜1,000rpmの間は0.4
mm/minで、 1,000 〜1.500rpmの
間は0.6mm/minで、1 , 500 〜2 ,
 000rpmの間は0.8n++++/minで、 
2.000〜2,500rpmの間は1.0mm/mi
nの割合いで夫々切り込みを行ない、回転が2,500
rpmに到達後スバークアウトを設定することなく直ち
にカッター回転を停止させた。次いで今度はカッターを
反時計回転方向に回転させ、上述と同じ要領で切り込み
を与えた後2,50Orpm到達後直ちにカッター回転
を停止して加工を完了した。この結果、これらの加工歯
車のオーバーボール径のマイナス量は0.18〜0.1
9mmであり、10個の加工歯車の歯溝の振れ及び累積
ピッチ誤差は夫々第2図,第3図の実線に示すとおりで
あった。
Next, 10 machined gears were machined using the method of the present invention. As in the previous example, the distance between the cutter and the machining gear is l! lO. 1
Engage with m+n backlash, and rotate the cutter clockwise at 500 rpm/while spraying grinding oil.
The rotation was increased to 2,500 rpm at a rate of 1.5 sec, and cuts were made at the following rate even during this rotational pull-up. First, 0.2mm between 0 and 500rpII1
/min, 0.4 between 500 and 1,000 rpm
mm/min, between 1,000 and 1.500 rpm is 0.6 mm/min, and between 1,500 and 2,
0.8n++++/min between 000rpm,
1.0mm/mi between 2.000 and 2,500rpm
Each cut is made at a ratio of n, and the rotation is 2,500.
After reaching the rpm, the cutter rotation was immediately stopped without setting the sparkout. Next, the cutter was rotated counterclockwise, a cut was made in the same manner as described above, and the cutter rotation was stopped immediately after reaching 2.50 rpm to complete the machining. As a result, the minus amount of the overball diameter of these machined gears is 0.18 to 0.1
The tooth groove runout and cumulative pitch error of the 10 machined gears were as shown by the solid lines in FIGS. 2 and 3, respectively.

この従来のやり方及び本発明のやり方による加工結果の
対比から明らかなように、歯溝の振れ及び累積ピッチ誤
差とも明らかに本発明の場合は少なくなっており、又加
工後のワークの歯筋歯型のデータの比較からも、従来の
やり方に見られる大きなうねり現象も認められず、更に
はカッターのCBN砥石の脱落も従来のやり方では約8
%程認められたが本発明では脱落が認められなかった。
As is clear from the comparison of the machining results obtained by the conventional method and the method of the present invention, both the runout of the tooth groove and the accumulated pitch error are clearly reduced in the case of the present invention, and the tooth traces of the workpiece after machining are Comparison of mold data shows that the large waviness phenomenon seen in the conventional method was not observed, and furthermore, the CBN grinding wheel of the cutter fell off with the conventional method.
%, but no drop-off was observed in the present invention.

尚木実施例の場合切り込みの与え方はある回転数の幅に
応じて切り込み速度を変えて一定の値に設定しているが
、常にピッチ円周上のバックラッシュを30μ以下にす
ると良い結果を生ずることが確認されている。
In Naoki's example, the cutting speed is set to a constant value by changing the cutting speed depending on the range of rotational speed, but good results can be obtained by always keeping the backlash on the pitch circumference below 30μ. It has been confirmed that this occurs.

(発明の効果) 以上のように本発明の歯車歯面の加工方法は、特に熱処
理後の加工歯車の仕上加工において精度を持って加工す
ることが出来、又カッターと加工歯車間に回転同期をと
る必要もないので廉価に構成出来、しかもカッターの酎
命性向上と相俟って産業上価値の高いものである。
(Effects of the Invention) As described above, the method for machining gear tooth surfaces of the present invention can process gears with high precision, especially in the finishing process of processed gears after heat treatment, and also achieves rotational synchronization between the cutter and processed gears. Since there is no need to remove the cutter, it can be constructed at a low cost, and combined with the improved durability of the cutter, it is of high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の加工法で加工する状態を示す加工装置
の斜視図、第2図,第3図は加工精度を従来の方法と比
較して示し、第2図が歯溝の振れ、第3図が累積ピッチ
誤差、第4図,第5図は従来のやり方による加工値を示
し、第4図はカッター回転数と加工!(オーバーボール
径マイナス量)の関係、第5図はカッター回転数と歯溝
の振れの関係を示す。 尚同図中、1は加工歯車、6はカッターを示す。 第2図 ワーク No. ワーク No. カツクー回転数(rpm) カッター回転数<rpm)
Fig. 1 is a perspective view of a machining device showing the state of machining using the machining method of the present invention, and Figs. 2 and 3 show machining accuracy in comparison with the conventional method. Figure 3 shows the cumulative pitch error, Figures 4 and 5 show the machining values according to the conventional method, and Figure 4 shows the cutter rotation speed and machining! Figure 5 shows the relationship between cutter rotational speed and tooth space runout. In the figure, 1 indicates a processing gear, and 6 indicates a cutter. Figure 2 Work No. Work No. Cutter rotation speed (rpm) Cutter rotation speed < rpm)

Claims (1)

【特許請求の範囲】 歯車形の歯形歯面に砥粒を被着したカッターを加工歯車
に噛合させ、カッターの回転で加工歯車を連れまわして
加工歯車の歯面を研削するようにした歯車歯面の仕上加
工方法において、 この加工法は加工開始から終了までの間、研削される加
工歯車の歯厚減少分に応じ、カッター軸と加工歯車軸の
軸間隔を半径方向に縮めながら加工することを特徴とす
る歯車歯面の仕上加工方法。
[Scope of Claims] A gear tooth in which a cutter with abrasive grains coated on the tooth surface of a gear is meshed with a processing gear, and the rotation of the cutter carries the processing gear and grinds the tooth surface of the processing gear. In the surface finishing method, this method involves reducing the distance between the cutter shaft and the gear shaft in the radial direction, depending on the reduction in the tooth thickness of the gear being ground, from the start to the end of the process. A finishing method for gear tooth surfaces characterized by:
JP14814589A 1989-06-09 1989-06-09 Finishing method for gear face of toothed wheel Pending JPH0319724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14814589A JPH0319724A (en) 1989-06-09 1989-06-09 Finishing method for gear face of toothed wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14814589A JPH0319724A (en) 1989-06-09 1989-06-09 Finishing method for gear face of toothed wheel

Publications (1)

Publication Number Publication Date
JPH0319724A true JPH0319724A (en) 1991-01-28

Family

ID=15446272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14814589A Pending JPH0319724A (en) 1989-06-09 1989-06-09 Finishing method for gear face of toothed wheel

Country Status (1)

Country Link
JP (1) JPH0319724A (en)

Similar Documents

Publication Publication Date Title
US4961289A (en) Machine tool for fine machining the tooth flanks of pretoothed gearwheels
US20200230725A1 (en) Method and Device for Precision Machining of Toothed and Hardened Work Wheels
US20210069808A1 (en) Device And Method For Roughing And Fine-Machining Of Gears
US5129185A (en) Method for the precision working of the tooth flanks of particularly hardened gears
JPH0229449B2 (en)
US6497610B1 (en) Process for dressing an internal or external gear tool for fine machining of tooth profiles
JPH1058230A (en) Method and device for precision machining of flat gear
US4677962A (en) Gearlike tool for dressing abrasive, gearlike, precision machining tools
JP2991012B2 (en) Wheels for finishing gears
US20040005843A1 (en) Method for dressing or profiling of an essentially cylindrical grinding worm
JPH01301015A (en) Precision working method of tooth surface of gear and tool proper to said method
JP2018001340A (en) Method of manufacturing gear
JPH0319724A (en) Finishing method for gear face of toothed wheel
JP5123767B2 (en) Worm wheel grinding finishing method and worm gear device
JPS60259318A (en) Method of precisely machining toothed work by using gear-shaped tool and method of dressing such tool
JPH1086017A (en) Working method for gear and deburring machine for gear work
JPS60207718A (en) Method and system of improving accuracy and finishing of continuous tooth surface by generating process
JP2021079475A (en) Gear processing method and gear processing device
JP5777860B2 (en) Finish polishing method for face gear
JP2008114305A (en) Gear honing method and device
JP3072366B2 (en) Manufacturing method of multi-blade grinding tool
JP2000280119A (en) Gear grinding
JP2010167547A (en) Grind finishing method of worm wheel and worm gear device
JPH0223284B2 (en)
JPH0732214A (en) Dressing gear