JPH03191963A - Calcium phosphate porous bone filter - Google Patents

Calcium phosphate porous bone filter

Info

Publication number
JPH03191963A
JPH03191963A JP1331223A JP33122389A JPH03191963A JP H03191963 A JPH03191963 A JP H03191963A JP 1331223 A JP1331223 A JP 1331223A JP 33122389 A JP33122389 A JP 33122389A JP H03191963 A JPH03191963 A JP H03191963A
Authority
JP
Japan
Prior art keywords
pores
calcium phosphate
porous body
porous
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1331223A
Other languages
Japanese (ja)
Other versions
JPH0534020B2 (en
Inventor
Takeshi Momotomi
武 百冨
Yoshitaka Okubo
大久保 義孝
Hiroyasu Takeuchi
啓泰 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1331223A priority Critical patent/JPH03191963A/en
Publication of JPH03191963A publication Critical patent/JPH03191963A/en
Publication of JPH0534020B2 publication Critical patent/JPH0534020B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enhance biocompatibility and to accelerate the formation of a new bone, in a calcium phosphate porous body having a three-dimensional reticulate structure provided with communicating void channels capable of permitting osteoblasts to penetrate through the porous body up to the central part thereof, by providing pores having a specific pore size to the skeletal of the porous body and setting the porosity to a specific ratio with respect to the void channels and the total voids of the pores. CONSTITUTION:Pores 3 having a pore size of 0.5mum or less are provided to a porous body skeletal 1 and the osteoblasts penetrating in void channels 2 also penetrate through the pores 3 and excellent biocompatibility not developed heretofore and the rapid formation of a new bone can be expected. The porosity of the pores is set to 5-50% of the void channels and the total voids of the pores. The total porosity of the void channels and the pores is pref. set to 40-97%.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、新生骨の形成を促進し、生体親和性に優れ、
且つ高強度を有するリン酸カルシウム質多孔体骨補填材
に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention promotes the formation of new bone, has excellent biocompatibility,
The present invention also relates to a calcium phosphate porous bone substitute material having high strength.

〈従来の技術〉 従来骨欠損部及び骨空隙部等に充てんし、新生骨を形成
するための三次元網目構造を有する多孔体は種々開発が
なされており1例えば特開昭56−166843号公報
には、新生骨が生成しやすい凹凸部を有する空孔チャン
ネルを備えた三次元網目構造の骨欠損部及び骨空隙部充
てん材が提供されている。またリン酸カルシウム原料ス
ラリーに、過酸化水素等の発抱剤を添加して発泡させる
発泡法条孔質骨補填材等も知られている。
<Prior art> Various porous bodies having a three-dimensional network structure for filling bone defects, bone voids, etc. and forming new bone have been developed. provides a bone defect and bone void filling material having a three-dimensional network structure and having a hole channel having an uneven portion in which new bone is likely to be generated. Also known is a foamed porous bone grafting material made by adding a binder such as hydrogen peroxide to a calcium phosphate raw material slurry to foam it.

しかしながら、前記骨欠損部及び骨空隙部充てん材は、
均一な気孔径を有するものの強度が十分でなく、また前
記発泡法条孔質骨補填材では、気孔が不連続であり、且
つ気孔に方向性があるため骨芽細胞が侵入しにくいとい
う欠点がある。
However, the bone defect and bone void filling material is
Although it has a uniform pore size, it does not have sufficient strength, and the foamed porous bone graft material has the disadvantage that it is difficult for osteoblasts to invade because the pores are discontinuous and directional. be.

〈発明が解決しようとする課題〉 従って本発明の目的は、生体親和性に優れ、新生骨の形
成を促進し得る高強度なリン酸カルシウム質多孔体骨補
填材を提供することにある。
<Problems to be Solved by the Invention> Therefore, an object of the present invention is to provide a high-strength calcium phosphate porous bone grafting material that has excellent biocompatibility and can promote the formation of new bone.

く課題を解決するための手段〉 本発明によれば、骨芽細胞が多孔体中心部まで侵入し得
る連通した空孔チャンネルを有する三次元網目構造のリ
ン酸カルシウム質多孔体であって。
Means for Solving the Problems According to the present invention, there is provided a calcium phosphate porous body having a three-dimensional network structure and having communicating pore channels through which osteoblasts can penetrate to the center of the porous body.

該多孔体骨格に、孔径0.5μm以下の細孔を有し、且
つ該細孔の気孔率が、前記空孔チャンネル及び細孔の気
孔全体に対して、5〜50%であるリン酸カルシウム質
多孔体骨補填材が提供される。
The porous body skeleton has pores with a pore diameter of 0.5 μm or less, and the porosity of the pores is 5 to 50% of the total pores of the pore channels and pores. A body bone replacement material is provided.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明のリン酸カルシウム質多孔体骨補填材は、連通し
た空孔チャンネルを有し、且つ特定の気孔率を有する孔
径0.5μm以下の細孔が、多孔体骨格に形成されるこ
とを特徴とする。
The calcium phosphate porous bone graft material of the present invention is characterized in that pores with a pore diameter of 0.5 μm or less, which have communicating pore channels and have a specific porosity, are formed in the porous skeleton. .

本発明において、多孔体を形成するリン酸カルシウム化
合物としては、CaHPO4・2H20若しくはCaH
PO,、Ca、(PO,)、ICa、(PO4) 30
H,Ca40 (PO,) 2゜、Ca、 P 4 Q
、tx t、Ca 、(P、oa) It Ca、P2
O7゜Ca (H,P O4)、 ・H□O等を挙げる
ことができ、単独若しくは2種以上の混合物として用い
ることができる。これらの化合物のうち、リン酸二カル
シウム(ca、(po4)2)t ヒドロキシアパタイ
ト(Ca、(PO,) 30I()、リン酸四カルシウ
ム(Ca 40 (P O4) z)を用いた場合に特
に新生骨の生成が早く、好ましい化合物であるといえる
。最も好ましい化合物はこれらの中でも特に新生骨の生
成が早いヒドロキシアパタイトであり、中でも500℃
以上、特に好ましくは700〜1250℃で熱処理して
得たヒドロキシアパタイトが特に新生骨の生成が早く好
ましい。熱処理の上限温度については特に限定されるも
のではないが、ヒドロキシアパタイトが分解を開始する
ので、分解温度以下とすべきである。また本発明にて使
用し得るリン酸カルシウム化合物は公知の製造方法によ
り1人工的に合成されたものであっても又。
In the present invention, the calcium phosphate compound forming the porous body is CaHPO4.2H20 or CaH
PO,,Ca,(PO,),ICa,(PO4) 30
H, Ca40 (PO,) 2゜, Ca, P 4 Q
, tx t, Ca , (P, oa) It Ca, P2
Examples include O7°Ca (H, P O4), .H□O, and can be used alone or as a mixture of two or more. Among these compounds, when using dicalcium phosphate (ca, (po4)2)t, hydroxyapatite (Ca, (PO,)30I(), and tetracalcium phosphate (Ca40(P04)z), In particular, it can be said that it is a preferable compound because it generates new bone quickly.The most preferable compound is hydroxyapatite, which generates new bone particularly quickly.
As mentioned above, hydroxyapatite obtained by heat treatment at 700 to 1250° C. is particularly preferable because new bone is generated quickly. The upper limit temperature of the heat treatment is not particularly limited, but since hydroxyapatite starts to decompose, it should be lower than the decomposition temperature. Further, the calcium phosphate compound that can be used in the present invention may be one that is artificially synthesized by a known production method.

骨などから得られる天然のものを用いてもよい。Natural materials obtained from bones etc. may also be used.

本発明では前記リン酸カルシウム化合物を多孔体として
用い、多孔体骨格に孔径0,5μm以下の細孔を設ける
。ここで第1図に示す本発明のリン酸カルシウム質多孔
体骨補填材1部拡大断面図により空孔チャンネルと細孔
との関係を説明する。
In the present invention, the calcium phosphate compound described above is used as a porous body, and pores with a pore diameter of 0.5 μm or less are provided in the porous body skeleton. Here, the relationship between the pore channels and the pores will be explained with reference to a partially enlarged sectional view of the calcium phosphate porous bone grafting material of the present invention shown in FIG.

第1図において、lはリン酸カルシウム化合物の焼結体
であって、多孔体骨格を示し、2は多孔体内において、
連通ずる空孔チャンネルを示す。前記多孔体骨格1には
、孔径0.5μm以下の細孔3が設けられており、前記
空孔チャンネル2に侵入する骨芽細胞が細孔3にも侵入
し、従来にない優れた生体親和性及び早い新生骨の形成
を期待することができる。尚第1図に表わされるリン酸
カルシウム質多孔体骨補填材1部拡大断面図は、説明の
ために平面的に示されているが、実際には三次元網目構
造を有する多孔体である。前記細孔の孔径が0.5μm
を超える場合には、細胞の増殖性が低下するので好まし
くない。また前記細孔の気孔率は、空孔チャンネル及び
細孔の気孔全体に対して5〜50%の範囲である。前記
細孔の気孔率が5%未満の場合には、細胞の初期付着性
が悪くなり、また50%を超える場合には、多孔体強度
が低下し、実用性に問題が生じるので前記範囲とする必
要がある。また空孔チャンネル及び細孔の合計気孔率は
、40〜97%であるのが好ましい。前記空孔チャンネ
ルは、骨芽細胞が多孔体中心部まで侵入し得るように連
通しておれば、特に限定されるものではないが、骨芽細
胞の侵入を更にスムーズにするために好ましくは孔径5
0μm以上であるのが望ましい。
In FIG. 1, l is a sintered body of a calcium phosphate compound and represents a porous body skeleton, and 2 is a porous body in which:
Shows communicating void channels. The porous skeleton 1 is provided with pores 3 with a pore diameter of 0.5 μm or less, and osteoblasts that invade the pore channels 2 also invade the pores 3, resulting in unprecedented biocompatibility. It is possible to expect improved health and rapid new bone formation. Although the enlarged cross-sectional view of a part of the calcium phosphate porous bone graft material shown in FIG. 1 is shown in a plan view for the sake of explanation, it is actually a porous body having a three-dimensional network structure. The pore diameter of the pore is 0.5 μm
If it exceeds 20%, it is not preferable because the proliferation of cells decreases. Further, the porosity of the pores is in the range of 5 to 50% based on the total pores of the pore channels and pores. If the porosity of the pores is less than 5%, the initial adhesion of cells will be poor, and if it exceeds 50%, the strength of the porous material will decrease, causing problems in practicality. There is a need to. Further, the total porosity of the void channels and pores is preferably 40 to 97%. The pore channels are not particularly limited as long as they communicate with each other so that osteoblasts can penetrate to the center of the porous body, but the pore size is preferably set to allow smoother osteoblast penetration. 5
It is desirable that the thickness is 0 μm or more.

本発明のリン酸カルシウム質多孔体骨補填材は、前記連
通した空孔チャンネルを有し、且つ特定の細孔を有する
ので、はぼ均等な三次元方向からの強度を備え、好まし
くは前記三次元方向からの強度が夫々50kg/d以上
である多孔体骨補填材であるのが望ましい。
Since the calcium phosphate porous bone graft material of the present invention has the above-mentioned communicating pore channels and has specific pores, it has approximately uniform strength in three-dimensional directions, preferably in the three-dimensional direction. It is desirable that the porous bone grafting material has a strength of 50 kg/d or more.

本発明のリン酸カルシウム質多孔体骨補填材を調製する
には1例えば前記リン酸カルシウム化合物をスラリーと
し、該スラリーに、ポリビニルアルコール、メチルセル
ロース、デンプン、ショ糖等の可燃性有機物とリン酸カ
ルシウム系微粉末とを添加して混合した後、過酸化水素
、尿素、ドライアイス、硝酸アンモニウム等の発泡剤を
加えて。
To prepare the calcium phosphate porous bone grafting material of the present invention, 1. For example, the above calcium phosphate compound is made into a slurry, and a combustible organic substance such as polyvinyl alcohol, methyl cellulose, starch, or sucrose and calcium phosphate fine powder are added to the slurry. After mixing, add blowing agents such as hydrogen peroxide, urea, dry ice, and ammonium nitrate.

発泡リン酸カルシウム質スラリーを製造する。次いで該
発泡リン酸カルシウム質入ラリ−を、空孔チャンネルが
連続しており、三次元網状構造を有するウレタンホーム
等の多孔体有機質樹脂に注入又は含浸させた後、乾燥し
、該多孔体有機質樹脂を除去するため船こ加熱する方法
等により得ることができる。前記方法において、発泡リ
ン酸カルシウム質スラリーの平均粒径は好ましくは0.
1〜20μmであり、リン酸カルシウム系微粉末の粒径
は0.1〜30μmであるのが好ましい。また該スラリ
ーに添加するリン酸カルシウム系微粉末及び可燃性有機
物の配合割合は、発泡リン酸カルシウム質スラリー全体
に対して、夫々0.1〜50重量%であるのが好ましく
、また発泡剤を1.0〜20重量%添加するのが好まし
い。この際発泡リン酸カルシウム質スラリー全体は、1
00重量%となるように調整する。更に前記乾燥及び加
熱は、各成分の種類により異なるが、乾燥する場合30
〜110℃にて、12〜160時間行うのが好ましく、
また加熱は500〜1250℃にて行うのが望ましい。
A foamed calcium phosphate slurry is produced. Next, the foamed calcium phosphate pawn-filled rally is injected into or impregnated into a porous organic resin such as urethane foam having continuous pore channels and a three-dimensional network structure, and then dried to form the porous organic resin. It can be obtained by heating the vessel to remove it. In the method, the average particle size of the foamed calcium phosphate slurry is preferably 0.
The particle size of the calcium phosphate fine powder is preferably 0.1 to 30 μm. The proportion of calcium phosphate fine powder and combustible organic substance to be added to the slurry is preferably 0.1 to 50% by weight, respectively, based on the entire foamed calcium phosphate slurry, and the blowing agent is preferably 1.0 to 50% by weight. It is preferable to add 20% by weight. At this time, the entire foamed calcium phosphate slurry is 1
Adjust so that it becomes 00% by weight. Furthermore, the drying and heating methods vary depending on the type of each component, but in the case of drying, 30%
Preferably carried out at ~110°C for 12 to 160 hours,
Moreover, it is desirable to perform heating at 500 to 1250°C.

この際乾燥及び加熱は、数回に分割して行うこともでき
る。前記方法において、加熱工程を行うことにより、多
孔質有機質樹脂が焼失して、空孔チャンネルが連続気孔
となり、しかも加熱の際に発泡剤により発生する気孔が
、スラリー内に拘束されるので、均一な細孔を多孔質骨
格に形成することができる。
At this time, drying and heating can also be carried out in several parts. In the above method, by performing the heating step, the porous organic resin is burned out and the pore channels become continuous pores, and the pores generated by the foaming agent during heating are restrained in the slurry, so that the slurry is uniformly heated. pores can be formed in the porous framework.

〈発明の効果〉 本発明のリン酸カルシウム質多孔体骨補填材は、骨芽細
胞が多孔体中心部にまで侵入し得る連通した空孔チャン
ネル及び多孔体骨格に特定な細孔を設けているので、生
体親和性に優れており、新生骨の形成を速やかに行うこ
とができる。また、三次元方向からの機械的強度もほぼ
均等に優れているので、今後従来の多孔体骨補填材に変
っての使用が期待される。
<Effects of the Invention> The calcium phosphate porous bone grafting material of the present invention has specific pores in the porous skeleton and communicating pore channels that allow osteoblasts to penetrate into the center of the porous body. It has excellent biocompatibility and can rapidly form new bone. Furthermore, since the mechanical strength in three-dimensional directions is almost uniformly excellent, it is expected that it will be used in place of conventional porous bone grafting materials in the future.

〈実施例〉 以下本発明を実施例及び比較例により更に詳細に説明す
るが1本発明はこれらに限定されるものではない。
<Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

ス」1」Y 平均粒径2μmのヒドロキシアパタイトスラリー450
 gに1粒径1〜20μmのヒドロキシアパタイト微粉
末150g及びポリビニルアルコール粉末20gを添加
して混合した後、30重量%過酸化水素水24ccを加
えて発泡リン酸カルシウム質スラリーを調製した。次い
で得られたスラリーをウレタンホームに注入し、乾燥機
により110℃ 24時間の条件で発泡、乾燥を行った
Hydroxyapatite slurry 450 with an average particle size of 2 μm
After adding and mixing 150 g of hydroxyapatite fine powder with a particle size of 1 to 20 μm and 20 g of polyvinyl alcohol powder, 24 cc of 30% by weight hydrogen peroxide solution was added to prepare a foamed calcium phosphate slurry. Next, the obtained slurry was poured into a urethane foam, and foamed and dried in a dryer at 110° C. for 24 hours.

次に得られた乾燥物を、商品名[ボックス炉」(光性リ
ンドバーグ(株)11)の電気炉内に移し、室温〜50
0℃まで1℃/分で昇温し、続いて500〜900℃ま
で2℃/分で昇温した。その後900℃で3時間保持し
た後、5℃/分で室温まで降温し、多孔体骨補填材を得
た。得られた多孔体骨補填材中の多孔体骨格に存在する
孔径0.5μm以下の細孔の気孔率をポロシメータ(島
津製作所株式会社製)により測定したところ34.4%
であった。また全気孔(平均径100μmの連続する空
孔チャンネルと細孔との合計)の気孔率は55%であっ
た。更に得られた多孔体骨補填材を10X10X]、0
ffiに切り出し、上部、下部及び横部の3方向から力
を加えた際の圧縮強度を測定したところ、上部162.
2kg/d、下部170.0kg/ad、横部157.
7kg/fflであった。
Next, the obtained dried product was transferred to an electric furnace with the trade name "Box Furnace" (manufactured by Hikari Lindberg Co., Ltd. 11), and
The temperature was raised to 0°C at a rate of 1°C/min, and then from 500 to 900°C at a rate of 2°C/min. Thereafter, the temperature was maintained at 900° C. for 3 hours, and then the temperature was lowered to room temperature at a rate of 5° C./min to obtain a porous bone graft material. The porosity of pores with a pore diameter of 0.5 μm or less existing in the porous skeleton of the porous bone graft material obtained was measured using a porosimeter (manufactured by Shimadzu Corporation) and found to be 34.4%.
Met. The porosity of all pores (the sum of continuous pore channels and pores with an average diameter of 100 μm) was 55%. Furthermore, the obtained porous bone grafting material was 10X10X], 0
ffi was cut out and the compressive strength was measured when force was applied from three directions: the upper, lower and lateral parts, and the upper part was 162.
2kg/d, lower part 170.0kg/ad, side part 157.
It was 7 kg/ffl.

去11」象 孔径0.5μmの細孔が全気孔に対して、5%、35%
及び50%となるように調製した以外は。
11" Pores with a pore diameter of 0.5 μm account for 5% and 35% of the total pores.
and 50%.

実施例1と同様に多孔体骨補填材を製造した。次いで得
られた多孔体骨補填材を夫々0.5〜10mに粉砕し、
1.4φaIIX2.3Lcsのカラム(Pharma
cia株式会社製)に充填した後、該カラムに3T3−
E1細胞10’/ccを3代流し、通過した溶液中の細
胞の残存率を測定した。その結果を表1に示す。
A porous bone graft material was produced in the same manner as in Example 1. Next, the obtained porous bone graft material was crushed into pieces of 0.5 to 10 m,
1.4φaIIX2.3Lcs column (Pharma
After filling the column with 3T3-
E1 cells (10'/cc) were flowed for three generations, and the survival rate of cells in the passed solution was measured. The results are shown in Table 1.

ル豊舊よ 孔径0.5μmの細孔が全気孔に対して、1%、70%
となるように調製した以外は、実施例2と同様に多孔体
骨充填材を夫々製造し、試験を行った。その結果を表1
に示す。
Pores with a pore diameter of 0.5 μm account for 1% and 70% of the total pores.
Porous bone fillers were produced and tested in the same manner as in Example 2, except that they were prepared as follows. Table 1 shows the results.
Shown below.

(以下余白) 表 1 表1より、孔径0.5μmの細孔の全気孔に対する気孔
率が5〜50%の範囲では、細胞の付着性が良好である
ことが判った。
(Margin below) Table 1 From Table 1, it was found that cell adhesion was good when the porosity of pores with a pore diameter of 0.5 μm was in the range of 5 to 50% of the total pores.

失り銖主 実施例1で製造した多孔体骨補填材を5×5×5園に切
断し、ピーグル犬の脛骨に埋入した。4週間後、多孔体
骨補填材を取り出し、切断して、切断面の新生骨量をW
A察したところ、良好に新生骨が形成されていることが
判った。
The porous bone prosthesis material produced in Example 1 was cut into 5 x 5 x 5 pieces and implanted into the tibia of a Peagle dog. After 4 weeks, the porous bone graft material was removed and cut, and the amount of new bone on the cut surface was measured by W.
Upon inspection, it was found that new bone was well formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のリン酸カルシウム質多孔体骨補填材
の1部拡大断面図である。 l・・多孔体骨格、2・・空孔チャンネル、3・・細孔
。 第 図
FIG. 1 is a partially enlarged sectional view of the calcium phosphate porous bone prosthesis material of the present invention. 1. Porous body skeleton, 2. Hole channel, 3. Pore. Diagram

Claims (1)

【特許請求の範囲】[Claims] 骨芽細胞が多孔体中心部まで侵入し得る連通した空孔チ
ャンネルを有する三次元網目構造のリン酸カルシウム質
多孔体であって、該多孔体骨格に、孔径0.5μm以下
の細孔を有し、且つ該細孔の気孔率が、前記空孔チャン
ネル及び細孔の気孔全体に対して、5〜50%であるリ
ン酸カルシウム質多孔体骨補填材。
A calcium phosphate porous body with a three-dimensional network structure having communicating pore channels through which osteoblasts can penetrate to the center of the porous body, the porous body skeleton having pores with a pore diameter of 0.5 μm or less, The pores have a porosity of 5 to 50% of the total pores of the pore channels and pores.
JP1331223A 1989-12-22 1989-12-22 Calcium phosphate porous bone filter Granted JPH03191963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1331223A JPH03191963A (en) 1989-12-22 1989-12-22 Calcium phosphate porous bone filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1331223A JPH03191963A (en) 1989-12-22 1989-12-22 Calcium phosphate porous bone filter

Publications (2)

Publication Number Publication Date
JPH03191963A true JPH03191963A (en) 1991-08-21
JPH0534020B2 JPH0534020B2 (en) 1993-05-21

Family

ID=18241273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1331223A Granted JPH03191963A (en) 1989-12-22 1989-12-22 Calcium phosphate porous bone filter

Country Status (1)

Country Link
JP (1) JPH03191963A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023325A1 (en) * 2003-08-27 2005-03-17 Pentax Corporation Structural body constituted of biocompatible material impregnated with fine bone dust and process for producing the same
JP2008513161A (en) * 2004-09-21 2008-05-01 トーマス ジョセフ ラリー, Multipurpose biomaterial composition
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812649A (en) * 1981-07-15 1983-01-24 三菱鉱業セメント株式会社 Filler for bone deficient part and void part
JPS6016879A (en) * 1983-07-09 1985-01-28 住友セメント株式会社 Porous ceramic material
JPS60142857A (en) * 1983-12-29 1985-07-29 住友セメント株式会社 Bone cement composition
JPS619858A (en) * 1984-06-23 1986-01-17 Terada Denki Seisakusho:Kk Auto-reverse mechanism of magnetic tape device
JPS6222655A (en) * 1985-07-22 1987-01-30 株式会社イナックス Apatite sintered body for filling tooth and bone and its production
JPS63294864A (en) * 1987-10-23 1988-12-01 Tdk Corp Preparation of artificial bone material
JPS6449501A (en) * 1987-08-18 1989-02-27 Japan Synthetic Rubber Co Ltd Production of shoe sole
JPH01314572A (en) * 1988-06-15 1989-12-19 Asahi Optical Co Ltd Preparation of ceramic porous body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812649A (en) * 1981-07-15 1983-01-24 三菱鉱業セメント株式会社 Filler for bone deficient part and void part
JPS6016879A (en) * 1983-07-09 1985-01-28 住友セメント株式会社 Porous ceramic material
JPS60142857A (en) * 1983-12-29 1985-07-29 住友セメント株式会社 Bone cement composition
JPS619858A (en) * 1984-06-23 1986-01-17 Terada Denki Seisakusho:Kk Auto-reverse mechanism of magnetic tape device
JPS6222655A (en) * 1985-07-22 1987-01-30 株式会社イナックス Apatite sintered body for filling tooth and bone and its production
JPS6449501A (en) * 1987-08-18 1989-02-27 Japan Synthetic Rubber Co Ltd Production of shoe sole
JPS63294864A (en) * 1987-10-23 1988-12-01 Tdk Corp Preparation of artificial bone material
JPH01314572A (en) * 1988-06-15 1989-12-19 Asahi Optical Co Ltd Preparation of ceramic porous body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023325A1 (en) * 2003-08-27 2005-03-17 Pentax Corporation Structural body constituted of biocompatible material impregnated with fine bone dust and process for producing the same
JP2008513161A (en) * 2004-09-21 2008-05-01 トーマス ジョセフ ラリー, Multipurpose biomaterial composition
US10286102B2 (en) 2010-05-11 2019-05-14 Howmedica Osteonics Corp Organophosphorous, multivalent metal compounds, and polymer adhesive interpenetrating network compositions and methods

Also Published As

Publication number Publication date
JPH0534020B2 (en) 1993-05-21

Similar Documents

Publication Publication Date Title
JP3679570B2 (en) Bone prosthetic material and manufacturing method thereof
JP2001224679A (en) Porous ceramic body
US4846838A (en) Prosthetic body for bone substitute and a method for the preparation thereof
CN106946586B (en) Porous biological ceramic scaffold and preparation method thereof
JPH0154309B2 (en)
KR101268408B1 (en) Composition and Manufacturing method for porous calcium phosphate granules by physical foaming
JP4540969B2 (en) Calcium phosphate ceramic porous body and method for producing the same
CN106518143A (en) Three-dimensional connected honeycomb porous calcium phosphate ceramic artificial bone material and preparation method thereof
DE1291860B (en) Process for producing casting molds for metal casting and molding compounds for it
Karashima et al. Fabrication of low‐crystallinity hydroxyapatite foam based on the setting reaction of α‐tricalcium phosphate foam
JPH03191963A (en) Calcium phosphate porous bone filter
JPH05237178A (en) Bone supplement material and production thereof
JPH0154308B2 (en)
US8465582B2 (en) Process for producing inorganic interconnected 3D open cell bone substitutes
GB2105316A (en) Porous silicon nitride
JPWO2005039544A1 (en) Calcium phosphate ceramics porous body and method for producing the same
JP2921918B2 (en) Biomaterial with multiphase structure and method for producing the same
JP4365485B2 (en) Method for producing porous calcium phosphate ceramics
WO2020022998A1 (en) Biomimetic biomaterial and production method thereof
JP3470759B2 (en) Ceramic porous material for living body
JPH0723994A (en) Porous bone filler
Tan et al. Fabrication and histological evaluation of ant‐nest type porous carbonate apatite artificial bone using polyurethane foam as a porogen
JP2859289B2 (en) Method for producing porous ceramic material and green compact used in the method
JPWO2013035690A1 (en) Porous body and method for producing porous body
JP5783864B2 (en) Bioabsorbable implant and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees