JPH03191572A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPH03191572A
JPH03191572A JP33158089A JP33158089A JPH03191572A JP H03191572 A JPH03191572 A JP H03191572A JP 33158089 A JP33158089 A JP 33158089A JP 33158089 A JP33158089 A JP 33158089A JP H03191572 A JPH03191572 A JP H03191572A
Authority
JP
Japan
Prior art keywords
light
emitting element
refractive index
index layer
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33158089A
Other languages
Japanese (ja)
Inventor
Fumio Obara
文雄 小原
Seiji Fujino
藤野 誠二
Yukio Tsuzuki
幸夫 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP33158089A priority Critical patent/JPH03191572A/en
Publication of JPH03191572A publication Critical patent/JPH03191572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enhance a noise-resistant property and to secure a highspeed property of a signal transmission by a method wherein a plane-type light-emitting element and a plane-type photodetector are constituted in the same substrate and a light waveguide used to guide light which has been output from the light-emitting element is formed so as to be coupled to the photodetector along the upper part of the light-emitting element and the photodetector. CONSTITUTION:A plane-type light-emitting element 1 of a surface emitting type and a plane-type photodetector 2 of a surface photodetecting type are constituted in the same substrate 8 in such a way that its light-emitting face and its photodetecting face are faced in the same direction. A light waveguide which optically couples the light-emitting element chip 1 and the photodetector chip 2 is formed in such a way that the light-emitting face and the photodetecting face are covered with a laminated structure by a first low refractive-index layer 3, by a high refractive-index layer 4 and a second low refractive-index layer 3 with which the layers are covered. Thereby, the light- emitting element 1 is insulated electrically from the photodetector 2, a noise- resistant property is enhanced and a high-speed property of a signal transmission can be secured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、素子間の信号伝送に光結合を導入した光半導
体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical semiconductor device in which optical coupling is introduced for signal transmission between elements.

〔従来の技術〕[Conventional technology]

従来、電気回路間の電磁的ノイズの除去手段として、電
気信号を光信号に変換して伝送する光結合アイソレータ
(ホトカブラ)が知られている。
Conventionally, as a means for removing electromagnetic noise between electric circuits, an optical coupling isolator (photocoupler) that converts an electric signal into an optical signal and transmits the optical signal is known.

これは、第8図(a)、 (b)に示すように、発光素
子(例えばLED)と受光素子(例えばホトダイオード
)と絶縁物を介して対面固定してパッケージ内に密封す
るものであり、プリント基板上あるいはハイブリッド基
板上に実装される。
As shown in FIGS. 8(a) and 8(b), this is a device in which a light-emitting element (e.g., an LED) and a light-receiving element (e.g., a photodiode) are fixed facing each other via an insulator and sealed in a package. Mounted on a printed circuit board or hybrid board.

しかしながら、このものを高速性を要求される通信シス
テムやコンピュータ内のICに適用する場合、このホト
カプラとI10ボート用IC間の配線部がモノリシック
IC内の配線より長くなってしまうことから、耐ノイズ
性の確保が却って困難となってしまうという問題がある
However, when this product is applied to a communication system that requires high speed or an IC in a computer, the wiring between this photocoupler and the I10 board IC is longer than the wiring inside the monolithic IC, so noise resistance is required. There is a problem in that securing sex becomes even more difficult.

また、例えば特開昭63−271975号公報等には、
端面型発光素子と端面型受光素子とを光結合するように
した光電子集積回路(所謂0EIC)が開示されている
が、このものは発光素子1つに対して受光素子を1:l
に対面させる必要があり、それにより光結合構造が限定
されてしまう。
Also, for example, in Japanese Patent Application Laid-Open No. 63-271975,
An optoelectronic integrated circuit (so-called 0EIC) has been disclosed in which an edge-type light emitting element and an edge-type light receiving element are optically coupled;
This limits the optical coupling structure.

すなわち、平面型発光素子・平面型受光素子からなるホ
トカブラのように出力増幅を図って受光素子アレイを構
成することができず、出力増幅をはかるためには発光素
子の電力を大きくする必要が生し、発光素子の寿命が短
縮されるなど、経済的損失が発生する。
In other words, it is not possible to construct a light-receiving element array by amplifying the output like in a photocoupler consisting of a flat light-emitting element and a flat light-receiving element, and in order to amplify the output, it is necessary to increase the power of the light-emitting elements. However, economic losses occur, such as the life of the light emitting element being shortened.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記問題に鑑みてなされたものであり、発光
・受光素子間の電気絶縁化により耐ノイズ性を向上させ
るとともに、信号伝送の高速性が確保できるコンパクト
な光半導体装置を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a compact optical semiconductor device that improves noise resistance by electrically insulating between light-emitting and light-receiving elements, and can ensure high-speed signal transmission. With the goal.

(課題を解決するための手段) 上記目的を達成するために、本発明による光半導体装置
は、 同一基板に、面発光型の平面型発光素子と、面受光型の
平面型受光素子とが、それぞれ発光面。
(Means for Solving the Problems) In order to achieve the above object, an optical semiconductor device according to the present invention includes a surface-emitting planar light-emitting element and a surface-receiving planar light-receiving element on the same substrate. Each light emitting surface.

受光面を同一方向に面するようにして構成され、前記平
面型発光素子の発光面から出力する光を前記発光面と前
記受光面とが為す面に沿って前記平面型受光素子の受光
面へと導く光導波路が、前記基板上において少なくとも
前記平面型発光素子の発光面と前記平面型受光素子の受
光面とを覆着するようにして形成されていることを特徴
とする。
The light receiving surface is configured to face the same direction, and the light output from the light emitting surface of the planar light emitting element is directed to the light receiving surface of the planar light receiving element along a plane formed by the light emitting surface and the light receiving surface. An optical waveguide is formed on the substrate so as to cover at least the light emitting surface of the planar light emitting element and the light receiving surface of the planar light receiving element.

〔実施例〕〔Example〕

以下、本発明を図に示す実施例について説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention shown in the drawings will be described.

第1図(a)、 (b)に本発明第1実施例の構成を示
す。
FIGS. 1(a) and 1(b) show the configuration of a first embodiment of the present invention.

第1図(a)は本発明第1実施例の構成を示す断面図、
第1図(b)はその平面図である。
FIG. 1(a) is a sectional view showing the configuration of the first embodiment of the present invention,
FIG. 1(b) is a plan view thereof.

第1図(a)、(ハ)において、8は平面型発光素子チ
ップ1 (例えば発光ダイオードLED)および平面型
受光素子チップ2(例えばホトダイオード)を埋め込ん
で複合集積化するためのSi基板である。なお、このS
i基板8は異方性エツチングが可能な面方位(100)
、(110)等の基板を用いることが望ましい。また、
このSi基板8には発光素子1の駆動回路や信号処理回
路等の電子回路が作り込まれていてもよい。
In FIGS. 1(a) and 1(c), 8 is a Si substrate for embedding a flat light emitting element chip 1 (e.g. a light emitting diode LED) and a flat light receiving element chip 2 (e.g. a photodiode) for composite integration. . Furthermore, this S
The i-substrate 8 has a surface orientation (100) that allows anisotropic etching.
, (110), etc. are preferably used. Also,
Electronic circuits such as a drive circuit for the light emitting element 1 and a signal processing circuit may be built into the Si substrate 8.

さらに、このSi基板8には、アルカリ溶液を用いた異
方性エツチングによりチップ1および2を埋め込むため
のテーバ状の凹部13が形成されている。この凹部I3
の深さはチップ1.2の厚み程度とされており、該凹部
13の底部の形状はチップ1および2の底部と同形状、
あるいは数μm程度大きめの形状に形成されている。チ
ップ1および2は、テーパ穴13内に接合部材10によ
り固定される。なお、接合部材10は必要に応じて導電
性のものを用いてもよい。
Furthermore, a tapered recess 13 for embedding the chips 1 and 2 is formed in the Si substrate 8 by anisotropic etching using an alkaline solution. This recess I3
The depth of the recess 13 is approximately the thickness of the chip 1.2, and the bottom of the recess 13 has the same shape as the bottom of the chips 1 and 2.
Alternatively, it is formed in a larger shape by several μm. Chips 1 and 2 are fixed in tapered hole 13 by joining member 10 . Note that the joining member 10 may be electrically conductive if necessary.

Si基板8とチップ1および2の間に生じた溝11は、
平坦化材料7により溝環めされ、それにより基板8表面
を平坦化している。
The groove 11 created between the Si substrate 8 and the chips 1 and 2 is
The groove is surrounded by a flattening material 7, thereby flattening the surface of the substrate 8.

発光素子チップ1および受光素子チップ20表面には、
例えば窒化ケイ素による保護膜12が形成されている。
On the surfaces of the light emitting element chip 1 and the light receiving element chip 20,
For example, a protective film 12 made of silicon nitride is formed.

発光素子チップ1と受光素子チップ2を光結合する光導
波路は、第1低屈折率層3と高屈折率層4およびこの3
,4を覆着する第2低屈折率層5との積層構造により形
成されている。なお、前述の保護膜12の屈折率は光導
波層を形成する高屈折率層4の屈折率より大きいもの、
あるいは等しいものとされている。また、第1.第2低
屈折率層3,5の屈折率は中間層である高屈折率N4の
屈折率より小さいものであり、これら第1.第2低屈折
率層3,5を同材質により構成するようにしてもよい。
The optical waveguide that optically couples the light emitting element chip 1 and the light receiving element chip 2 includes a first low refractive index layer 3, a high refractive index layer 4, and
, 4 and a second low refractive index layer 5 covering them. Note that the refractive index of the above-mentioned protective film 12 is greater than the refractive index of the high refractive index layer 4 forming the optical waveguide layer;
Or they are considered to be equal. Also, 1st. The refractive index of the second low refractive index layers 3 and 5 is smaller than the refractive index of the high refractive index N4 which is the intermediate layer. The second low refractive index layers 3 and 5 may be made of the same material.

表1に保護膜12.光導波路の各層の組み合わせ例を示
す。
Table 1 shows the protective film 12. Examples of combinations of each layer of an optical waveguide are shown.

(以下余白) 表 1 なお、前述の接合部材1oはチップ1,2とS基板8を
接着できるものであれば何でもよいが、配線6の材1!
4(例えばアルミニウム)に対する加熱限界温度(50
0°C)等を考慮した素子の耐熱温度以下で処理可能で
、さらに第1.第2低屈折率N3,5、高屈折率層4、
保護膜12等の形成温度(350〜400°C)等を考
慮して、耐熱温度の高い材料、例えばポリイミド樹脂、
Au−3共晶、ハンダ等が望ましい。また、配L?i 
6の材質は、千ツブ1および2と基板間の電気的結合が
できるものであれば何でもよく、例えばAu、M。
(Margin below) Table 1 The above-mentioned bonding member 1o may be any material as long as it can bond the chips 1, 2 and the S-board 8, but the material 1 for the wiring 6!
Heating limit temperature (50
It can be processed at temperatures below the heat-resistant temperature of the element, taking into consideration factors such as 0°C), and the first. second low refractive index N3,5, high refractive index layer 4,
Considering the formation temperature (350 to 400°C) of the protective film 12, etc., materials with high heat resistance, such as polyimide resin,
Au-3 eutectic, solder, etc. are preferable. Also, distribution L? i
The material 6 may be any material as long as it allows electrical connection between the tubes 1 and 2 and the substrate, such as Au or M.

! ! W、Al、Cu等が用いられる。また、平坦化材料7は
容易に溝11に充填でき、電気的に絶縁性のものであれ
ばよく、例えばポリイミド樹脂のように接合部材10と
同様の熱特性を持つものが望ましい。
! ! W, Al, Cu, etc. are used. Further, the flattening material 7 may be any material as long as it can be easily filled into the groove 11 and is electrically insulating. For example, a material having the same thermal properties as the bonding member 10, such as polyimide resin, is preferable.

次に、第1図(a)、 (b)に示す光半導体装置をそ
の製造工程に従って説明する。第2図(a)〜(e)は
製造工程を説明するための断面図である。
Next, the optical semiconductor device shown in FIGS. 1(a) and 1(b) will be explained according to its manufacturing process. FIGS. 2(a) to 2(e) are cross-sectional views for explaining the manufacturing process.

まず、第2図(a)に示すように必要な電子回路を作り
込んだ面方位(100)のSi基板8の主表面上の所定
領域に酸化シリコン膜(Sing)あるいは窒化シリコ
ン膜(SiNx)12を形成し、所望のバターニングを
行う。これをマスクとして水酸化カリウム(KOH)等
による異方性エツチングにより、第2図(b)に示すテ
ーパ状の凹部13を形成する。なお、ここで用いるSi
基板は前述の如<(110)面のものであってもよい。
First, as shown in FIG. 2(a), a silicon oxide film (Sing) or a silicon nitride film (SiNx) is deposited on a predetermined area on the main surface of a Si substrate 8 with a plane orientation (100) on which necessary electronic circuits have been fabricated. 12 and perform desired patterning. Using this as a mask, anisotropic etching is performed using potassium hydroxide (KOH) or the like to form a tapered recess 13 as shown in FIG. 2(b). Note that Si used here
The substrate may have the (110) plane as described above.

また、基板8裏面から電極をとり出す場合には、不純物
を高濃度に拡散したP″層等を予め基板裏面に設けてお
く。
Further, when an electrode is taken out from the back surface of the substrate 8, a P'' layer or the like in which impurities are diffused at a high concentration is provided on the back surface of the substrate in advance.

次に、第2図(C)にしめずように、テーパ状凹部13
の底面に発光素子チップ1および受光素子チップ2を接
合部材10により接着する。このときチップ1.2表面
には保護膜12(例えばプラズマ窒化ケイ素膜)が形成
されている。なお、発光素子チップ1側の接合部材10
′は、発光素子の電極を取り出すため、本例では導電性
のもの(例えばAu−Si共品ハンダ、導電性ポリイミ
ド等)を使用している。一方、受光素子チップ2側の接
合部材10は、電気絶縁性のもの(ポリイミド樹脂等)
を用い、発光素子側回路と受光素子側回路とは電気的に
分離(なお、基板作り込み素子はpn接合による素子分
離)されている。
Next, as shown in FIG. 2(C), the tapered recess 13
A light-emitting element chip 1 and a light-receiving element chip 2 are bonded to the bottom surface of the substrate using a bonding member 10. At this time, a protective film 12 (for example, a plasma silicon nitride film) is formed on the surface of the chip 1.2. Note that the joining member 10 on the light emitting element chip 1 side
In this example, a conductive material (for example, Au-Si solder, conductive polyimide, etc.) is used in order to take out the electrode of the light emitting element. On the other hand, the bonding member 10 on the light receiving element chip 2 side is made of electrically insulating material (polyimide resin, etc.)
The circuit on the light emitting element side and the circuit on the light receiving element side are electrically separated (the elements built into the substrate are separated by a pn junction).

この後、第2図(d)に示すように、埋め込んだチップ
1゜2と基板の凹部13との間に残された溝11を絶縁
性の平坦化材料7(例えばポリイミド樹脂等)で埋め込
み、チップ上電極9および基板上電極9′を配線6で接
続する。なお、配線6は例えばA!蒸着膜等のフォトリ
ソグラフィで形成するか、メツキ処理にて形成すればよ
い。
After this, as shown in FIG. 2(d), the groove 11 left between the embedded chip 1゜2 and the recess 13 of the substrate is filled with an insulating flattening material 7 (for example, polyimide resin, etc.). , the electrode 9 on the chip and the electrode 9' on the substrate are connected by a wiring 6. Note that the wiring 6 is, for example, A! It may be formed by photolithography, such as a vapor deposition film, or by plating.

更に、この表面に第2図(e)に示す如く光導波路を形
成する。まず、発光素子1および受光素子2上で光が入
射あるいは出射する領域を除いて、まず第1低屈折率層
3を形成する。このとき配線6の保護膜として3′を同
時に形成してもよい。第1低屈折率層3は、プラズマC
VD法等により、表1に示した材料を成膜した後、フォ
トリソグラフィ法により所望の形状にパターニングする
ことで形成できる。次に、この第1低屈折率113上に
、この第1低屈折率Ji13よりも屈折率が大きい材料
(表1参照)により高屈折率層4を形成し、さらに、こ
の第1低屈折率層3、高屈折率層4上に第2低屈折率層
5を同様に所望の形状にして形成する。なお、このよう
に光導波路を構成した時、高屈折率層側から低屈折率層
側へ光が入射する場合、入射角が臨界角θC以下ならば
全反射し、方、逆の場合、全反射現象は起こらない。臨
界角θCは次式で表される。
Furthermore, an optical waveguide is formed on this surface as shown in FIG. 2(e). First, the first low refractive index layer 3 is formed on the light emitting element 1 and the light receiving element 2 except for the areas where light enters or exits. At this time, 3' may be formed as a protective film for the wiring 6 at the same time. The first low refractive index layer 3 is made of plasma C
It can be formed by forming a film of the materials shown in Table 1 using a VD method or the like, and then patterning it into a desired shape using a photolithography method. Next, on this first low refractive index 113, a high refractive index layer 4 is formed of a material having a higher refractive index than this first low refractive index Ji13 (see Table 1), and further, this first low refractive index layer 4 is A second low refractive index layer 5 is similarly formed in a desired shape on the layer 3 and the high refractive index layer 4. When the optical waveguide is configured in this way, when light is incident from the high refractive index layer side to the low refractive index layer side, if the incident angle is less than the critical angle θC, it will be totally reflected; No reflex phenomenon occurs. The critical angle θC is expressed by the following formula.

ここで、nlは高屈折率層の屈折率、n!は低屈折率層
の屈折率である。
Here, nl is the refractive index of the high refractive index layer, and n! is the refractive index of the low refractive index layer.

効率的な光伝搬のためには、保護膜12の屈折率npと
高屈折率層4の屈折率n1の差は界面での反射が低くな
るため、小さい程よい。また、高屈折率層と低屈折率層
において、その屈折率の差は臨界角θCが大きくなるよ
うに、大きいほどよい。
For efficient light propagation, the smaller the difference between the refractive index np of the protective film 12 and the refractive index n1 of the high refractive index layer 4 is, the better, since reflection at the interface is reduced. Further, the difference in refractive index between the high refractive index layer and the low refractive index layer is preferably as large as possible so that the critical angle θC becomes large.

なお、表1に示す組み合わせ例では、θC=46.0度
、54.9度となる。
In addition, in the combination example shown in Table 1, θC=46.0 degrees and 54.9 degrees.

ここで、発光素子チンプ1からの光は発光部より指向性
が弱く、放射状に発せられているため、光導波路、すな
わち高屈折率層4への入射角は画一でなく数度〜90度
と多岐にわたり、臨界角θCを超えて入射する光がある
ことも考察される。臨界角θCを超えて入射する光は、
第2低屈折率層5を通過して外部へ放出してしまうこと
になる。
Here, since the light from the light emitting element chimp 1 has weaker directivity than the light emitting part and is emitted radially, the angle of incidence on the optical waveguide, that is, the high refractive index layer 4 is not uniform, but from several degrees to 90 degrees. It is also considered that there is light that enters beyond the critical angle θC. The light incident beyond the critical angle θC is
The light passes through the second low refractive index layer 5 and is emitted to the outside.

そこで、本実施例では、この第2低屈折率層5を通り抜
けた光が迷光となり、他素子特性に悪影響を及ぼす場合
や光伝搬効率が不足する場合を想定して、第2低屈折率
N5の表面上に金属反射膜14を形成している。この金
属反射膜14はアルミ蒸着膜にて形成するようにすれば
よい。
Therefore, in this embodiment, the second low refractive index layer N5 A metal reflective film 14 is formed on the surface. This metal reflective film 14 may be formed of an aluminum vapor-deposited film.

以上のように構成することにより、発光素子1から発せ
られた光を、高屈折率114と第1および第2低屈折率
層3,5の界面で反射を繰り返しさせながら、高屈折率
層4内を通って受光素子2へと至るように光結合させた
光半導体装置が製造される。ここで、高屈折率層4と第
1、第2低屈折率N3,5からなる光導波路はモノリシ
ックに形成され、光透過性材料のパターニングという非
常に簡単な工程で形成できる。さらに、本例による光半
導体装置はプレーナ形であり、モノリシック並の高密度
集積が可能であるため、これを各種電子回路の入出力部
と結合すべく形成すれば、耐ノイズ特性に優れたものを
コンパクトに実現できる。
With the above configuration, the light emitted from the light emitting element 1 is repeatedly reflected at the interface between the high refractive index 114 and the first and second low refractive index layers 3 and 5, while the high refractive index layer 4 An optical semiconductor device that is optically coupled to the light-receiving element 2 through the inside is manufactured. Here, the optical waveguide consisting of the high refractive index layer 4 and the first and second low refractive index layers N3 and 5 is formed monolithically, and can be formed by a very simple process of patterning a light-transmitting material. Furthermore, since the optical semiconductor device according to this example is planar and can be integrated at a high density comparable to that of a monolith, if it is formed to be connected to the input/output section of various electronic circuits, it will have excellent noise resistance characteristics. can be realized compactly.

さらに、本例によれば、金属反射膜14により光を密閉
するようにしているため、他信号回路への迷光の心配が
なく、信号ラインの多チャネル化にも容易に対応可能で
ある。
Furthermore, according to this example, since the metal reflective film 14 seals the light, there is no worry of stray light entering other signal circuits, and it is possible to easily accommodate multi-channel signal lines.

次に、本発明第2実施例について説明する。Next, a second embodiment of the present invention will be described.

上記第1実施例では発光素子lおよび受光素子をチップ
状態で基板8に埋め込むようにして集積化するものであ
ったが、これら各素子のうち少なくとも一方が予め基板
8に作り込まれているようにしたものであってもよい。
In the first embodiment, the light-emitting element l and the light-receiving element are integrated by being embedded in the substrate 8 in the form of a chip. It may also be a

−例として、受光素子2が基板8内に作り込まれている
ものを第3図(a)、 (b)に示す。
- As an example, FIGS. 3(a) and 3(b) show an example in which the light receiving element 2 is built into the substrate 8.

また、上記第1実施例では光を屈折率の差により全反射
させて導波するものであったが、第3図(a)、 (b
)に示すものは、光反射膜により光を光透過材料の中に
閉じ込めて伝送するものである。以下、第3図(a)、
 (b)に示すものの光導波路の構成例について説明す
る。第3図(a)、 (b)において、3′および5′
は光反射膜を形成する金属膜であり、例えば、11蒸着
膜(反射率90%以上)にて形成されている。また、4
′は無機材膜あるいは透光性ポリイミド樹脂膜等の光透
過材料よりなる光導波層であり、望ましくは発光素子チ
ップ1、基板8の保護膜12と近似の屈折率をもつ光透
過材料より構成される。また、15は同じく光透過性の
絶縁膜で、保護膜12と同じ材質であっても、さらには
基板8の保護膜12と同時に形成するようにしてもよい
Furthermore, in the first embodiment, the light is guided by total reflection due to the difference in refractive index;
) is one in which light is transmitted by confining it in a light-transmitting material using a light-reflecting film. Below, Figure 3(a),
An example of the configuration of the optical waveguide shown in (b) will be explained. In Figures 3(a) and (b), 3' and 5'
is a metal film forming a light reflecting film, and is formed of, for example, a 11 vapor deposited film (reflectance of 90% or more). Also, 4
′ is an optical waveguide layer made of a light-transmitting material such as an inorganic film or a transparent polyimide resin film, preferably made of a light-transmitting material having a refractive index similar to that of the protective film 12 of the light emitting element chip 1 and the substrate 8. be done. Further, 15 is a light-transmissive insulating film, which may be made of the same material as the protective film 12, or may be formed simultaneously with the protective film 12 of the substrate 8.

なお、上記第3図(a)、 (b)に示すものは、先導
波層4′中を上下に形成された光反射膜3’、5’の金
属面での反射を用いて光を伝送するものであるが、金属
面で反射する際に若干の光吸収があり、光伝搬効率は上
記第1実施例のものに比べやや劣るが、発光・受光素子
1. 2間距離が数鴫程度であれば問題はない。
Note that the devices shown in FIGS. 3(a) and 3(b) transmit light by using reflection on the metal surfaces of light reflecting films 3' and 5' formed above and below in the leading wave layer 4'. However, there is some light absorption when reflected by the metal surface, and the light propagation efficiency is slightly inferior to that of the first embodiment. There is no problem if the distance between the two is about a few feet.

次に、本発明第3実施例を第4図に示す。上記第1、第
2実施例では発光素子lと受光素子2の電気的分離を半
導体のp−n接合で行っている。
Next, a third embodiment of the present invention is shown in FIG. In the first and second embodiments described above, the light emitting element 1 and the light receiving element 2 are electrically separated by a semiconductor pn junction.

しかしながら、その場合、高耐圧の絶縁が困難であるた
め、本第3実施例では第4図に示すようにp゛のSi基
板8aとSt基板8とをStow膜16を介して直接接
合して、発光素子チップ1裏面の発光素子の電極部とな
る導電性接合部材10′領域を除いたSol基板により
高耐圧化を実現している。
However, in that case, it is difficult to insulate with high voltage resistance, so in the third embodiment, as shown in FIG. A high withstand voltage is achieved by using the Sol substrate excluding the region of the conductive bonding member 10' which becomes the electrode part of the light emitting element on the back surface of the light emitting element chip 1.

また、基板8に埋め込む半導体チップは、上記種々の実
施例においては発光素子あるいは受光素子単体のチップ
であったが、これら各素子の他に信号処理回路等の周辺
回路が作り込まれたチップであってもよい。第5図には
、本発明第4実施例として、受光素子側の半導体チップ
2′が、受光素子と周辺回路とが作り込まれたものであ
る例を示す。
Further, the semiconductor chip embedded in the substrate 8 is a chip with a single light emitting element or a light receiving element in the various embodiments described above, but it is also a chip in which a peripheral circuit such as a signal processing circuit is built in addition to each of these elements. There may be. FIG. 5 shows a fourth embodiment of the present invention in which a semiconductor chip 2' on the light receiving element side has a light receiving element and a peripheral circuit built therein.

また、上記種々の実施例ではSi基板8内へ半導体チッ
プを埋め込んで集積化するものであったが、第6図の本
発明第5実施例に示すように、平板状のSi基板8上に
発光素子1、受光素子2等の各半導体チップを敷きつめ
るようにして集積化してもよく、このものは上記種々の
実施例よりも高密度に集積可能である。なお、この場合
、光導波路を構成する前に、半導体チップ間溝をポリイ
ミド樹脂等の平坦化材料により平坦化するようにしてお
くとよい。半導体チップ間は、平坦化材料の有する表面
張力により良好に平坦化材料を架けることができ、容易
に平坦化することができる。
In addition, in the various embodiments described above, semiconductor chips were integrated by embedding them in the Si substrate 8, but as shown in the fifth embodiment of the present invention shown in FIG. The semiconductor chips such as the light-emitting element 1 and the light-receiving element 2 may be integrated by laying them one on top of the other, and this can be integrated at a higher density than in the various embodiments described above. In this case, it is preferable to flatten the groove between the semiconductor chips with a flattening material such as polyimide resin before constructing the optical waveguide. The surface tension of the planarization material allows the planarization material to be satisfactorily spread between the semiconductor chips, and the semiconductor chips can be easily planarized.

次に、本発明第6実施例を第7図(a)、 (b)を用
いて説明する。第7図(a)は本発明第6実施例の断面
図、同図(b)はその平面図である。上記種々の実施例
では、発光素子と受光素子を1:1に光結合するもので
あったが、本例は受光素子をアレイ状に配列するように
したものである。これは、受光素子2からの起電圧が一
つの受光素子だけでは不足する場合に対応したものであ
り、一つの発光素子1と複数の受光素子2を光結合させ
て、各々の受光素子2を配線6により直列接続しており
、起電圧の増幅を実現することができる。また、受光素
子とアレイ状に配列しても、基板上に構成された光導波
路はモノリシックに形成されているので、高密度に集積
可能であり、また、アレイを構成する光導波路も光透過
材料のパターニングで形成できるため、製造工程が複雑
化することもない。
Next, a sixth embodiment of the present invention will be explained using FIGS. 7(a) and 7(b). FIG. 7(a) is a sectional view of a sixth embodiment of the present invention, and FIG. 7(b) is a plan view thereof. In the various embodiments described above, the light-emitting element and the light-receiving element are optically coupled in a 1:1 ratio, but in this example, the light-receiving elements are arranged in an array. This corresponds to the case where the electromotive force from the light receiving element 2 is insufficient for only one light receiving element, and one light emitting element 1 and a plurality of light receiving elements 2 are optically coupled to each other. They are connected in series through wiring 6, and can amplify the electromotive voltage. Furthermore, even when arranged in an array with photodetectors, the optical waveguides configured on the substrate are monolithically formed, so they can be integrated at high density, and the optical waveguides that make up the array can also be made of light-transmitting material Since it can be formed by patterning, the manufacturing process does not become complicated.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明による光半導体装置は、平
面型発光素子と平面型受光素子とを同一基板に構成し、
発光素子から出力された光を導く光導波路を、これら発
光・受光素子あるいは基板上に沿って受光素子に結合す
べく形成されているために、発光・受光素子間の電気絶
縁化により耐ノイズ性を向上させるとともに、信号伝送
の高速性が確保でき、しかもコンパクトに形成できると
いう優れた効果がある。
As detailed above, the optical semiconductor device according to the present invention includes a planar light emitting element and a planar light receiving element on the same substrate,
Since the optical waveguide that guides the light output from the light emitting element is formed to couple to the light emitting/receiving element or the light receiving element along the substrate, noise resistance is improved by electrically insulating the light emitting/receiving element. It has the excellent effect of improving speed, ensuring high-speed signal transmission, and being able to be formed compactly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)はそれぞれ本発明第1実施例の
断面図、平面図、第2図(a)〜(e)は本発明第1実
施例の製造工程順の断面図、第3図(a)、■)はそれ
ぞれ本発明第2実施例の断面図、平面図、第4図は本発
明第3実施例の断面図、第5図は本発明第4実施例の断
面図、第6図は本発明第5実施例の断面図、第7図(a
)、 (b)はそれぞれ本発明第6実施例の断面図、平
面図、第8図(a)、 (b)は従来の光結合アイソレ
ータの構造を示す斜視図、断面図である。 l・・・発光素子、2・・・受光素子、3・・・第1低
屈折率層、3′・・・光反射膜、4・・・高屈折率層、
4′・・・光導波層、5・・・第2低屈折率層、5′・
・・光反射膜。 6・・・配線、7・・・平坦化材料、8.8a・・・S
t基板。 lO・・・絶縁性接合部材、10’・・・導電性接合部
材。 13・・・凹部、16・・・Sin、膜。
FIGS. 1(a) and 1(b) are a sectional view and a plan view of the first embodiment of the present invention, respectively, and FIGS. 2(a) to (e) are sectional views of the first embodiment of the present invention in the order of manufacturing steps. 3(a) and ■) are a cross-sectional view and a plan view of the second embodiment of the present invention, FIG. 4 is a cross-sectional view of the third embodiment of the present invention, and FIG. 5 is a cross-sectional view of the fourth embodiment of the present invention. Figure 6 is a sectional view of the fifth embodiment of the present invention, and Figure 7 (a
) and (b) are a cross-sectional view and a plan view of the sixth embodiment of the present invention, respectively, and FIGS. 8(a) and (b) are a perspective view and a cross-sectional view showing the structure of a conventional optical coupling isolator. l... Light emitting element, 2... Light receiving element, 3... First low refractive index layer, 3'... Light reflecting film, 4... High refractive index layer,
4'... Optical waveguide layer, 5... Second low refractive index layer, 5'...
...Light reflective film. 6... Wiring, 7... Flattening material, 8.8a...S
t board. 10: Insulating joining member, 10': Conductive joining member. 13... Concavity, 16... Sin, film.

Claims (1)

【特許請求の範囲】[Claims]  同一基板に、面発光型の平面型発光素子と、面受光型
の平面型受光素子とが、それぞれ発光面、受光面を同一
方向に面するようにして構成され、前記平面型発光素子
の発光面から出力する光を前記発光面と前記受光面とが
為す面に沿って前記平面型受光素子の受光面へと導く光
導波路が、前記基板上において少なくとも前記平面型発
光素子の発光面と前記平面型受光素子の受光面とを覆着
するようにして形成されていることを特徴とする光半導
体装置。
A surface-emitting planar light-emitting element and a surface-receiving planar light-receiving element are configured on the same substrate with their light-emitting and light-receiving surfaces facing in the same direction, and the light-emitting element of the planar light-emitting element An optical waveguide that guides light output from a surface to a light-receiving surface of the planar light-receiving element along a plane formed by the light-emitting surface and the light-receiving surface is provided on the substrate at least between the light-emitting surface of the planar light-emitting element and the light-receiving surface of the planar light-receiving element. An optical semiconductor device characterized in that it is formed so as to cover a light-receiving surface of a flat type light-receiving element.
JP33158089A 1989-12-21 1989-12-21 Optical semiconductor device Pending JPH03191572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33158089A JPH03191572A (en) 1989-12-21 1989-12-21 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33158089A JPH03191572A (en) 1989-12-21 1989-12-21 Optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH03191572A true JPH03191572A (en) 1991-08-21

Family

ID=18245243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33158089A Pending JPH03191572A (en) 1989-12-21 1989-12-21 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH03191572A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232126A (en) * 1993-02-03 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor circuit device and manufacture thereof
US5438210A (en) * 1993-10-22 1995-08-01 Worley; Eugene R. Optical isolation connections using integrated circuit techniques
JP2005327808A (en) * 2004-05-12 2005-11-24 Tohoku Univ Semiconductor device
JP2008170776A (en) * 2007-01-12 2008-07-24 Fujikura Ltd Optical transmitter-receiver
WO2008093880A1 (en) * 2007-02-02 2008-08-07 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
WO2008123020A1 (en) * 2007-03-09 2008-10-16 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
CN114460683A (en) * 2020-11-10 2022-05-10 中国科学院半导体研究所 Microwave photon on-chip system based on optical core particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232126A (en) * 1993-02-03 1994-08-19 Nippon Telegr & Teleph Corp <Ntt> Composite semiconductor circuit device and manufacture thereof
US5438210A (en) * 1993-10-22 1995-08-01 Worley; Eugene R. Optical isolation connections using integrated circuit techniques
JP2005327808A (en) * 2004-05-12 2005-11-24 Tohoku Univ Semiconductor device
JP2008170776A (en) * 2007-01-12 2008-07-24 Fujikura Ltd Optical transmitter-receiver
WO2008093880A1 (en) * 2007-02-02 2008-08-07 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
US8188497B2 (en) 2007-02-02 2012-05-29 Sanyo Semiconductor Co., Ltd. Semiconductor device and method of manufacturing the same
JP5295783B2 (en) * 2007-02-02 2013-09-18 セミコンダクター・コンポーネンツ・インダストリーズ・リミテッド・ライアビリティ・カンパニー Semiconductor device
WO2008123020A1 (en) * 2007-03-09 2008-10-16 Sanyo Electric Co., Ltd. Semiconductor device and method for manufacturing the same
US7855425B2 (en) 2007-03-09 2010-12-21 Sanyo Electric Co., Ltd. Semiconductor device and method of manufacturing the same
CN114460683A (en) * 2020-11-10 2022-05-10 中国科学院半导体研究所 Microwave photon on-chip system based on optical core particles

Similar Documents

Publication Publication Date Title
TWI436114B (en) Transmitter module and receiver module with optical waveguide structure
JP5148045B2 (en) Optocoupler and optocoupler manufacturing method
JP2557324B2 (en) Reflected light barrier and method of manufacturing the same
KR101240558B1 (en) Multi-chip with optical interconnection
JPS6256908A (en) Optical element package
US7290942B2 (en) Optical transceiver modules
US5654559A (en) Optical coupling device and method for manufacturing the same
TWI446036B (en) Optical transmission module
TW200304186A (en) Semiconductor device
US20210320718A1 (en) Optically-enhanced multichip packaging
JP2020086046A (en) Semiconductor module and manufacturing method of the same, and communication method using semiconductor module
US11137560B2 (en) Semiconductor module, manufacturing method thereof, and communication method using the same
KR20100094463A (en) Side-emitting led light source for backlighting applications
JPH03191572A (en) Optical semiconductor device
US7217957B2 (en) Optical transmission module
KR100452136B1 (en) Architecture of optical interconnection using optical connection rods in waveguide-embedded multi-layer circuit board
CN101128761A (en) Vertical stacking of multiple integrated circuits including SOI-based optical components
JPH1152198A (en) Optical connecting structure
JP2005070158A (en) Optical waveguide substrate and manufacturing method therefor
TWI776195B (en) light-receiving element unit
JP2011009559A (en) Light-emitting device
JPS5939085A (en) Mounting of optical integrated circuit
JP4307902B2 (en) Optical element mounting package, opto-electric composite mounting wiring board
TWI831270B (en) Electronic device
KR20030075487A (en) Architecture of chip-to-chip optical interconnection using waveguides and microlenses