JPH0319127A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0319127A
JPH0319127A JP1154061A JP15406189A JPH0319127A JP H0319127 A JPH0319127 A JP H0319127A JP 1154061 A JP1154061 A JP 1154061A JP 15406189 A JP15406189 A JP 15406189A JP H0319127 A JPH0319127 A JP H0319127A
Authority
JP
Japan
Prior art keywords
iron oxide
oxide powder
magnetic
recording medium
ferromagnetic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1154061A
Other languages
Japanese (ja)
Inventor
Nobuo Yamazaki
信夫 山崎
Koichi Masaki
幸一 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP1154061A priority Critical patent/JPH0319127A/en
Publication of JPH0319127A publication Critical patent/JPH0319127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the magnetic recording medium which has excellent electromagnetic conversion characteristics and the good stability of the characteristics with time by subjecting ferromagnetic iron oxide powder having a high ratio of Fe<2+> to a surface treatment with a specific compd. CONSTITUTION:This recording medium has the magnetic layer essentially consisting of the ferromagnetic iron oxide powder and a binder resin on a nonmagnetic base. The ferromagnetic iron oxide powder has 35 to 60m<2>/gram specific surface area and 0.1 to 0.45 Fe<2+>/Fe<3+>. The particle surfaces are subjected to the surface treatment with the compd. contg. at least one kind of elements among Al, Si Ca, and Ti. The magnetic recording medium having the large output, the small noises, the excellent electromagnetic conversion characteristics and the excellent stability of the characteristics with time is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、強磁性酸化鉄粉末及び結合剤樹脂を主体とす
る磁性層を有する磁気記録媒体に関し、特に、電磁変性
特性の高い磁気記録媒体に関する.〔従来技術及びその
問題点〕 一般にオーディオ用、ビデオ用あるいはコンピューター
用等の磁気記録媒体としてγ−Fe.O,、Co含有磁
性酸化鉄、CrOz、α一Fe等の針状結晶から威る強
磁性粉末を結合剤樹脂中に分散させた磁性層を非磁性支
持体上に有する磁気記録媒体が従来より広く用いられて
いる. 前記強磁性粉末のなかでも、強磁性酸化鉄粉末は、他の
CrO.や強磁性金属粉末よりも化学的に安定であり、
安全でかつ安価であるのでオーディオ用に、ビデオ用に
広く使用されている.最近、磁気記録媒体に対しては、
より高密度記録への要求が高まり、従来から使用されて
いる強磁性粉末をさらに微粒子化したものが使用される
ようになってきている.特にビデオテープ用途において
は記録波長を短くしたりトラック巾を狭くするなどの方
法の利用に伴い、非常に高密度の記録を行うことが必要
になり、従来よりさらに微粒子化された強磁性粉末を用
いたビデオテーブが使用されるようになってきている. 例えばBET法比表面積で30m2/g以上の微粒子化
された強磁性酸化鉄粉末を使用し、且つ磁性層のBn.
(飽和磁束密度)を高めることによりノイズを低下しか
つ出力を高めて磁気記録媒体の電磁変換特性を向上させ
ることができる.しかしながら、微粒子化された強磁性
酸化鉄粉末は、そのσS(単位重量当たりの磁束密度)
が粒子表面の結晶性が低下するために比表面積の増加に
ともない低下する.一方強磁性酸化鉄粉末のσSはFe
2+/Fe3+の増加(マグネタイトに近ずける)で大
きくなることが知られている.さらにFeh/ F e
 3+を増加させることにより磁気テープの光透過率が
低下するので、そのため、光透過率の低下の為に磁性層
中に添加するカーボン等の非磁性粉体の添加量を少なく
することができる、高Bm化が図られる.しかしながら
、強磁性酸化鉄粉末のFe2+/Fe3+を増加させる
と磁気的な安定性が低下して、磁気記録媒体のHc変化
が大きくなり、この変化に伴ない電磁変換特性も不安定
になるという問題があり、Fe”/Fe3+の大きい、
強磁性酸化鉄粉末を用いた磁気記録媒体は、広く使用さ
れなかった. 従来、磁性層のBmを高める方法としては強い分散や高
圧力でのカレンダー処理を行う事が知られているが、強
磁性粉末粒子の破壊による磁気テープのBr(残留磁束
密度)の低下、また、生産性が落ちるとかコストが大き
くなる等の弊害があった. 〔発明が解決しようとする問題点〕 本発明は、前記従来技術の問題点に鑑みなされたもので
あり、電磁変換特性に優れ、かつ特性の経時安定性のよ
い磁気記録媒体を提供することを目的としている. 〔問題魚を解決する手段〕 本発明の前記目的は、非磁性支持体上に、強磁性酸化鉄
粉末及び結合剤樹脂を主体とする磁性層を有する磁気記
録媒体において、該強磁性酸化鉄粉末は、比表面積が3
5乃至60ポ/グラムであり、Fe2+/Fe3+が0
.  1乃至0.45であって、その粒子表面がAl(
アル果ニウム)、Si(ケイ素)、Ca (カルシウム
)及びTi(チタン)のうち少なくとも一種の元素を含
む化合物で表面処理されていることを特徴とする磁気記
録媒体により達威される. 本発明の磁気記録媒体の磁性層に使用されている強磁性
酸化鉄粉末は、Fe”″/ F e 3゜が0.10乃
至0.45の範囲にあってσSが大きくそのため磁性層
のBmが大きくなって、出力を大きくすることができる
.そして、前記強磁性酸化鉄粉末の表面がAl(アルミ
ニウム)、S+ (ケイ素)、Ca(カルシウム)及び
Ti(チタン)のうち少なくとも一種の元素を含む化合
物で表面処理されているので、Fe2+/Fe3+が大
きくても安定性が高く、Hc(抗磁力)が経時で変動す
るようなことがないので信頼性の高い磁気記録媒体とな
っている. さらに、本発明の磁気記録媒体で使用される前記強磁性
酸化鉄粉末の35乃至60ポ/グラムと比較的大きく、
微粒子化されているのでノイズも小さくなっている. 以上のように、本発明においては、Bmは大きいが磁気
特性が不安定であり実用化し難かった、Fe”の比率が
大きい強磁性酸化鉄粉末を特定の化合物で表面処理し、
かつ微粒子化することにより出力が大きく、ノイズは小
さい電磁変換特性に優れ、かつその特性の経時安定性が
優れた磁気記録媒体の提供を可能にした. 本発明の磁気記録媒体に使用する前記強磁性酸化鉄粉末
のFe”゜/Fe”を0.  1乃至0.45とするに
は、針状ゲータイトを脱水・還元してマグネタイトとし
徐酸化する方法、1−Fe.O.を部分還元する方法、
7−Fe.O.をアルカリ性スラリーとしてFe”イオ
ンで処理する等の方法を使用することができる. 中でも、針状ゲータイトを脱水し還元して、針状マグネ
タイトとし、徐酸化を行ないFe”“/Fe3゜を上記
範囲にした上で、水性スラリーとしてアルカリ性溶液中
で該粒子表面をコバルト化合物で処理する方法が、粒子
の針状性、製造工程適性の点で優れている. また、前記強磁性酸化鉄粉末の粒子表面を、Al(アル
Qニウム)、St (ケイ素)、Ca(カルシウム)及
びTi(チタン)のうち少なくとも一種の元素を含む化
合物で表面処理する方法としては、例えば、前記強磁性
酸化鉄粉末と水ガラスとをアルカリ性溶液中で混合し、
加温処理する方法がある.その際、前記アルカリ性溶液
のPHは、8乃至13、望ましくは8乃至11である.
また、前記加温処理の温度は、40乃至25o’c,望
ましくは50乃至200゜Cであり、処理時間は0.5
乃至5時間が望ましい. 前記のAl(アルミニウム)、St  (ケイ素)、C
a(カルシウム)及びTi(チタン)のうち少なくとも
一種の元素を含む化合物としては、酸化アルミニウム・
酸化ケイ素・酸化カルシウム・酸化チタン及びカルシウ
ムシリケート等を使用することができ、これらの一種又
は、複数種を併用する事ができる. 前記表面処理量としては、酸化鉄磁性体のFeに対して
0.01〜5%の範囲が望ましい.本発明の磁気記録媒
体の磁性層中の前記強磁性酸化鉄粉末の粒子の大きさは
、BET法による比表面積で35乃至60rd/グラム
であり、さらに望ましくは35から55ポ/グラムであ
る.前記比表面積があまり小さいと磁気記録媒体のS/
Nが低下し、逆にあまり大きいと本発明の方法でも充分
なσSが得られなくなるので好ましくない. 本発明の磁気記録媒体で使用する前記強磁性酸化鉄粉末
の前記比表面積を35乃至60rrf/グラムの範囲に
するには、強磁性酸化鉄粉末の出発物であるオキシ水酸
化鉄の粒子サイズをコントロールすればよい. 本発明の磁気記録媒体の磁性層に含有される前記強磁性
酸化鉄粉末の前記Fe”/Fe’゜は、0.1乃至0.
45である. 前記Fe2+/Fe3+゜があまり小さいと、σSが大
きくならずBmの増大が望めないので、出力を大きくで
きない.逆にあまり大きいと、Heが不安定となり、特
性の経時劣化が大きくなるので好ましくない. 本発明の磁気記録媒体は、非磁性支持体と、強磁性酸化
鉄粉末を含有する磁性層が前記非磁性支持体上に設けら
れた基本構造を有するものであり、磁性層の構威は単層
でも重層でもよい.本発明で使用する前記非磁性支持体
の例としては、ポリエチレンテレフタレート・ポリプロ
ピレン・ポリカーボネート・ポリエチレンナフタレート
・ボリアミド・ポリアミドイξド・ポリイ〔ドなとの合
或樹脂フィルム、及びアルミ箔、ステンレス箔などの金
属箔を挙げることが出来る.また非磁性支持体の厚さは
、一般には2.5〜100μm1好ましくは3〜70μ
mである. 非磁性支持体は後述する磁性層が設けられていない側に
バック層が設けられたものであっても良い. 本発明の磁気記録媒体で使用する前記強磁性酸化鉄粒子
の形状は特に制限はないが、針状の形状を有する粒子が
好ましい. 本発明の磁気記録媒体の磁性層の製造に際しては、強磁
性粉末と結合剤樹脂、および潤滑剤、更に必要により研
磨剤あるいはそのほかの充填剤とを通常は溶剤とともに
混練して磁性塗料とする.前記結合剤樹脂としては塩化
ビニル系共重合体樹脂(例、塩化ビニル共重合体、塩化
ビニル/酢酸ビニル共重合体、塩化ビニル/酢酸ビニル
/ビニルアルコール共重合体、塩化ビニル/酢酸ブチル
共重合体/マレイン酸共重合体、塩化ビニル/塩化ビニ
ル/ビニリデン共重合体)、アクリル系樹脂(例、塩化
ビニル/アクリロニトリル共重合体、塩化ビニリデン/
アクリロニトリル共重合体、(メタ)アクリル酸エステ
ル/アクリロニトリル共重合体、(メタ)アクリル酸エ
ステル/塩化ビニリデン共重合体、(メタ)アクリル酸
エステル/スチレン共重合体、ブタジェン/アクリロニ
トリル共重合体)、ポリウレタン樹脂、ポリエステル樹
脂、ポリフッ化ビニル、ポリアミド樹脂、ポリビニルブ
チレートおよびスチレン/ブタジェン共重合体のうち少
なくとも1種類以上が選ばれる.望ましくは上記共重合
体に極性基−SOsM、−OSO.M,−COOM,−
PO (OM“)2及び−OPO (OM’ )t )
を少なくとも1種導入したものが選ばれる,(M:Na
−Li−K・水素原子・N R aまたはNHR.を表
わし、M゛はNa−Li−K・水素原子・NR.  ・
NHR,またはアルキル基を表す,(Rは低級アルキル
基)〉前記結合剤樹脂の分子量は1万〜10万、好まし
くは2万〜5万であり、好ましい極性基としてはーSo
3Na ・−S○.H・一〇POsHz−COOHであ
る.前記極性基は前記結合剤樹脂の分子中に104〜1
0−3等置/g、好ましくは10−’−10−’当量/
gの範囲で含まれていることが好ましい. 前記極性基を有するポリマーの他に、熱可塑性樹脂・熱
硬化性樹脂および反応型樹脂等の樹脂を併用する事が出
来、これらの樹脂を単独であるいは混合して併用するこ
とが出来る.結合剤樹脂の使用量は、強磁性酸化鉄粉末
100重量部に対して、一般には10−100重量部、
好ましくは15〜50重量部使用される. 本発明に使用される潤滑剤としては、特に制限はないが
、炭素数8〜20の脂肪酸(例、カプリル酸、カブリン
酸、ラウリン酸、パルミチン酸、ステアリン酸、オレイ
ン酸、エライジン酸、リノール酸、リノレン酸、ステア
ロール酸、ベヘン酸)、脂肪酸エステル(例えば、プチ
ルステアレート、パルミチルステアレート等)が使用で
きる.前記潤滑剤の添加量は強磁性酸化鉄粉末に対して
、0.01−10.0重量%が好ましく、より好ましく
は0.05〜6重量%である. 本発明の磁気記録媒体の磁性層に必要により添加される
研磨剤としてはモース硬度が5以上の無機質粒子が選ば
れる.これら無機質粒子の粒子サイズは0.05〜1.
OAln,好ましくは0.1〜0,5μmである.無機
質粒子としてはαFe.O,、TiOx、SiO.、S
now、Cr.O.、α一Altosを挙げることが出
来る.無機質粒子の添加量は、通常、強磁性酸化鉄粉末
100重量部に対して0.  1〜20重量部の範囲で
あり、好ましくは1〜10重量部である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic recording medium having a magnetic layer mainly composed of ferromagnetic iron oxide powder and a binder resin, and particularly to a magnetic recording medium with high electromagnetic properties. Regarding. [Prior art and its problems] Generally, γ-Fe. Conventionally, magnetic recording media have a magnetic layer on a non-magnetic support, in which ferromagnetic powder made of acicular crystals such as O, Co-containing magnetic iron oxide, CrOz, α-Fe, etc. is dispersed in a binder resin. Widely used. Among the above-mentioned ferromagnetic powders, ferromagnetic iron oxide powder is preferable to other CrO. chemically more stable than ferromagnetic metal powders,
It is safe and inexpensive, so it is widely used for audio and video. Recently, regarding magnetic recording media,
As the demand for higher-density recording increases, ferromagnetic powders that have been used in the past are now being made into finer particles. Particularly in videotape applications, the use of methods such as shortening the recording wavelength and narrowing the track width has made it necessary to perform extremely high-density recording. The videotapes used in this study are now being used. For example, finely divided ferromagnetic iron oxide powder having a BET specific surface area of 30 m2/g or more is used, and the Bn.
By increasing the saturation magnetic flux density (saturation magnetic flux density), it is possible to reduce noise, increase output, and improve the electromagnetic conversion characteristics of magnetic recording media. However, finely divided ferromagnetic iron oxide powder has its σS (magnetic flux density per unit weight)
decreases as the specific surface area increases because the crystallinity of the particle surface decreases. On the other hand, σS of ferromagnetic iron oxide powder is Fe
It is known that the size increases as 2+/Fe3+ increases (bringing it closer to magnetite). Furthermore, Feh/F e
By increasing 3+, the optical transmittance of the magnetic tape decreases, so the amount of non-magnetic powder such as carbon added to the magnetic layer can be reduced to reduce the optical transmittance. Higher Bm is achieved. However, increasing the Fe2+/Fe3+ content of the ferromagnetic iron oxide powder lowers the magnetic stability, increasing the Hc change of the magnetic recording medium, and this change causes the electromagnetic conversion characteristics to become unstable. There is a large Fe”/Fe3+,
Magnetic recording media using ferromagnetic iron oxide powder were not widely used. Conventionally, strong dispersion and high-pressure calendering have been known as methods of increasing the Bm of the magnetic layer, but these methods can reduce the Br (residual magnetic flux density) of the magnetic tape due to the destruction of ferromagnetic powder particles, and However, there were negative effects such as decreased productivity and increased costs. [Problems to be Solved by the Invention] The present invention has been made in view of the problems of the prior art, and aims to provide a magnetic recording medium that has excellent electromagnetic conversion characteristics and stable characteristics over time. The purpose is [Means for solving the problem] The object of the present invention is to provide a magnetic recording medium having a magnetic layer mainly composed of ferromagnetic iron oxide powder and a binder resin on a non-magnetic support. has a specific surface area of 3
5 to 60 po/gram, Fe2+/Fe3+ is 0
.. 1 to 0.45, and the particle surface is Al(
This is achieved by a magnetic recording medium characterized in that the surface is treated with a compound containing at least one of the following elements: aluminum (alcarium), silicon (Si), calcium (Ca), and titanium (Ti). The ferromagnetic iron oxide powder used in the magnetic layer of the magnetic recording medium of the present invention has Fe""/Fe3° in the range of 0.10 to 0.45 and has a large σS. becomes larger, and the output can be increased. Since the surface of the ferromagnetic iron oxide powder is surface-treated with a compound containing at least one element among Al (aluminum), S+ (silicon), Ca (calcium), and Ti (titanium), Fe2+/Fe3+ It is a highly reliable magnetic recording medium because it has high stability even if the magnetic field is large, and Hc (coercive force) does not change over time. Furthermore, the ferromagnetic iron oxide powder used in the magnetic recording medium of the present invention is relatively large at 35 to 60 po/g;
The noise is also reduced because it is made into fine particles. As described above, in the present invention, ferromagnetic iron oxide powder with a high proportion of Fe, which has a high Bm but unstable magnetic properties and has been difficult to put into practical use, is surface-treated with a specific compound.
In addition, by making the particles finer, it has become possible to provide a magnetic recording medium with high output, low noise, excellent electromagnetic conversion characteristics, and excellent stability of these characteristics over time. Fe"°/Fe" of the ferromagnetic iron oxide powder used in the magnetic recording medium of the present invention is 0. 1 to 0.45, a method of dehydrating and reducing acicular goethite to form magnetite and slow oxidation, 1-Fe. O. How to partially redeem
7-Fe. O. In particular, acicular goethite is dehydrated and reduced to form acicular magnetite, which is slowly oxidized to bring Fe''/Fe3° into the above range. The method of treating the surface of the particles with a cobalt compound in an alkaline solution as an aqueous slurry is superior in terms of the acicularity of the particles and suitability for the manufacturing process. As a method for surface treating the surface with a compound containing at least one element among Al (aluminum), St (silicon), Ca (calcium), and Ti (titanium), for example, the above-mentioned ferromagnetic iron oxide powder and mixed with water glass in an alkaline solution,
There is a method of heating. At this time, the pH of the alkaline solution is 8 to 13, preferably 8 to 11.
Further, the temperature of the heating treatment is 40 to 25°C, preferably 50 to 200°C, and the treatment time is 0.5°C.
Preferably 5 hours. The aforementioned Al (aluminum), St (silicon), C
Examples of compounds containing at least one element among a (calcium) and Ti (titanium) include aluminum oxide and
Silicon oxide, calcium oxide, titanium oxide, calcium silicate, etc. can be used, and one or more of these can be used in combination. The amount of surface treatment is preferably in the range of 0.01 to 5% based on Fe of the iron oxide magnetic material. The particle size of the ferromagnetic iron oxide powder in the magnetic layer of the magnetic recording medium of the present invention is 35 to 60 rd/g, more preferably 35 to 55 po/g, as measured by the BET method. If the specific surface area is too small, the S/
If N is too large, the method of the present invention will not be able to obtain a sufficient σS, which is not preferable. In order to set the specific surface area of the ferromagnetic iron oxide powder used in the magnetic recording medium of the present invention in the range of 35 to 60 rrf/g, the particle size of iron oxyhydroxide, which is the starting material for the ferromagnetic iron oxide powder, is adjusted to Just control it. The Fe''/Fe'° of the ferromagnetic iron oxide powder contained in the magnetic layer of the magnetic recording medium of the present invention is 0.1 to 0.
It is 45. If the Fe2+/Fe3+° is too small, σS will not increase and Bm cannot be expected to increase, so the output cannot be increased. On the other hand, if it is too large, He becomes unstable and the characteristics deteriorate over time, which is not preferable. The magnetic recording medium of the present invention has a basic structure in which a nonmagnetic support and a magnetic layer containing ferromagnetic iron oxide powder are provided on the nonmagnetic support, and the structure of the magnetic layer is simple. It can be layered or multilayered. Examples of the non-magnetic support used in the present invention include a resin film made of polyethylene terephthalate, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide, polyide, aluminum foil, stainless steel foil, etc. Metal foils such as The thickness of the non-magnetic support is generally 2.5 to 100 μm, preferably 3 to 70 μm.
It is m. The nonmagnetic support may be provided with a back layer on the side on which the magnetic layer described below is not provided. The shape of the ferromagnetic iron oxide particles used in the magnetic recording medium of the present invention is not particularly limited, but particles having an acicular shape are preferred. When manufacturing the magnetic layer of the magnetic recording medium of the present invention, a magnetic paint is prepared by kneading ferromagnetic powder, a binder resin, a lubricant, and, if necessary, an abrasive or other filler, usually with a solvent. The binder resin includes vinyl chloride copolymer resins (e.g., vinyl chloride copolymer, vinyl chloride/vinyl acetate copolymer, vinyl chloride/vinyl acetate/vinyl alcohol copolymer, vinyl chloride/butyl acetate copolymer) polymerization/maleic acid copolymer, vinyl chloride/vinyl chloride/vinylidene copolymer), acrylic resin (e.g., vinyl chloride/acrylonitrile copolymer, vinylidene chloride/vinylidene copolymer)
Acrylonitrile copolymer, (meth)acrylic ester/acrylonitrile copolymer, (meth)acrylic ester/vinylidene chloride copolymer, (meth)acrylic ester/styrene copolymer, butadiene/acrylonitrile copolymer), At least one of polyurethane resin, polyester resin, polyvinyl fluoride, polyamide resin, polyvinyl butyrate, and styrene/butadiene copolymer is selected. Preferably, the above copolymer has polar groups -SOsM, -OSO. M,-COOM,-
PO (OM")2 and -OPO (OM')t)
(M: Na
-Li-K・Hydrogen atom・N Ra or NHR. represents Na-Li-K, hydrogen atom, NR.・
NHR or represents an alkyl group (R is a lower alkyl group) The molecular weight of the binder resin is 10,000 to 100,000, preferably 20,000 to 50,000, and the preferred polar group is -So
3Na・-S○. H・10POsHz-COOH. The polar group is 104 to 1 in the molecule of the binder resin.
0-3 equiv/g, preferably 10-'-10-' equiv/g
It is preferable that it be included in the range of g. In addition to the polar group-containing polymer described above, resins such as thermoplastic resins, thermosetting resins, and reactive resins can be used in combination, and these resins can be used alone or in combination. The amount of binder resin used is generally 10-100 parts by weight per 100 parts by weight of ferromagnetic iron oxide powder.
It is preferably used in an amount of 15 to 50 parts by weight. The lubricant used in the present invention is not particularly limited, but fatty acids having 8 to 20 carbon atoms (e.g., caprylic acid, capric acid, lauric acid, palmitic acid, stearic acid, oleic acid, elaidic acid, linoleic acid) , linolenic acid, stearolic acid, behenic acid), fatty acid esters (for example, butyl stearate, palmityl stearate, etc.) can be used. The amount of the lubricant added is preferably 0.01-10.0% by weight, more preferably 0.05-6% by weight, based on the ferromagnetic iron oxide powder. Inorganic particles having a Mohs hardness of 5 or more are selected as the abrasive that is optionally added to the magnetic layer of the magnetic recording medium of the present invention. The particle size of these inorganic particles is 0.05 to 1.
OAln, preferably 0.1 to 0.5 μm. As the inorganic particles, αFe. O,, TiOx, SiO. , S
now, Cr. O. , α-Altos can be mentioned. The amount of inorganic particles added is usually 0.00 parts by weight per 100 parts by weight of ferromagnetic iron oxide powder. It ranges from 1 to 20 parts by weight, preferably from 1 to 10 parts by weight.

また、前記無機質粒子以外にもカーボンブランク(特に
、平均粒径が10〜300umのもの)等が含有される
事が好ましい. 前記強磁性酸化鉄粉末と前記結合剤樹脂、および潤滑剤
、更に必要により研磨剤あるいはそのほかの充填剤とを
通常は溶剤とともに濯練する際に使用する溶剤としては
、例えばメチルエチルケトンなどがある.混線の方法と
しては、通常磁性塗料の混練に使用されている方法であ
れば制限はなく、また各威分の添加順序などは適宜設定
することが出来る.Mi性塗料の調整には通常の混練機
、たとえば、2本ロールミル、3本ロールミル、ボール
ミル、ペプルミル、トロンミル、サンドグラインダー、
ゼグバリ、アトライター、高速インベラー分敗機、高速
ストーンミル、高速衝撃ミル、ディスパー、二一グー、
高速くキサー、ホモジナイザー及び超音波分散機などが
使用される。この様な混練機を使って、公知の方法に準
して磁性塗料を調整することが出来る.[性塗料を調整
する際には、分散剤及び帯電防止剤等の公知の添加剤を
併せて使用することもできる. 以上の様にして調整された磁性塗料は、前記非磁性支持
体上に塗布される.塗布は、前記非磁性支持体上に直接
行なうことも可能であるが、また接着剤層などを介して
行なうことも可能である.前記非磁性支持体上への塗布
方法の例としては、エアードクターコート、ブレードコ
ート、ロッドコート、押しだしコート、エアナイフコー
ト、スクイズコート、含浸コート、リバースロールコー
ト、トランスファーロールコート、グラビアコート、キ
スコート、キャストコート、スプレーコート等の方法を
挙げることが出来、これら以外の方法であっても利用す
ることが出来る。
In addition to the inorganic particles, it is also preferable that carbon blanks (particularly those having an average particle size of 10 to 300 um) are contained. When the ferromagnetic iron oxide powder, binder resin, lubricant, and optionally an abrasive or other filler are kneaded together with a solvent, examples of the solvent include methyl ethyl ketone. There are no restrictions on the mixing method as long as it is the method normally used for mixing magnetic paints, and the order of addition of each component can be set as appropriate. To prepare the Mi-based paint, use a conventional kneading machine, such as a two-roll mill, three-roll mill, ball mill, pepple mill, tron mill, sand grinder,
Zegbali, Attritor, High Speed Inveler Separator, High Speed Stone Mill, High Speed Impact Mill, Disper, 21 Gu,
High-speed mixers, homogenizers, ultrasonic dispersers, etc. are used. Using such a kneader, magnetic paint can be prepared according to known methods. [When preparing the paint, known additives such as dispersants and antistatic agents may also be used. The magnetic paint prepared as described above is applied onto the non-magnetic support. Coating can be done directly onto the non-magnetic support, but it can also be done via an adhesive layer or the like. Examples of coating methods on the non-magnetic support include air doctor coating, blade coating, rod coating, extrusion coating, air knife coating, squeeze coating, impregnation coating, reverse roll coating, transfer roll coating, gravure coating, kiss coating, Methods such as cast coating and spray coating can be mentioned, and methods other than these can also be used.

重層(L[性層を設ける塗布方法は、特開昭61139
929号公報、特開昭61−54992号公報で開示さ
れた、同時または逐次潤/i#塗布方式(以下、ウェン
ト・オン・ウェット塗布方式という)が有効である.即
ち、ウェット・オン・ウ工冫ト塗布方式とは、初め1層
を塗布した後に湿潤状態で可及的速やかに次の層をその
上に塗布する、いわゆる逐次塗布方式、及び多層同時に
エクストルージョン塗布方式で塗布する方法等をいう.
この様にして塗布された磁性層の厚さは、単層の場合、
乾燥後の厚さで、一般には約0.5〜IOμmの範囲、
望ましくは1.  5〜7.0μmの範囲になるように
塗布される.重層の場合は、上層の厚さが0.1〜4μ
mの範囲にすることが望ましい.上層と下層の合計の厚
さは上記単層の厚さと同じである.磁気記録媒体がテー
プ状で使用される場合は、通常、磁性層中の強磁性粒子
を配向させる処理、即ち、磁場配向処理を施した後、乾
燥される.また必要により表面平滑処理が施される.表
面平滑処理が施された磁気記録媒体は次に所望の幅に裁
断される. 本発明に用いる強磁性酸化鉄を重層テープに使用する場
合は、高Bmが必要な層に選択的に用いる事も可能であ
る. 〔発明の効果〕 強磁性酸化鉄粉末のF e ”/ F e ”を0.1
乃至0.45の特定の範囲にし、かつその粒子表面をA
l(アルξニウム)、si (ケイ素)、Ca(カルシ
ウム)及びTi(チタン)のうち少なくとも一種の元素
を含む特定の化合物で表面処理することにより、Bmが
大きく出力が大きいかつ特性の経時劣化もなく、また比
表面積を35乃至60%/グラムとすることによりノイ
ズの小さい磁気記録媒体を得ることが出来る. 以上の本発明の新規な効果を、以下の実施例、比較例に
よって明確にする. 〔実施例−1〕 第1表に示す比表面積及びFe2+/Fe3+を有する
Go変性針状酸化鉄(Co4.6%含有)300グラム
をpH10の水酸化ナトリウム水溶液200(ld中に
加え、ホモミキサー(ウルトラディスパーサーLK42
型ヤマト科学(株)製)を使用して、前記Co変性針状
酸化鉄の水性スラリーを作威した. 次いで前記スラリーを60℃に昇温しで、蒸留水に溶解
した水可溶性水ガラスを前記Co変性針状酸化鉄のFe
に対してSiが0.6原子%となるまで、5−/分の添
加速度で前記スラリー中に滴下して加えた. 次に、前記スラリー中に炭酸ガスを200d/分で通気
し、pHが7.5となってからなお30分間攪はんした
後、濾過を行い、窒素ガス雰囲気中で70″Cの温度で
乾燥して、粒子表面がSi化合物で表面処理された強磁
性酸化鉄粉末の試料A〜Fを得た, 得られた強磁性酸化鉄粉末の試料A−FのHc及びσS
を東英工業(株)製VSM−1[1にて、外部磁場5k
Oeを印加して測定した. その結果を第1表に示す. 第1表 なお、Fe”″″/Fe”は、Fe”を過マンガン酸カ
リウム溶液による酸化還元滴定により測定し、Fe”を
原子吸光分析により測定した値から求めた. また、比表面積は、BET法によるカンタータロム社製
カンターソープを用いて求めた.次に、以下の磁性塗料
用組威物をサンドグラインダーで3時間混練分散した後
、イソシアネート系硬化剤、日本ポリウレタン(株)製
コロネートLを8重量部、ステアリン酸5重量部及びプ
チルステアレート5重量部を添加して更に15分間混線
分散処理して、磁性塗料を得た. (iff性塗料用紐成物) 強磁性酸化鉄粉末 (第1表の試料A−F)    100重量部塩化ビニ
ル/酢酸ビニル共重合体(平均分子量45000、−C
OOH基を58.7X10−’当量/グラム含有) 12重量部 ポリウレタン樹脂(日本ポリウレタン(株)製、N−2
301)           12重量部α−アルミ
ナ(平均粒子径0.35μm)3重量部 カーボンブラック(平均粒子径20mμ)3重量部 メチルエチルケトン      160重量部n一酢酸
ブチル        160重量部得られた磁性塗料
を厚さ15μm、幅200■のポリエチレンテレフタレ
ートの非磁性支持体上に乾燥後の膜厚が5μmとなるよ
うに磁性層をブレードコートした. 塗布後、磁場配向、乾燥、カレンダー処理を行い更に6
0℃で48時間磁性層の熱硬化処理を行った後、1/2
インチの幅に裁断してビデオテープの試料a − fを
得た. ビデオテープの試料ayfを松下電器(株)製VTR%
N−FS−1を使用して、7MHzの正弦波信号を記録
し、再生出力と変調ノイズをヒューレッドパッカード社
製スペクトルアナライザーHP3585Aで測定して、
出力とC/Nを求めた. さらに、ビデオテーブの試料a % fを60゜Cの恒
温槽中に20日間保存した後Hcを測定し、恒温槽に保
存する前後のHcの変化の大きさをもって経時劣化の目
安とした. 得られた結果を第2表に示す. 第2表 〔実施例−2〕 前記Co変性針状酸化鉄のスラリー中にFeに対してA
lが0.3原子%となるまで硫酸アルミニウムの水溶液
を滴下した後、Feに対してSiが0.3原子%となる
まで蒸留水に溶解した水可溶性水ガラスを、それぞれ滴
下して加えた以外は、実施例−1と同一の条件で、強磁
性酸化鉄粉末の試料G及びビデオテープの試料gを得た
.〔実施例−3〕 水可溶性水ガラスの代わりに塩化カルシウムを使用した
以外は、実施例−1と同一の条件で、強磁性酸化鉄粉末
の試料H,I及びビデオテープの試料h.iを得た. 〔比較例−1〕 実施例−1の強磁性酸化鉄粉末の試料A及びCの原料で
あるCO変性針状酸化鉄の表面処理を行わなかった他は
、実施例−1と同一の条件で強磁性酸化鉄粉末の試料J
,K及びビデオテープの試料j,kを得た. 以上の強磁性酸化鉄粉末の試料G−KのFe2+/Fe
3+,Hc及びσSを実施例−lと同一の条件で測定し
た.その結果を第3表に示す.第3表 さらに、ビデオテープの試料g−kの特性を実施例−1
と同一の条件で測定したその結果を第4表に示す. 第4表 以上の結果より明白な如く、本発明の特定の比表面積・
Fe ! 4 / 11” e 2 +・表面処理を施
してある強磁性酸化鉄粉末が磁性層中に特定の割合で含
まれる磁気テープは、優れた電磁変換特性と安定なHc
を示す.一方、本発明の特定の比表面積より小さな強磁
性酸化鉄粉末を用いたビデオテープの場合(試料a及び
b)ではFe”/Fe’+の増加の効果は有っても少な
い事が分かる.また、比表面積が38〜55rrr/g
を用いたビデオテープ(試料c,  f,  g及びh
)ではFe”/Fe3°の増加により、出力・C/Nへ
の効果が大きくなる事も分かる。
The coating method for forming the layer is described in Japanese Patent Application Laid-Open No. 61139.
The simultaneous or sequential wet/i# coating method (hereinafter referred to as wet-on-wet coating method) disclosed in Japanese Patent Application Laid-open No. 929 and Japanese Patent Application Laid-Open No. 61-54992 is effective. In other words, the wet-on-treatment coating method is the so-called sequential coating method, in which one layer is first coated and then the next layer is coated on top of it as soon as possible in a wet state, and the simultaneous multilayer extrusion method. Refers to the method of coating using a coating method.
The thickness of the magnetic layer coated in this way is, in the case of a single layer,
Thickness after drying, generally in the range of about 0.5 to IO μm,
Preferably 1. It is applied to a thickness of 5 to 7.0 μm. In the case of multilayer, the thickness of the upper layer is 0.1 to 4μ
It is desirable to set the range to m. The total thickness of the upper and lower layers is the same as the thickness of the single layer above. When a magnetic recording medium is used in the form of a tape, it is usually dried after being subjected to a treatment to orient the ferromagnetic particles in the magnetic layer, that is, a magnetic field orientation treatment. Surface smoothing treatment is also applied if necessary. The magnetic recording medium that has been subjected to surface smoothing treatment is then cut to the desired width. When the ferromagnetic iron oxide used in the present invention is used in a multilayer tape, it can also be used selectively in layers that require high Bm. [Effect of the invention] F e ”/F e ” of ferromagnetic iron oxide powder is reduced to 0.1
to 0.45, and the particle surface is A
By treating the surface with a specific compound containing at least one element among l (aluminum), si (silicon), Ca (calcium), and Ti (titanium), it is possible to achieve high Bm, high output, and deterioration of characteristics over time. Moreover, by setting the specific surface area to 35 to 60%/gram, a magnetic recording medium with low noise can be obtained. The novel effects of the present invention described above will be clarified by the following Examples and Comparative Examples. [Example-1] 300 g of Go-modified acicular iron oxide (containing 4.6% Co) having the specific surface area and Fe2+/Fe3+ shown in Table 1 was added to 200 g of aqueous sodium hydroxide solution (pH 10), and a homomixer was added. (Ultra Disperser LK42
An aqueous slurry of the Co-modified acicular iron oxide was prepared using an aqueous slurry (manufactured by Yamato Scientific Co., Ltd.). Next, the temperature of the slurry was raised to 60°C, and the water-soluble water glass dissolved in distilled water was added to the Fe of the Co-modified acicular iron oxide.
Si was added dropwise into the slurry at a rate of 5-min until Si was 0.6 atomic %. Next, carbon dioxide gas was bubbled through the slurry at a rate of 200 d/min, and after the pH reached 7.5, the slurry was stirred for 30 minutes, filtered, and heated at a temperature of 70"C in a nitrogen gas atmosphere. After drying, ferromagnetic iron oxide powder samples A to F whose particle surfaces were surface-treated with a Si compound were obtained. Hc and σS of the obtained ferromagnetic iron oxide powder samples A to F
using VSM-1 [1 manufactured by Toei Kogyo Co., Ltd.] with an external magnetic field of 5k.
The measurement was performed by applying Oe. The results are shown in Table 1. Table 1: Fe""/Fe" was determined from the value of Fe" measured by redox titration with a potassium permanganate solution and Fe" measured by atomic absorption spectrometry. In addition, the specific surface area was determined using Canter Soap manufactured by Canter Tarom Co., Ltd. by the BET method. Next, after kneading and dispersing the following composition for magnetic paint using a sand grinder for 3 hours, the isocyanate curing agent, 8 parts by weight of Coronate L manufactured by Nippon Polyurethane Co., Ltd., 5 parts by weight of stearic acid, and 5 parts by weight of butyl stearate. Parts by weight were added and cross-dispersion treatment was carried out for an additional 15 minutes to obtain a magnetic paint. (String material for IF coating) Ferromagnetic iron oxide powder (Samples A to F in Table 1) 100 parts by weight Vinyl chloride/vinyl acetate copolymer (average molecular weight 45,000, -C
12 parts by weight of polyurethane resin (manufactured by Nippon Polyurethane Co., Ltd., N-2)
301) 12 parts by weight α-alumina (average particle size 0.35 μm) 3 parts by weight carbon black (average particle size 20 μm) 3 parts by weight Methyl ethyl ketone 160 parts by weight n Butyl monoacetate 160 parts by weight The obtained magnetic paint was coated to a thickness of 15 μm. A magnetic layer was coated with a blade onto a polyethylene terephthalate nonmagnetic support having a width of 200 cm so that the film thickness after drying was 5 μm. After coating, magnetic field orientation, drying, calendar treatment and further 6
After thermosetting the magnetic layer at 0°C for 48 hours, 1/2
Videotape samples a to f were obtained by cutting them into inch width pieces. The videotape sample ayf was transferred to a VTR manufactured by Matsushita Electric Co., Ltd.
A 7MHz sine wave signal was recorded using the N-FS-1, and the playback output and modulation noise were measured using a Hewlett-Packard spectrum analyzer HP3585A.
The output and C/N were determined. Furthermore, Hc was measured after storing the videotape sample a%f in a constant temperature bath at 60°C for 20 days, and the magnitude of the change in Hc before and after storage in the constant temperature bath was used as a measure of deterioration over time. The results obtained are shown in Table 2. Table 2 [Example-2] A ratio of A to Fe in the Co-modified acicular iron oxide slurry
After dropping an aqueous solution of aluminum sulfate until l was 0.3 at%, water-soluble water glass dissolved in distilled water was added dropwise until Si was 0.3 at% with respect to Fe. Except for this, ferromagnetic iron oxide powder sample G and videotape sample G were obtained under the same conditions as in Example-1. [Example-3] Ferromagnetic iron oxide powder samples H and I and videotape sample h. I got i. [Comparative Example-1] The same conditions as in Example-1 were carried out, except that the surface treatment of the CO-modified acicular iron oxide, which is the raw material for Samples A and C of the ferromagnetic iron oxide powder in Example-1, was not performed. Ferromagnetic iron oxide powder sample J
, K and videotape samples j, k were obtained. Fe2+/Fe of the above ferromagnetic iron oxide powder sample G-K
3+, Hc and σS were measured under the same conditions as in Example-1. The results are shown in Table 3. Table 3 further shows the characteristics of videotape sample g-k in Example-1
Table 4 shows the results measured under the same conditions as . As is clear from the results in Table 4 and above, the specific specific surface area and
Fe! 4/11" e2+・Magnetic tape containing a specific proportion of ferromagnetic iron oxide powder in the magnetic layer has excellent electromagnetic characteristics and stable Hc.
is shown. On the other hand, it can be seen that in the case of video tapes using ferromagnetic iron oxide powder having a specific surface area smaller than the specific surface area of the present invention (samples a and b), the effect of increasing Fe''/Fe'+ is small, if at all. In addition, the specific surface area is 38 to 55rrr/g
videotapes (samples c, f, g and h
), it can be seen that an increase in Fe''/Fe3° has a greater effect on the output and C/N.

Fe2+/Fe3+の効果は0.10以下では(試料a
及びe)充分な電磁変換特性が得られておらず、反対に
0.45以上では(試料d)Hcの経時による増加が大
きくなり、安定性に問題がある。
The effect of Fe2+/Fe3+ is below 0.10 (sample a
and e) sufficient electromagnetic conversion characteristics are not obtained; on the other hand, if it is 0.45 or more (sample d), the increase in Hc over time becomes large and there is a problem in stability.

表面処理なしの強磁性酸化鉄粉末を用いたビデオテーブ
では(試料j及びk)Hcの安定性が、特にFe2+/
Fe3+の大きな試料kでは、Hc増加が大きくなって
いる.
In the videotapes using ferromagnetic iron oxide powder without surface treatment (samples j and k), the stability of Hc is particularly low for Fe2+/
In sample k with large Fe3+, the increase in Hc is large.

Claims (1)

【特許請求の範囲】[Claims] 非磁性支持体上に、強磁性酸化鉄粉末及び結合剤樹脂を
主体とする磁性層を有する磁気記録媒体において、該強
磁性酸化鉄粉末は、比表面積が35乃至60m^2/グ
ラムであり、Fe^2^+/Fe^3^+が0.1乃至
0.45であって、その粒子表面がAl(アルミニウム
)、Si(ケイ素)、Ca(カルシウム)及びTi(チ
タン)のうち少なくとも一種の元素を含む化合物で表面
処理されていることを特徴とする磁気記録媒体。
In a magnetic recording medium having a magnetic layer mainly composed of ferromagnetic iron oxide powder and binder resin on a non-magnetic support, the ferromagnetic iron oxide powder has a specific surface area of 35 to 60 m^2/g, Fe^2^+/Fe^3^+ is 0.1 to 0.45, and the particle surface is at least one of Al (aluminum), Si (silicon), Ca (calcium), and Ti (titanium). A magnetic recording medium characterized in that its surface is treated with a compound containing an element.
JP1154061A 1989-06-16 1989-06-16 Magnetic recording medium Pending JPH0319127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1154061A JPH0319127A (en) 1989-06-16 1989-06-16 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1154061A JPH0319127A (en) 1989-06-16 1989-06-16 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0319127A true JPH0319127A (en) 1991-01-28

Family

ID=15576051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1154061A Pending JPH0319127A (en) 1989-06-16 1989-06-16 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0319127A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193913B2 (en) 2012-09-21 2015-11-24 Suncoke Technology And Development Llc Reduced output rate coke oven operation with gas sharing providing extended process cycle
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US9862888B2 (en) 2012-12-28 2018-01-09 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US10053627B2 (en) 2012-08-29 2018-08-21 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9683740B2 (en) 2012-07-31 2017-06-20 Suncoke Technology And Development Llc Methods for handling coal processing emissions and associated systems and devices
US10041002B2 (en) 2012-08-17 2018-08-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10611965B2 (en) 2012-08-17 2020-04-07 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US10947455B2 (en) 2012-08-17 2021-03-16 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11692138B2 (en) 2012-08-17 2023-07-04 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US11441077B2 (en) 2012-08-17 2022-09-13 Suncoke Technology And Development Llc Coke plant including exhaust gas sharing
US10053627B2 (en) 2012-08-29 2018-08-21 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
US9193913B2 (en) 2012-09-21 2015-11-24 Suncoke Technology And Development Llc Reduced output rate coke oven operation with gas sharing providing extended process cycle
US11142699B2 (en) 2012-12-28 2021-10-12 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US10323192B2 (en) 2012-12-28 2019-06-18 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US10016714B2 (en) 2012-12-28 2018-07-10 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US9862888B2 (en) 2012-12-28 2018-01-09 Suncoke Technology And Development Llc Systems and methods for improving quenched coke recovery
US11117087B2 (en) 2012-12-28 2021-09-14 Suncoke Technology And Development Llc Systems and methods for removing mercury from emissions
US11008517B2 (en) 2012-12-28 2021-05-18 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11359145B2 (en) 2012-12-28 2022-06-14 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US10975309B2 (en) 2012-12-28 2021-04-13 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10760002B2 (en) 2012-12-28 2020-09-01 Suncoke Technology And Development Llc Systems and methods for maintaining a hot car in a coke plant
US11939526B2 (en) 2012-12-28 2024-03-26 Suncoke Technology And Development Llc Vent stack lids and associated systems and methods
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
US11746296B2 (en) 2013-03-15 2023-09-05 Suncoke Technology And Development Llc Methods and systems for improved quench tower design
US10927303B2 (en) 2013-03-15 2021-02-23 Suncoke Technology And Development Llc Methods for improved quench tower design
US10619101B2 (en) 2013-12-31 2020-04-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US11359146B2 (en) 2013-12-31 2022-06-14 Suncoke Technology And Development Llc Methods for decarbonizing coking ovens, and associated systems and devices
US10526541B2 (en) 2014-06-30 2020-01-07 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
US10308876B2 (en) 2014-08-28 2019-06-04 Suncoke Technology And Development Llc Burn profiles for coke operations
US10920148B2 (en) 2014-08-28 2021-02-16 Suncoke Technology And Development Llc Burn profiles for coke operations
US10233392B2 (en) 2014-08-28 2019-03-19 Suncoke Technology And Development Llc Method for optimizing coke plant operation and output
US9976089B2 (en) 2014-08-28 2018-05-22 Suncoke Technology And Development Llc Coke oven charging system
US11053444B2 (en) 2014-08-28 2021-07-06 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US9708542B2 (en) 2014-08-28 2017-07-18 Suncoke Technology And Development Llc Method and system for optimizing coke plant operation and output
US9580656B2 (en) 2014-08-28 2017-02-28 Suncoke Technology And Development Llc Coke oven charging system
US10968393B2 (en) 2014-09-15 2021-04-06 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US11795400B2 (en) 2014-09-15 2023-10-24 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10968395B2 (en) 2014-12-31 2021-04-06 Suncoke Technology And Development Llc Multi-modal beds of coking material
US10975311B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
US11788012B2 (en) 2015-01-02 2023-10-17 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
US11214739B2 (en) 2015-12-28 2022-01-04 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
US11508230B2 (en) 2016-06-03 2022-11-22 Suncoke Technology And Development Llc Methods and systems for automatically generating a remedial action in an industrial facility
US10851306B2 (en) 2017-05-23 2020-12-01 Suncoke Technology And Development Llc System and method for repairing a coke oven
US11505747B2 (en) 2018-12-28 2022-11-22 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
US11193069B2 (en) 2018-12-28 2021-12-07 Suncoke Technology And Development Llc Coke plant tunnel repair and anchor distribution
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11261381B2 (en) 2018-12-28 2022-03-01 Suncoke Technology And Development Llc Heat recovery oven foundation
US11597881B2 (en) 2018-12-28 2023-03-07 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11643602B2 (en) 2018-12-28 2023-05-09 Suncoke Technology And Development Llc Decarbonization of coke ovens, and associated systems and methods
US11680208B2 (en) 2018-12-28 2023-06-20 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
US11008518B2 (en) 2018-12-28 2021-05-18 Suncoke Technology And Development Llc Coke plant tunnel repair and flexible joints
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11021655B2 (en) 2018-12-28 2021-06-01 Suncoke Technology And Development Llc Decarbonization of coke ovens and associated systems and methods
US11071935B2 (en) 2018-12-28 2021-07-27 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11819802B2 (en) 2018-12-31 2023-11-21 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
US11486572B2 (en) 2018-12-31 2022-11-01 Suncoke Technology And Development Llc Systems and methods for Utilizing flue gas
US11767482B2 (en) 2020-05-03 2023-09-26 Suncoke Technology And Development Llc High-quality coke products

Similar Documents

Publication Publication Date Title
JPH0319127A (en) Magnetic recording medium
JP2872227B2 (en) Underlayer for magnetic recording media
JPH0313647B2 (en)
US6680088B2 (en) Process for producing magnetic recording medium
JP2005276361A (en) Magnetic recording medium and magnetic recording and reproducing method using the same
US5989703A (en) Iron oxide magnetic powder and magnetic recording medium using the same
JP3047668B2 (en) Nonmagnetic black-brown hydrated iron hydroxide particles, method for producing the same, and underlayer for magnetic recording media using the powder
JP2910813B2 (en) Nonmagnetic black-brown hydrated iron hydroxide particles, method for producing the same, and underlayer for magnetic recording media using the powder
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
JP2729532B2 (en) Magnetic recording media
JP3661733B2 (en) Magnetic recording medium
JP3661730B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JPH0719353B2 (en) Magnetic recording medium
JP3252226B2 (en) Magnetic recording media
JP3654406B2 (en) Magnetic recording medium
JPH11296842A (en) Magnetic recording medium
JPH03156722A (en) Magnetic recording medium
JPS6116024A (en) Magnetic recording medium
JP2001160211A (en) Magnetic recording medium
JPH04139619A (en) Magnetic recording medium
JPH0463525B2 (en)
JP2000123347A (en) Magnetic recording medium