JPH0318859A - Thermomagnetic recording medium - Google Patents

Thermomagnetic recording medium

Info

Publication number
JPH0318859A
JPH0318859A JP15350589A JP15350589A JPH0318859A JP H0318859 A JPH0318859 A JP H0318859A JP 15350589 A JP15350589 A JP 15350589A JP 15350589 A JP15350589 A JP 15350589A JP H0318859 A JPH0318859 A JP H0318859A
Authority
JP
Japan
Prior art keywords
recording medium
layer
magnetic
recording
thermomagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15350589A
Other languages
Japanese (ja)
Inventor
Masanobu Kobayashi
小林 政信
Kiminori Maeno
仁典 前野
Kayoko Oishi
大石 佳代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15350589A priority Critical patent/JPH0318859A/en
Publication of JPH0318859A publication Critical patent/JPH0318859A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high resolution by laminating a first layer low in Curie point and a second layer small in coercive force and high in residual magnetic flux density and using the thermomagnetic recording method executing perpendicular recording. CONSTITUTION:The first layer made of an Re-Tm alloy comprising a rare earth element and an iron group element and the second layer made of a Co-Cr alloy or Co-Pd alloy are formed on a substrate. This recording medium is magnetized in a constant direction in a uniform magnetic field perpendicular to the layer of the medium, and when it is selectively irradiated with laser beams in a uniform external magnetic field reversed in the direction to execute local heating, the heat parts of the first layer low in Curie point are heated and demagnetized and the magnetized direction is reversed as it is cooled, and the second layer is magnetized in the direction same as the first layer because its coercive force is small, thus permitting the obtained recording medium for perpendicular recording capable of thermomagnetic recording to be enhanced sufficiently to high residual magnetic flux density to at least to 1,000G.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱磁気記録媒体に関し、例えば熱磁気プリン
タにおいて磁気潜像の形成に適した磁気記録媒体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermomagnetic recording medium, and relates to a magnetic recording medium suitable for forming a magnetic latent image in, for example, a thermomagnetic printer.

〔従来の技術〕[Conventional technology]

熱磁気記録媒体は、例えば磁気プリンティングに用いら
れている。磁気プリンティングは熱磁気記録媒体に磁気
潜像を形成し、これを磁気的に現像し可視像を得る技術
である。この技術を示す文献としては「マグネトグラフ
ィプリンタ」 (今村舜仁著、大野信編集、CMCrノ
ンインパクトプリンティング」、第15章、p、159
〜p、168.1986)がある。
Thermomagnetic recording media are used, for example, in magnetic printing. Magnetic printing is a technology that forms a magnetic latent image on a thermomagnetic recording medium and develops it magnetically to obtain a visible image. Documents showing this technology include "Magnetography Printer" (written by Shunji Imamura, edited by Makoto Ohno, CMCr Non-Impact Printing, Chapter 15, p. 159)
~p, 168.1986).

熱磁気プリンタの印刷プロセスに関し、図面を参照して
説明する。第2図は磁気プリンタの印刷プロセスを示し
た図である。同図において、記録用磁気ドラム1は矢印
A方向に回転する。記録用磁気ドラム1面上には磁気潜
像を形成するための磁気記録媒体、熱磁気記録媒体であ
るCry2薄膜等が設けられている。印刷プロセスとし
て、まず消磁手段2は磁気記録媒体を一定方向に磁化す
る。
The printing process of the thermomagnetic printer will be explained with reference to the drawings. FIG. 2 is a diagram showing the printing process of a magnetic printer. In the figure, a recording magnetic drum 1 rotates in the direction of arrow A. A magnetic recording medium for forming a magnetic latent image, a Cry2 thin film which is a thermomagnetic recording medium, etc. are provided on the surface of the recording magnetic drum. In the printing process, first, the demagnetizing means 2 magnetizes the magnetic recording medium in a certain direction.

次に磁気記録手段3は所定の磁気潜像を形成する。Next, the magnetic recording means 3 forms a predetermined magnetic latent image.

次に現像手段4は磁気潜像上にトナーを付着させ磁気潜
像は可視像化される。ここでトナーは磁気記録媒体面上
の洩れ磁界による磁力線と磁気記録媒体面とが交差する
部分に付着し、その結果磁気潜像は可視像化される。そ
の後、転写手段5および定着手段6は、可視像を用紙上
に転写する。最後に、クリーニング手段7は、磁気記録
媒体上の残留トナーを除去し、以上で印刷プロセスは終
了する。
Next, the developing means 4 deposits toner on the magnetic latent image to make the magnetic latent image visible. Here, the toner adheres to the area where the lines of magnetic force caused by the leakage magnetic field on the surface of the magnetic recording medium intersect with the surface of the magnetic recording medium, and as a result, the magnetic latent image is visualized. Thereafter, the transfer means 5 and the fixing means 6 transfer the visible image onto the paper. Finally, the cleaning means 7 removes the residual toner on the magnetic recording medium, and the printing process ends.

ところで、磁気記録媒体上に磁気潜像を記録する方法と
してはサーマルヘッドを用いる方法や、レーザビーム光
照射により加熱する方法がある。
By the way, methods for recording a magnetic latent image on a magnetic recording medium include a method using a thermal head and a method of heating by laser beam irradiation.

磁気記録媒体の磁化方向は、主として記録媒体面に沿う
方向(面内記録)と記録媒体の面に対し垂直である方向
(垂直記録)とがあり、高解像度を必要とする場合には
垂直記録法が用いられる。垂直記録用の磁気記録媒体と
しては、希土類元素と鉄族元素との合金膜、即ちRE−
7M合金膜およびG o−Cr合金膜がある。RE−7
M合金膜は熱磁気記録法を用いた光磁気ディスクにまた
Co−Cr合金膜は磁気ヘッド記録法を用いた磁気ディ
スクに多く用いられている。
The magnetization direction of a magnetic recording medium is mainly along the recording medium surface (in-plane recording) or perpendicular to the recording medium surface (perpendicular recording). Perpendicular recording is used when high resolution is required. law is used. As a magnetic recording medium for perpendicular recording, an alloy film of rare earth elements and iron group elements, that is, RE-
There are 7M alloy film and Go-Cr alloy film. RE-7
M alloy films are often used in magneto-optical disks using thermomagnetic recording, and Co--Cr alloy films are often used in magnetic disks using magnetic head recording.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、Co−Cr合金膜は、キューり点が高い
ため熱磁気記録が困難である。さらにRE−7M合金膜
は残留磁束密度が小さいためトナーの吸着力が不十分で
ある。このように、垂直記録用の垂直磁化膜を用いた熱
磁気プリンタは原理的には記録の安定性が高く、高解像
度を得ることができ、低消費電力で作動する等の特徴が
あるものの、垂直磁化膜として適当な材料がないという
問題があった。
However, Co--Cr alloy films have a high cue point, making thermomagnetic recording difficult. Furthermore, since the RE-7M alloy film has a low residual magnetic flux density, the toner adsorption force is insufficient. As described above, although thermomagnetic printers using perpendicular magnetization films for perpendicular recording have high recording stability in principle, can obtain high resolution, and operate with low power consumption, There was a problem in that there was no suitable material for the perpendicular magnetization film.

そこで本発明は、上記したような従来技術の課題を解決
するためになされたもので、その目的とするところは残
留磁束密度が十分に高く、例えば少なくとも1000 
Gaussあり、熱磁気記録を行なうことができる垂直
記録用の熱磁気記録媒体を提供することにある。
Therefore, the present invention was made to solve the problems of the prior art as described above, and its purpose is to have a sufficiently high residual magnetic flux density, for example, at least 1000
The object of the present invention is to provide a thermomagnetic recording medium for perpendicular recording that can perform thermomagnetic recording.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係わる熱磁気記録媒体は、基板と、前記基板上
に積層された垂直磁化膜としての希土類元素の少なくと
も一種類の元素および鉄族元素の少なくとも一種類の元
素を組成とすRE−7M合金膜からなる第一の層と、前
記第一の層上に積層された垂直磁化膜としての、Co−
Cr合金膜またはCo−P d合金膜からなる第二の層
とを有することを特徴としている。
The thermomagnetic recording medium according to the present invention has a RE-7M composition comprising a substrate, and at least one rare earth element and at least one iron group element as a perpendicular magnetization film laminated on the substrate. A first layer made of an alloy film, and a Co-
It is characterized by having a second layer made of a Cr alloy film or a Co-Pd alloy film.

〔作用〕[Effect]

本発明の熱磁気記録媒体を、膜面に垂直な均一な磁界の
もとて一定方向に磁化させる。次にこの磁化方向と逆向
きの均一な外部磁界中で磁気記録媒体に記録情報に応じ
て選択的にレーザビーム光を照射して局部加熱を行なう
。キューり点の低い第一の層の被加熱部分はキューり点
附近まで加熱されて消磁する。レーザビーム光の照射を
受けなくなって冷却されるに伴い外部磁界により磁化さ
れ、その結果磁化方向が反転する。次に第一の層の上部
に積層された第二の層は保磁力が小さいため、第一の層
の磁界によって磁化され第一の層と第二の層とは同一方
向に磁化される。被加熱部分とこれに隣接する部分とは
磁化方向が互いに逆方向であるため両者間で洩れ磁束が
生じる。第二の層の残留磁束密度はトナーを吸着するの
に十分な大きさを有するので、トナーは磁気記録媒体に
吸着される。
The thermomagnetic recording medium of the present invention is magnetized in a constant direction under a uniform magnetic field perpendicular to the film surface. Next, the magnetic recording medium is selectively irradiated with laser beam light in accordance with recorded information in a uniform external magnetic field in the opposite direction to this magnetization direction to perform local heating. The heated portion of the first layer, which has a low cue point, is heated to near the cue point and is demagnetized. As it is no longer irradiated with laser beam light and cooled, it is magnetized by an external magnetic field, and as a result, the direction of magnetization is reversed. Next, since the second layer laminated on top of the first layer has a small coercive force, it is magnetized by the magnetic field of the first layer, and the first layer and the second layer are magnetized in the same direction. Since the magnetization directions of the heated portion and the adjacent portion are opposite to each other, leakage magnetic flux occurs between the heated portion and the adjacent portion. Since the residual magnetic flux density of the second layer is large enough to attract toner, the toner is attracted to the magnetic recording medium.

尚、上記のように外部磁界によって第一の層の被加熱部
分の磁化を反転させる代りに被加熱部分に隣接する部分
の磁界によって反転させることとしてもよい。
Note that instead of reversing the magnetization of the heated portion of the first layer by an external magnetic field as described above, the magnetization may be reversed by a magnetic field of a portion adjacent to the heated portion.

〔実施例〕〔Example〕

以下に本実施例を図面を参照して説明する。第1図(a
)は本実施例の磁気記録媒体11の断面図である。第1
図(b)は記録用磁気ドラムの断面図であり第1図(a
)の磁気記録媒体をシート状に形成して記録用磁気ドラ
ム芯材12上に巻きつけた状態を示している。同図にお
いて、膜厚が数十〜数百ミクロンの曲げ自在な基板、即
ち非磁性体であるステンレス基板8上にはRFスパッタ
リング法を用いて形成された垂直磁化膜、即ち数十ミク
ロンの膜厚を有するTb−Fe合金膜9が積層されてい
る。さらにT b−F e合金膜9上には、RFスパッ
タリング法を用いて形成された垂直磁化膜、即ち数十ミ
クロンの膜厚を有するCo−Cr合金膜10が積層され
ている。これらにより本実施例の磁気記録媒体11が形
成されている。
This embodiment will be described below with reference to the drawings. Figure 1 (a
) is a sectional view of the magnetic recording medium 11 of this example. 1st
Figure (b) is a sectional view of the recording magnetic drum, and Figure 1 (a) is a cross-sectional view of the recording magnetic drum.
) is shown in a state in which it is formed into a sheet shape and wound around a recording magnetic drum core material 12. In the figure, a perpendicularly magnetized film, that is, a film of several tens of microns, is formed using an RF sputtering method on a bendable substrate 8, which is a non-magnetic material, and has a film thickness of several tens to hundreds of microns. A thick Tb-Fe alloy film 9 is laminated. Further, on the Tb-Fe alloy film 9, a perpendicular magnetization film formed using an RF sputtering method, that is, a Co-Cr alloy film 10 having a thickness of several tens of microns is laminated. These constitute the magnetic recording medium 11 of this embodiment.

Tb−Fe合金膜9はTbm  Fetoo−1で示さ
れ、18≦z≦32(zは原子%)である。Co−Cr
合金膜10は組成がC0xCrtoo−xで示され75
≦x≦85(Xは原子%)である。
The Tb-Fe alloy film 9 is indicated by Tbm Fetoo-1, where 18≦z≦32 (z is atomic %). Co-Cr
The composition of the alloy film 10 is shown as C0xCrtoo-x and is 75
≦x≦85 (X is atomic %).

上記構成を有する磁気記録媒体11を用いて熱磁気記録
をおこなった結果を以下に示す。この実験には、T b
−F e合金膜9として組成がTbz1Fe、2、Tb
*zFetaおよびTbaolFetoのものを、C。
The results of thermomagnetic recording using the magnetic recording medium 11 having the above configuration are shown below. For this experiment, T b
-Fe alloy film 9 has a composition of Tbz1Fe,2,Tb
* those of zFeta and TbaolFeto, C.

−Cr合金膜10としては組成がCo76cr2s、C
-The composition of the Cr alloy film 10 is Co76cr2s, C
.

、。Cr、。およびC05sCrts (添字は原子%
)を用いた。
,. Cr. and C05sCrts (subscripts are atomic%
) was used.

磁気記録媒体11を予め一定方向に磁化し、この磁化方
向とは逆方向の弱磁界、即ち200〜5000eの外部
磁界中で磁気記録媒体11の記録を行なう部分に、波長
830nm、 5mw/μM(磁気記録媒体面上)の出
力を有する半導体レーザ光を100nsec間照射し加
熱した。その結果、被照射部分の磁化方向が反転し熱磁
気記録を行なうことができた。そして、この磁気記録媒
体11を熱磁気プリンタの記録用磁気ドラムに用いて評
価したところ、残留磁束密度が1000 Gauss以
上あり、100本/mm以上の高解像度を得ることが確
かめられた。
The magnetic recording medium 11 is magnetized in a certain direction in advance, and a magnet with a wavelength of 830 nm and 5 mw/μM ( The surface of the magnetic recording medium was heated by irradiating it with a semiconductor laser beam having an output of 100 ns for 100 nsec. As a result, the magnetization direction of the irradiated portion was reversed, making it possible to perform thermomagnetic recording. When this magnetic recording medium 11 was used as a recording magnetic drum of a thermomagnetic printer and evaluated, it was confirmed that the residual magnetic flux density was 1000 Gauss or more and that a high resolution of 100 lines/mm or more could be obtained.

磁気記録媒体11の熱磁気記録のメカニズムとしては次
のように考えられる。第一の層であるTb−F e合金
膜9のキューり点は本実施例の組成範囲において140
〜160°Cであり低い値を持つ。
The mechanism of thermomagnetic recording in the magnetic recording medium 11 can be considered as follows. The cue point of the Tb-Fe alloy film 9, which is the first layer, is 140 in the composition range of this example.
It has a low value of ~160°C.

このため磁気記録媒体を例えば一定方向に磁化した後、
この磁化方向と反対の方向を有する外部磁界中でレーザ
光を照射した場合、レーザ光の照射により加熱されたT
 b−F e合金膜9の被加熱部分は消磁する。レーザ
光の照射を受けなくなってから該被加熱部分は外部磁界
により磁化され、その結果被加熱部分の磁化方向は反転
する。次に第一の層上に積層されている第二の層である
Co−Cr合金膜10は保磁力が5000e以下と小さ
いため第一の層の磁界によりこの磁化方向と同一方向に
磁化される。従って磁気記録媒体11を用いて熱磁気記
録を行なうことが可能となる。さらに、T b−F e
合金膜9の残留磁束密度は数百C; auss以下であ
るが、Co−Cr合金膜10の残留磁束密度は1000
 Gauss以上あるため磁気記録媒体11は磁性体で
あるトナーを吸着するに十分な磁気力を有する。
For this reason, after magnetizing the magnetic recording medium in a certain direction, for example,
When a laser beam is irradiated in an external magnetic field having a direction opposite to this magnetization direction, T
The heated portion of the b-Fe alloy film 9 is demagnetized. After the heated portion is no longer irradiated with laser light, the heated portion is magnetized by an external magnetic field, and as a result, the magnetization direction of the heated portion is reversed. Next, the Co-Cr alloy film 10, which is the second layer laminated on the first layer, has a small coercive force of 5000e or less, so it is magnetized in the same direction as this magnetization direction by the magnetic field of the first layer. . Therefore, it becomes possible to perform thermomagnetic recording using the magnetic recording medium 11. Furthermore, T b−F e
The residual magnetic flux density of the alloy film 9 is several hundred C;auss or less, but the residual magnetic flux density of the Co-Cr alloy film 10 is 1000 C.
Gauss or more, the magnetic recording medium 11 has a magnetic force sufficient to attract toner, which is a magnetic substance.

また、本実施例の磁気記録媒体11全体を予め所定方向
に磁化した後、これに外部磁界を印加しないで波長83
0nm、 5mw/μ耐(磁気記録媒体面上)の出力を
有する半導体レーザ光を100nsec間照射し加熱し
た。その結果、被加熱部分の磁化方向が反転した。そし
て、この磁気記録媒体11を熱磁気プリンタの記録用磁
気ドラムに用いて評価したところ残留磁束密度が100
0 Gauss以上あり、100本/mm以上の高解像
度を得ることができた。これは、レーザ光照射により被
加熱部分が消磁され、レーザ光照射停止後被加熱部分が
これに隣接する両隣の部分の磁界により磁化され、結果
として磁化方向が反転し熱磁気記録が行なわれたもので
ある。
Further, after the entire magnetic recording medium 11 of this embodiment is magnetized in a predetermined direction, the wavelength 83
A semiconductor laser beam having an output of 0 nm and 5 mw/μ resistance (on the surface of the magnetic recording medium) was irradiated for 100 nsec to heat it. As a result, the magnetization direction of the heated portion was reversed. When this magnetic recording medium 11 was evaluated using a recording magnetic drum of a thermomagnetic printer, the residual magnetic flux density was 100.
0 Gauss or more, and a high resolution of 100 lines/mm or more could be obtained. This is because the heated part is demagnetized by laser beam irradiation, and after the laser beam irradiation stops, the heated part is magnetized by the magnetic fields of the adjacent parts on both sides, and as a result, the direction of magnetization is reversed and thermomagnetic recording is performed. It is something.

第3図(a)は他実施例の磁気記録媒体15の断面図で
ある。第3図(b)は記録用磁気ドラムの断面図であり
、第3図(a)の磁気記録媒体15をシート状に形成し
て記録用磁気ドラム芯材12上に巻きつけた状態を示し
ている。同図において、膜厚が数十〜数百ミクロンの曲
げ自在な基板としての非磁性体であるポリイミド樹脂膜
基板13上には、RFスパッタリング法を用いて形成さ
れた垂直磁化膜、即ち数十ミクロンの膜厚を有するTb
−Fe合金膜9が積層されている。このTb−Fe合金
膜9は第1図(a)の実施例で用いたものと同一の組成
のものを用いた。さらに、Tb−Fe合金膜9上にはR
Fスパッタリング法を用いて形成された垂直磁化膜、即
ち数十ミクロンの膜厚を有するC o−P d合金膜1
4が積層されている。
FIG. 3(a) is a sectional view of a magnetic recording medium 15 of another embodiment. FIG. 3(b) is a sectional view of the recording magnetic drum, showing a state in which the magnetic recording medium 15 of FIG. 3(a) is formed into a sheet shape and wound around the recording magnetic drum core material 12. ing. In the figure, on a polyimide resin film substrate 13, which is a non-magnetic material and is a bendable substrate with a film thickness of several tens to several hundred microns, there is a perpendicularly magnetized film formed using an RF sputtering method, that is, several tens of micrometers. Tb with a film thickness of microns
-Fe alloy film 9 is laminated. This Tb--Fe alloy film 9 had the same composition as that used in the embodiment shown in FIG. 1(a). Further, on the Tb-Fe alloy film 9, R
A perpendicularly magnetized film formed using the F sputtering method, that is, a Co-Pd alloy film 1 having a film thickness of several tens of microns.
4 are stacked.

Co−P d合金膜14はGo、P(ho。−yで示さ
れ20≦y≦8o(yは原子%)である。これらにより
、本実施例の磁気記録媒体15が形成されている。
The Co--Pd alloy film 14 is Go, P (ho.-y), and satisfies 20≦y≦8o (y is atomic %).The magnetic recording medium 15 of this embodiment is formed by these.

上記説明した構成を有する磁気記録媒体15に対し、第
1図(a)の磁気記録媒体11の実施例と同様に実験を
行なった。実験にはCo−P d合金膜14として組成
がCog。Pds。、C06゜Pd4゜、CO5゜Pd
、。およびCot。Pd、。(添字は原子%)のものを
用いた。T b−F e合金膜としては第1図(a)の
実施例と同じ組成のものを用いた。まず第1図(a)の
実施例と同様に磁気記録媒体15を予め所定方向に磁化
しておき、これに200〜5000eの外部磁界を印加
した場合と印加しない場合の各々において、波長830
nm、 5mw/ u rd (磁気記録媒体面上)の
出力を有する半導体レーザ光を100nsec間照射し
加熱した。その結果、磁気記録媒体15は第1図(a)
の実施例の場合と同様に熱磁気記録を行なうことができ
た。さらに、この磁気記録媒体15を熱磁気プリンタの
記録用磁気ドラムに用い評価したところ残留磁束密度が
1000 Gauss以上あり、100本/mm以上の
高解像度を得ることができた。磁気記録媒体11および
15は同一のメカニズムでもって熱磁気記録が行なわれ
たと考えることができる。
Experiments were conducted on the magnetic recording medium 15 having the above-described configuration in the same manner as in the example of the magnetic recording medium 11 shown in FIG. 1(a). In the experiment, the Co-Pd alloy film 14 had a composition of Cog. Pds. , C06°Pd4°, CO5°Pd
,. and Cot. Pd. (The subscript is atomic %) was used. The Tb-Fe alloy film used had the same composition as the example shown in FIG. 1(a). First, as in the embodiment shown in FIG. 1(a), the magnetic recording medium 15 is magnetized in advance in a predetermined direction, and the wavelength 830
A semiconductor laser beam having an output of 5 mw/urd (on the surface of the magnetic recording medium) was irradiated for 100 nsec to heat it. As a result, the magnetic recording medium 15 is as shown in FIG. 1(a).
Thermomagnetic recording could be performed in the same manner as in the example. Furthermore, when this magnetic recording medium 15 was evaluated by using it in a recording magnetic drum of a thermomagnetic printer, it was found that the residual magnetic flux density was 1000 Gauss or more, and a high resolution of 100 lines/mm or more could be obtained. It can be considered that thermomagnetic recording was performed on the magnetic recording media 11 and 15 by the same mechanism.

尚、本実施例においてはRE−TM合金膜としてT b
−F e合金膜9を用いたが本発明はこれに限定される
ものではなく、Gd5TbzDy等の希土類元素の少な
くとも一つの元素とFe% Co等の鉄族元素の少なく
とも一つの元素とを組合せた合金膜であればよい。また
、磁気記録媒体11および15の応用例として熱磁気プ
リンタを示したが熱および光の照射により記録を行なう
他の記録媒体にも応用することができる。また、第一の
層および第二の層の膜厚を数十ミクロンとし、また基板
の板厚を数十〜数百ミクロンとしたがこれらの厚さは用
途に応じて変化させることができる。
In addition, in this example, T b is used as the RE-TM alloy film.
Although the -Fe alloy film 9 is used, the present invention is not limited thereto, and may be a combination of at least one rare earth element such as Gd5TbzDy and at least one iron group element such as Fe%Co. Any alloy film may be used. Further, although a thermomagnetic printer is shown as an application example of the magnetic recording media 11 and 15, the present invention can also be applied to other recording media in which recording is performed by irradiation of heat and light. Furthermore, although the film thicknesses of the first layer and the second layer were set to several tens of microns, and the plate thickness of the substrate was set to several tens to several hundred microns, these thicknesses can be changed depending on the application.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の熱磁気記録媒体は、キュ
ーり点の低い垂直磁化膜である第一の層および保磁力が
小さくかつ残留磁束密度の高い垂直磁化膜である第二の
層を積層することにより形成される。従って、垂直記録
を行なう熱磁気記録法に用いることができ高い磁気記録
密度を得ることができる。そして、例えば熱磁気プリン
タにこれを用いた場合、解像度を高くし消費電力を小さ
くすることができる。
As explained above, the thermomagnetic recording medium of the present invention has a first layer that is a perpendicularly magnetized film with a low cue point and a second layer that is a perpendicularly magnetized film that has a small coercive force and a high residual magnetic flux density. It is formed by laminating layers. Therefore, it can be used in a thermomagnetic recording method that performs perpendicular recording, and a high magnetic recording density can be obtained. For example, when this is used in a thermomagnetic printer, resolution can be increased and power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本実施例の熱磁気記録媒体の断面図、 第1図(b)は本実施例の記録用磁気ドラムの断面図、 第2図は熱磁気プリンタの印刷プロセスを示した図、 第3図(a)は他実施例の熱磁気記録媒体の断面図、 第3図(b)は他実施例の記録用磁気ドラムの断面図で
ある。 8・・・・・・ステンレス基板、 9・−・−Tb−Fe合金膜(RE−TM合金膜)、1
0・・・・・・Co−Cr合金膜、 11・・・・・・熱磁気記録媒体。
Figure 1(a) is a sectional view of the thermomagnetic recording medium of this embodiment, Figure 1(b) is a sectional view of the recording magnetic drum of this embodiment, and Figure 2 shows the printing process of the thermomagnetic printer. FIG. 3(a) is a sectional view of a thermomagnetic recording medium of another embodiment, and FIG. 3(b) is a sectional view of a recording magnetic drum of another embodiment. 8...Stainless steel substrate, 9...-Tb-Fe alloy film (RE-TM alloy film), 1
0... Co-Cr alloy film, 11... Thermomagnetic recording medium.

Claims (4)

【特許請求の範囲】[Claims] (1)基板と、 前記基板上に積層された垂直磁化膜としての希土類元素
の少なくとも一種類の元素および鉄族元素の少なくとも
一種類の元素を組成とするRE−TM合金膜からなる第
一の層と、前記第一の層上に積層された垂直磁化膜とし
ての、Co−Cr合金膜またはCo−Pd合金膜からな
る第二の層とを有することを特徴とする熱磁気記録媒体
(1) A first substrate comprising a substrate and an RE-TM alloy film having a composition of at least one rare earth element and at least one iron group element as a perpendicular magnetization film laminated on the substrate. 1. A thermomagnetic recording medium comprising: a Co--Cr alloy film or a Co--Pd alloy film as a perpendicular magnetization film laminated on the first layer.
(2)請求項(1)記載の熱磁気記憶媒体において、前
記Co−Cr合金膜は一般式Co_xCr_1_0_0
_−_xで表した時、75≦x≦85であることを特徴
とする熱磁気記録媒体。
(2) In the thermomagnetic storage medium according to claim (1), the Co-Cr alloy film has the general formula Co_xCr_1_0_0
A thermomagnetic recording medium characterized in that, when expressed as ____x, 75≦x≦85.
(3)請求項(1)記載の熱磁気記録媒体において、前
記Co−Pd合金膜は一般式Co_yPd_1_0_0
_−_yで表したとき、20≦y≦80であることを特
徴とする熱磁気記録媒体。
(3) In the thermomagnetic recording medium according to claim (1), the Co-Pd alloy film has the general formula Co_yPd_1_0_0
A thermomagnetic recording medium characterized in that, when expressed as _-_y, 20≦y≦80.
(4)請求項(1)記載の熱磁気記録媒体において、前
記第一の層は一般式Tb_z−Fe_1_0_0_−_
zで示され18≦z≦32であるTb−Fe合金膜から
形成されていることを特徴とする熱磁気記録媒体。
(4) In the thermomagnetic recording medium according to claim (1), the first layer has the general formula Tb_z-Fe_1_0_0_-_
1. A thermomagnetic recording medium characterized in that it is formed from a Tb-Fe alloy film represented by z and satisfying 18≦z≦32.
JP15350589A 1989-06-15 1989-06-15 Thermomagnetic recording medium Pending JPH0318859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15350589A JPH0318859A (en) 1989-06-15 1989-06-15 Thermomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15350589A JPH0318859A (en) 1989-06-15 1989-06-15 Thermomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0318859A true JPH0318859A (en) 1991-01-28

Family

ID=15564020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15350589A Pending JPH0318859A (en) 1989-06-15 1989-06-15 Thermomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0318859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724368A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content alloy compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724368A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content alloy compositions
EP1724368A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content alloy compositions

Similar Documents

Publication Publication Date Title
KR950010333B1 (en) Magneto-optical recording systems
US5604030A (en) Magnetic recording medium method and apparatus for fabricating same
JP2700043B2 (en) Magnetic recording media
US5981039A (en) Magnetic recording medium and a manufacturing method thereof as well as a photo-printing apparatus using such a magnetic recording medium
JPH0318859A (en) Thermomagnetic recording medium
EP0459411B1 (en) Magnetic recording medium
US6868048B1 (en) Data storage system having thermally activated readout
US4544574A (en) Method of manufacturing a magnetic recording medium
JPH0431871A (en) Thermomagnetic recording medium
JP3065335B2 (en) Thermomagnetic recording medium
JP2706172B2 (en) Manufacturing method of magnetic recording medium
JP2699312B2 (en) Magnetic recording medium and method of manufacturing the same
JP3205240B2 (en) Magnetic recording media
JPH0486269A (en) Magnetic recording medium and its manufacturing device
JPH04184470A (en) Thermomagnetic recording medium and thermomagnetic recording device
JPH0580575A (en) Magnetic recording medium
JPH03242845A (en) Magneto-optical recording method
US5707754A (en) Magnetic recording medium and thermal recording printing device adopting the same
JPH04184471A (en) Magnetic recording medium and magnetic recording device
JPH0431872A (en) Thermomagnetic recording medium
JPH0695419A (en) Thermo-magnetic recording medium
JPH04184472A (en) Magnetic recording device and magnetic recording medium
JPH0246940B2 (en) JIKIKIROKUTAI
Presmanes et al. Field assisted magnetic contact printing with soft magnetic patterned thin films
JPH0580574A (en) Magnetic recording medium