JPH03187802A - Device for deairing powdered/granular material - Google Patents

Device for deairing powdered/granular material

Info

Publication number
JPH03187802A
JPH03187802A JP31759589A JP31759589A JPH03187802A JP H03187802 A JPH03187802 A JP H03187802A JP 31759589 A JP31759589 A JP 31759589A JP 31759589 A JP31759589 A JP 31759589A JP H03187802 A JPH03187802 A JP H03187802A
Authority
JP
Japan
Prior art keywords
transfer
screw
powder
inner cylinder
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31759589A
Other languages
Japanese (ja)
Inventor
Yasuo Yamada
山田 安男
Tadayoshi Kikuchi
菊池 忠義
Eiji Tawara
田原 暎二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIYOUKA TECHNO KK
Mitsubishi Kasei Corp
Original Assignee
RIYOUKA TECHNO KK
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIYOUKA TECHNO KK, Mitsubishi Kasei Corp filed Critical RIYOUKA TECHNO KK
Priority to JP31759589A priority Critical patent/JPH03187802A/en
Publication of JPH03187802A publication Critical patent/JPH03187802A/en
Pending legal-status Critical Current

Links

Landscapes

  • Basic Packing Technique (AREA)

Abstract

PURPOSE:To enable the title device to be stably operated over a long period of time and maintain the amount of transfer of powdered/granular materials and hence, the amount of the deaired materials thereof at constant levels at all times by forming transfer chambers in an inner porous cylinder whose cross section is of a substantially cocoon shape, and pivotably supporting a pair of screw conveyors having transfer screw vanes in the transfer chamber under a predetermined arrangement condition. CONSTITUTION:Provisions are made of a porous inner cylinder 1a forming therein a series of transfer chamber chambers 2a and a cross-sectionally oval-shaped outer cylinder 1b which is arranged so as to be spaced from the outer circumference of the inner cylinder 1a, and which forms an evacuated chamber 2b in the interior of the outer cylinder. Further, another pair of screw conveyors 4a, 4b, formed by winding clockwise and counter clockwise transfer screw vanes 5a, 5b round the screw conveyors 4a, 4b, respectively, and by fixing the transfer screw vanes thereto, are provided on the respective center axises of the inner transfer chambers 2a in the porous inner cylinder 1a, and these paired screw conveyors 4a, 4b are overlapped on each other at the axial position where the peripheral parts of the transfer screw vanes 5a, 5b do not interfere with each other.

Description

【発明の詳細な説明】 【産業上の利用分野〕 この発明は、粉粒体の脱気装置に関し、さらに詳しくは
、粉粒体の嵩密度を向上させ、容積を小さくして袋詰め
、輸送などにおける取り扱いを容易にするために用いる
粉粒体の脱気装置の改良に係るものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a deaeration device for powder and granular materials, and more specifically, it improves the bulk density of powder and granules to reduce their volume for bagging and transportation. This invention relates to an improvement in a deaeration device for powder and granular materials used to facilitate handling.

【従来の技術J 従来のこの種の粉粒体の脱気装置としては、例えば、第
3図および第4図に示すような装置構成のものが知られ
ている。
[Prior Art J] As a conventional degassing device for powder and granular materials of this kind, for example, devices having device configurations as shown in FIGS. 3 and 4 are known.

すなわち、これらの第3図および第4図構成において、
従来の脱気装置は、一端部側の上部に粉粒体の投入口6
を、他端部側の下部に排出口9をそれぞれに形成した装
置本体lを設け、この装置本体lの中間部にあっては、
それぞれにフランジ3a、 3bを介して、内部に移送
室2aを形成する多孔質内筒1aと、その外側に間隙を
隔て1配置され、内部に真空排気室2bを形成する外筒
1bとを配置すると共に、内部の移送室2aの中心軸線
上には、移送スクリュウ5をもつスクリュウコンベア4
を枢支して、外部から駆動電動機IOにより回転駆動し
得るようにさせ、かつ外筒1bに対しては、真空排気室
内を真空吸引させるための吸排気管7と、多孔質内筒1
aを逆洗させるための圧縮空気管8a、 8bとを設け
たものである。
That is, in these configurations of FIGS. 3 and 4,
A conventional deaerator has a powder inlet 6 at the top of one end.
A device main body l is provided in which a discharge port 9 is formed at the lower part of the other end side, and in the middle part of this device main body l,
A porous inner cylinder 1a, which forms a transfer chamber 2a inside, and an outer cylinder 1b, which is arranged at a gap outside of the porous inner cylinder 1a and forms an evacuation chamber 2b inside, are arranged through flanges 3a and 3b, respectively. At the same time, a screw conveyor 4 having a transfer screw 5 is located on the central axis of the internal transfer chamber 2a.
The outer cylinder 1b is provided with an intake/exhaust pipe 7 for evacuating the inside of the evacuation chamber, and a porous inner cylinder 1.
Compressed air pipes 8a and 8b are provided for backwashing the water.

この従来例装置の構成における運転稼動は、駆動電動機
lOによりスクリュウコンベア4を回転駆動させておき
、投入口6から円筒状本体lの内部移送室2a内に投入
される未だ嵩密度の低い粉粒体を、このスクリュウコン
ベア4によって移送させると共に、粉粒体中に混在され
ている空気を、真空ポンプの吸引作用によって吸排気管
7より排気させ、このようにして嵩密度を高めた粉粒体
を排出口9から排出させることにより、所期通りの粉粒
体に対する脱気処理を行わせるもので、かつ適当する運
転稼動時間の経過毎、または多孔質内筒laに目詰りを
生じて脱気率が低下したときには、装置の運転を停止さ
せて、適宜に内部の粉粒体を一旦排除するなどした上で
、圧縮空気管8a、8bからの圧縮空気の吹き込みによ
って逆洗し、再度。
In the operation of this conventional device, the screw conveyor 4 is rotated by the driving electric motor 10, and powder particles with a low bulk density are introduced from the inlet 6 into the internal transfer chamber 2a of the cylindrical body 1. The powder is transported by this screw conveyor 4, and the air mixed in the powder is exhausted from the suction and exhaust pipe 7 by the suction action of a vacuum pump, thereby increasing the bulk density of the powder. By discharging from the discharge port 9, the powder and granules are degassed as expected, and the deaeration is performed every time the appropriate operating time passes or when the porous inner cylinder la becomes clogged. When the rate decreases, the operation of the device is stopped, the powder and granules inside are once removed, and then backwashing is performed by blowing compressed air from the compressed air pipes 8a and 8b, and then the device is washed again.

この多孔質内ri!11aを介した脱気機能を回復させ
て使用するのである。
This porous inner ri! It is used by restoring the degassing function via 11a.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかして、前記のように構成される従来の脱気装置の場
合、取り扱い対象の粉粒体としては、比較的嵩密度が小
さく(例えば、0.2g/cc程度)、しかも付着性の
少ないものきみに限定されるという不都合があった。こ
の理由は、取り扱われる粉粒体の種類とか特性によって
も微妙に異なるが、−前約に、粉粒体の嵩比重が高くな
ると、スクリュウコンベアを回転駆動する動力が変動し
て安定した運転稼動が困難になるからであり、また一方
で、付着性の強い粉粒体においては、スクリュウコンベ
アの表面に粉粒体が付着されてしまうことが多く、この
ために移送量が徐々に低下し、これがひどくなると、全
く移送不能になってしまうからである。
However, in the case of the conventional deaerator configured as described above, the powder and granules to be handled have a relatively low bulk density (for example, about 0.2 g/cc) and have low adhesiveness. There was an inconvenience that it was limited to you. The reason for this differs slightly depending on the type and characteristics of the powder or granule being handled, but - as the bulk specific gravity of the powder or granule increases, the power that drives the screw conveyor to rotate fluctuates, resulting in stable operation. On the other hand, with highly adhesive particles, the particles often adhere to the surface of the screw conveyor, which gradually reduces the transfer rate. This is because if this situation worsens, it becomes impossible to transport the object at all.

従って、この発明の目的とするところは、従来のこのよ
うな問題点を改善して、長時間に亘って安定した運転稼
動が可能で、かつ移送量、ひいては粉粒体の脱気処理量
を常時一定に保持し得るようにした、この種の粉粒体の
脱気装置を提供することである。
Therefore, the purpose of the present invention is to improve the above-mentioned conventional problems, to enable stable operation over a long period of time, and to reduce the amount of transfer and, ultimately, the amount of deaeration of powder and granules. It is an object of the present invention to provide a deaeration device for powder and granular material of this type that can be maintained constant at all times.

〔課題を解決するための手段1 前記目的を達成するために、この発明に係る粉粒体の脱
気装置は、多孔質内筒の横断面形状を略繭形にして内部
に移送室を形成させ、この移送室内に、移送スクリュウ
羽根を有する一対のスクリュウコンベアを所定の配置条
件でそれぞれに枢支させたものである。
[Means for Solving the Problems 1] In order to achieve the above-mentioned object, the deaerator for powder and granular materials according to the present invention has a porous inner cylinder whose cross-sectional shape is substantially cocoon-shaped, and a transfer chamber is formed inside. A pair of screw conveyors having transfer screw blades are respectively pivotally supported within the transfer chamber under predetermined arrangement conditions.

すなわち、この発明は、一端部側に粉粒体の投入口、他
端部側に排出口を開口させた装置本体を設け、かつ装置
本体の中間部を、横断面略繭形にされて内部に移送室を
形成する多孔質内筒とし、また、移送スクリュウ羽根を
有する一対のスクリュウコンベアを設けると共に、前記
移送室内にあって、これらの各スクリュウコンベアの移
送スクリュウ羽根周辺部が、互いに相手側の軸部表面に
所定間隙で接近し、かつ多孔質内筒の内壁面との間に所
定間隙を介するようにして回転駆動可能に枢支させ、さ
らに、前記多孔質内筒の外周囲には、内部に真空排気室
を形成する外筒を配置して構成した粉粒体の脱気装置で
ある。
That is, the present invention provides a device main body with an inlet for powder and granular material opened at one end and a discharge port at the other end, and an intermediate portion of the device main body is formed into a substantially cocoon-shaped cross section and has an internal structure. A porous inner cylinder forming a transfer chamber is provided, and a pair of screw conveyors each having a transfer screw blade is provided, and the peripheral portions of the transfer screw blades of each screw conveyor are located in the opposite side of each other within the transfer chamber. The shaft portion of the porous inner cylinder is rotatably supported with a predetermined gap between the shaft surface thereof and the inner wall surface of the porous inner cylinder with a predetermined gap therebetween; This is a degassing device for powder and granular material, which is constructed by arranging an outer cylinder that forms an evacuation chamber inside.

[作   用] 従って、この発明においては、移送スクリュウ羽根を有
する一対のスクリュウコンベアを回転駆動させておき、
これらの各スクリュウコンベアによって、投入口から移
送室内に投入される嵩密度の低い粉粒体を移送させ、か
つ粉粒体中に混在されている空気を多孔質内筒から真空
排気室側に排気させてゆき、このようにして移送中の粉
粒体の嵩密度を徐々に高め、希望する嵩密度まで高めた
粉粒体を排出口から排出させ得るもので、粉粒体の脱気
移送に際しては、一対の各スクリュウコンベアの移送ス
クリュウ羽根周辺部を、互いに相手側の軸部表面に所定
間隙で接近させると共に、同周辺部と多孔質内筒の内壁
面との間に所定間隙を介しであるために、各移送スクリ
ュウ羽根が、相手側スクリュー軸部の表面、および多孔
質内筒の内周面に付着しようとする粉粒体を掻き取って
適切な移送作用と効果的な脱気作用とを確保し得るので
ある。
[Function] Therefore, in this invention, a pair of screw conveyors having transfer screw blades are driven to rotate,
Each of these screw conveyors transfers the powder and granules with low bulk density that are input into the transfer chamber from the input port, and exhausts the air mixed in the powder and granules from the porous inner cylinder to the vacuum exhaust chamber side. In this way, the bulk density of the powder and granules being transferred is gradually increased, and the powder and granules that have reached the desired bulk density can be discharged from the discharge port. In this method, the peripheral parts of the transfer screw blades of each of the pair of screw conveyors are brought close to the shaft surface of the other side with a predetermined gap, and a predetermined gap is provided between the peripheral part and the inner wall surface of the porous inner cylinder. Because of this, each transfer screw blade scrapes off the powder and granules that try to adhere to the surface of the mating screw shaft and the inner peripheral surface of the porous inner cylinder, thereby achieving appropriate transfer action and effective degassing action. It is possible to ensure that

〔実 施 例] 以下、この発明に係る粉粒体の脱気装置の一実施例につ
き、第1図および第2図を参照して詳細に説明する。
[Example] Hereinafter, an example of a deaerator for powder or granular material according to the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図はこの実施例を適用した脱気装置の要部を欠截し
て示す平面図、第2図は同上■−■線部の拡大断面図で
あり、これらの第1図、第2図実施例構成において、前
記第3図、第4図従来例構成と同一符号は同一または相
当部分を示す。
Fig. 1 is a plan view showing the essential parts of the deaerator to which this embodiment is applied, and Fig. 2 is an enlarged sectional view taken along the line ■-■. In the configuration of the embodiment shown in the figure, the same reference numerals as in the conventional configuration of FIGS. 3 and 4 indicate the same or corresponding parts.

すなわち、これらの第1図および第2図構成においても
、この実施例による脱気装置は、一端部側の上部に未処
理粉粒体の投入口6を、他端部側の下部に脱気処理済み
粉粒体の排出口9をそれぞれに形成した装置本体1を有
しており、かつこの装置本体lの中間部にあっては、フ
ランジ3a、 3bをそれぞれに介した状態で、平行す
る2つの中心軸線を有し、かつこれらの各軸線を中心と
する所定半径の円形外周辺部を一部重なり合わせた横断
面略繭形の形状にされて、内部に一連の移送室2aを形
成する多孔質内筒1aと、その外周囲に間隙を隔てるよ
うに配置されて、内部に真空排気室2bを形成する横断
面長円形の形状にされた外筒tbとを配置しである。
That is, even in the configurations shown in FIGS. 1 and 2, the deaerator according to this embodiment has an input port 6 for untreated powder and granular material in the upper part of one end, and a deaerator in the lower part of the other end. It has a device main body 1 each having a discharge port 9 for treated powder and granular material, and in the middle part of the device main body 1, parallel flanges 3a and 3b are interposed between the devices. It has two central axes and has a substantially cocoon-shaped cross section in which circular outer peripheral parts of a predetermined radius centered on each of these axes partially overlap, forming a series of transfer chambers 2a inside. The porous inner cylinder 1a has a porous inner cylinder 1a, and an outer cylinder tb having an oval cross section is arranged around the outer periphery of the porous inner cylinder 1a with a gap therebetween, and forms an evacuation chamber 2b inside.

また、それぞれに異なる螺旋方向、つまり右巻きと左巻
きとに移送スクリュウ羽根5a、 5bを巻き付は固着
して形成した各別の一対からなるスクリュウコンベア4
a、 4bを設け、前記多孔質内筒1aでの内部移送室
2aの各中心軸線上にあって、これらの一対からなる各
スクリュウコンベア4a、 4bのそれぞれを、各移送
スクリュウ羽根5a、 5bの周辺部が相互に干渉しな
い軸線方向位置でオーバーラツプされ、かつ互いに相手
側の軸部表面との間に間隙Gaを介すると共に、多孔質
内筒1aの内周面との間にあっても、ほゞ一定の間隙G
bを介するようにしてそれぞれに枢支させてあり、これ
らの各スクリュウコンベア4a、 4bのそれぞれにつ
いては、これを外部から駆動電動機lOにより、伝導ギ
ヤ機構11を介して、互いに逆方向に同一速度で回転駆
動させ得るようにする、つまり投入口6から投入される
未処理粉粒体を、後述するように脱気処理しながら移送
させた上で、排出口9より排出できるようになっている
Further, a screw conveyor 4 is formed of a different pair of transfer screw blades 5a, 5b which are wound and fixed in different spiral directions, that is, right-handed and left-handed.
a, 4b are provided on each central axis of the internal transfer chamber 2a in the porous inner cylinder 1a, and each of the pair of screw conveyors 4a, 4b is connected to each transfer screw blade 5a, 5b. Even if the peripheral parts overlap at axial positions where they do not interfere with each other, and there is a gap Ga between them and the surfaces of the opposing shaft parts, and also between them and the inner circumferential surface of the porous inner cylinder 1a, it is approximately constant. Gap G
The screw conveyors 4a and 4b are each driven externally by a drive motor lO via a transmission gear mechanism 11 at the same speed in opposite directions. In other words, untreated powder and granules input from the input port 6 can be transferred while being deaerated as described later, and then discharged from the discharge port 9. .

こ\で、前記各移送スクリュウ羽根5a、 5bの周辺
部と相手側スクリュー軸部表面との間に形成される間隙
Gaは、本装置自体の規模ならびに取り扱う粉粒体の性
状などによっても異なるが、通常の場合には、5〜50
s■程度、好ましくは7〜1Osa+程度に設定するの
がよく、このように条件設定するときは、前記した回転
駆動方向および回転速度などきも相俟って、粉粒体の脱
気移送に際し、これらの各移送スクリュウ羽根5a、 
Sbが、相手側スクリュー軸部の表面に付着しようとす
る粉粒体を掻き取って適切に移送し得るもので、概念的
には、この間隙Gaが小さい程、その掻き取り効果が大
きい、また、前記各移送スクリュウ羽根5a、 5bの
周辺部と多孔質内筒1aの内周面との間に形成される間
隙Gbは、同様にして3〜5m−程度に設定するのが好
ましく、ときでは、多孔質内筒1aの内周面に付着しよ
うとする粉粒体の掻き取りに有効であると共に、同内周
面に堆積される粉粒体の脱気時における圧力損失が小さ
くされ、脱気性能への影響を少な(し得るのである。
Here, the gap Ga formed between the periphery of each of the transfer screw blades 5a, 5b and the surface of the mating screw shaft varies depending on the scale of the device itself and the properties of the powder and granular material handled. , in normal cases, 5 to 50
It is best to set the condition to about s■, preferably about 7 to 1 Osa+.When setting the conditions in this way, the rotational drive direction and rotational speed described above are also taken into account when degassing and transferring the powder and granular material. Each of these transfer screw blades 5a,
Sb scrapes off the powder particles that try to adhere to the surface of the mating screw shaft and transfers them appropriately. Conceptually, the smaller the gap Ga, the greater the scraping effect. The gap Gb formed between the peripheral portion of each of the transfer screw blades 5a, 5b and the inner circumferential surface of the porous inner cylinder 1a is similarly preferably set to about 3 to 5 m. This is effective in scraping off the powder particles that tend to adhere to the inner circumferential surface of the porous inner cylinder 1a, and reduces the pressure loss during degassing of the powder particles deposited on the inner circumferential surface. It is possible to minimize the impact on physical performance.

さらに、前記外筒1bに対しては、内部の真空排気室2
b内を真空吸引させるための吸排気管7と、多孔質内筒
1aを逆洗させるための圧縮空気管8とを設けてあり、
こ1では図示省略したが、吸排気管7には、真空ポンプ
なとの真空排気手段を、圧縮空気管8には、コンプレッ
サーなどの圧縮空気発生手段にそれぞれ接続させたもの
である。
Furthermore, for the outer cylinder 1b, an internal evacuation chamber 2 is provided.
An intake/exhaust pipe 7 for vacuum suction inside b and a compressed air pipe 8 for backwashing the porous inner cylinder 1a are provided.
Although not shown in FIG. 1, the suction/exhaust pipe 7 is connected to evacuation means such as a vacuum pump, and the compressed air pipe 8 is connected to compressed air generation means such as a compressor.

従って、前記構成の実施例装置においても、これを運転
稼動させるのには、駆動電動機10に通電して移送スク
リュウ羽根5a、 5bを有する一対の各スクリュウコ
ンベア4a、4bを互いに逆方向に回転駆動させておき
、投入口6から装置本体lの内部移送室2a内に投入さ
れる未だ嵩密度の低い粉粒体を、これらの各スクリュウ
コンベア4a、 4bによって移送させると共に、この
粉粒体中に混在されている空気を、真空ポンプの吸引作
用により多孔質内筒1aを通し真空排気室2bおよび吸
排気管7を経て排気させ、このようにして移送中の粉粒
体の嵩密度を徐々に高めてゆき、希望する嵩密度まで高
めた粉粒体を排出口9から排出させ、所期通りの粉粒体
に対する脱気処理を行うのである。
Therefore, in order to operate the apparatus according to the embodiment described above, it is necessary to energize the drive motor 10 and drive the pair of screw conveyors 4a and 4b having the transfer screw blades 5a and 5b to rotate in opposite directions. The powder and granules, which still have a low bulk density, are fed into the internal transfer chamber 2a of the device main body l from the input port 6, and are transferred by these screw conveyors 4a and 4b, and the powder and granules are The mixed air is evacuated through the porous inner cylinder 1a through the vacuum evacuation chamber 2b and the intake/exhaust pipe 7 by the suction action of the vacuum pump, and in this way, the bulk density of the powder and granular material being transferred is gradually increased. Then, the granular material that has been increased to the desired bulk density is discharged from the discharge port 9, and the granular material is subjected to the desired deaeration process.

そして、この際、各スクリュウコンベア4a、 4bの
表面ならびに多孔質内筒1aの内周面への粉粒体の付着
は、前記したように、各移送スクリュウ羽根5a、 5
bの相互による掻き取り作用によって防止されるために
、脱気時における圧力損失が小さ(なり、脱気性能への
影響が少なくされると共に、移送量、ひいては粉粒体の
脱気処理量を常時一定に保持できて、長時間に亘る安定
した運転稼動が可能になる。
At this time, adhesion of the powder to the surface of each screw conveyor 4a, 4b and the inner peripheral surface of porous inner cylinder 1a is controlled by each transfer screw blade 5a, 5, as described above.
Since this is prevented by the mutual scraping action of b, the pressure loss during deaeration is small (and the effect on deaeration performance is reduced, and the amount of transfer and, ultimately, the amount of deaeration of powder and granules is reduced). It can be kept constant at all times, enabling stable operation over a long period of time.

次に、前記した従来例装置と実施例装置とによる実際の
実験結果を示して、この実施例における作用、効果を明
らかにする。
Next, actual experimental results using the conventional device and the example device described above will be shown to clarify the functions and effects of this example.

実験に用いたこれらの従来例装置と実施例装置の場合、
これをそれぞれに前記のように構成したほかは、すべて
の仕様を同一とし、かつ対象処理物としては、袋詰めさ
れた状態における見掛けの高密度が0.171g/cc
の粉粒体を用いた。
In the case of the conventional example device and the example device used in the experiment,
Other than the configuration described above, all specifications are the same, and the apparent high density of the target processed material in the bagged state is 0.171 g/cc.
granular material was used.

実験結果は、次表に示す通りであった。The experimental results were as shown in the table below.

こSで、一般に粉粒体の嵩密度は、その物性。In general, the bulk density of a powder or granule is its physical property.

真空吸引圧力、スクリュウ回転数に影響されることが知
られており、この実験例では、真空吸引圧力を一600
mmHgに一定とし、また、スクリュウ回転数を4Or
pmと6叶pmとに変化させ、運転稼動初期と脱気処理
して2時間経過後における粉粒体の嵩密度と処理量を測
定したものである。
It is known that the vacuum suction pressure is affected by the screw rotation speed, and in this experimental example, the vacuum suction pressure was set to -600
The screw rotation speed was kept constant at mmHg, and the screw rotation speed was set to 4Or
pm and 6 pm, and the bulk density and throughput of the powder and granular material were measured at the beginning of operation and 2 hours after deaeration treatment.

上表に示した実験結果から明らかなように、従来例装置
と実施例装置との両者の性能を比較すると、その脱気処
理後の嵩密度については、はズ差が認められないが、処
理能力に関して、運転稼動初期の段階では、従来例装置
に比較して実施例装置が約1.35倍も高く、2時間経
過後では、従来例装置の場合、処理能力が20%程度ま
で低下したのに対し、実施例装置の場合、処理能力の低
下がなく、従来例装置に比較して約1.7倍の処理能力
になっていることが判る。そして、この処理能力の差は
処理時間の経過に伴って太き(なる。
As is clear from the experimental results shown in the table above, when comparing the performance of both the conventional example device and the example device, there is no difference in bulk density after the degassing treatment, but Regarding capacity, at the initial stage of operation, the processing capacity of the example apparatus was about 1.35 times higher than that of the conventional apparatus, and after 2 hours, the processing capacity of the conventional apparatus had decreased to about 20%. On the other hand, it can be seen that in the case of the apparatus of the embodiment, there is no decrease in processing capacity, and the processing capacity is about 1.7 times that of the conventional apparatus. This difference in processing capacity increases as processing time progresses.

また、運転稼動時における駆動電動機10の所要電流値
を比較すると、実施例装置では、この電流値の変動が殆
んどないのに対して、従来例装置においては、40rp
mで3.”−5,’A、 60rpmで4.’−5,’
Aに変動し、異常音および振動が発生して不安定な運転
状態になった。
Furthermore, when comparing the required current value of the drive motor 10 during operation, in the example device there is almost no variation in this current value, whereas in the conventional example device, the current value is 40 rpm.
m in 3. ”-5,'A, 4.'-5,' at 60 rpm
A, abnormal noise and vibration occurred, resulting in unstable operation.

なお、前記実施例構成においては、異なる螺旋方向に移
送スクリュウ羽根を巻き付は固着した一対からなるスク
リュウコンベアを用い、これらを互いに逆方向に回転駆
動させる場合について述べたが、同一の螺旋方向に移送
スクリュウ羽根を巻き付は固着した一対からなるスクリ
ュウコンベアを用い、これらを互いに同一方向に回転駆
動させるようにしてもよく、同様な作用、効果が得られ
るのであり、また、多孔質内筒の内周面と各移送スクリ
ュウ羽根の周辺部との間隙なほゞ一定に設定することに
より、優れた脱気性能を長時間に亘って維持できるので
ある。
In the above embodiment, a case has been described in which a screw conveyor consisting of a pair of screw conveyors in which transfer screw blades are wound and fixed in different helical directions is used, and these are driven to rotate in mutually opposite directions. A screw conveyor consisting of a pair of fixed screw conveyors may be used to wrap the transfer screw blades and drive them to rotate in the same direction, and the same action and effect can be obtained. By setting the gap between the inner circumferential surface and the peripheral portion of each transfer screw blade to be substantially constant, excellent deaeration performance can be maintained for a long time.

〔発明の効果] 以上詳述したように、この発明によれば、一端部側に粉
粒体の投入口を、他端部側に排出口をそれぞれに開口さ
せた装置本体を設けて、その中間部を、横断面略繭形で
内部に移送室を形成する多孔質内筒としておき、また、
移送スクリュウ羽根を有する一対のスクリュウコンベア
を設けて、これらの各スクリュウコンベアの移送スクリ
ュウ羽根周辺部か、互いに相手側の軸部表面に所定間隙
で接近し、かつ多孔質内筒の内壁面との間に所定間隙を
介するようにして移送室内に回転駆動可能なように枢支
させ、さらに、多孔質内筒の外周囲にあって、内部に真
空排気室を形成する外筒を配置して構成したから、各ス
クリュウコンベアを移送方向に回転駆動させ、投入口か
ら移送室内に投入される嵩密度の低い粉粒体を移送させ
て、粉粒体中に混在されている空気を多孔質内筒から真
空排気室側に排気させ、移送中の粉粒体の嵩密度を徐々
に高めて排出口から排出させることができ、かつ粉粒体
の脱気移送に際しては、各移送スクリュウ羽根が、相手
側スクリュー軸部の表面、および多孔質内筒の内周面に
付着しようとする粉粒体を掻き取って移送できるために
、適切な移送作用と効果的な脱気作用とを長時間に亘っ
て確保し得るのであり、併せて、構造的にも比較的簡単
で容易に実施できるなどの優れた特長がある。
[Effects of the Invention] As detailed above, according to the present invention, a device main body is provided with an inlet for powder and granular material opened at one end and a discharge port at the other end. The middle part is a porous inner cylinder having a substantially cocoon-shaped cross section and forming a transfer chamber therein, and
A pair of screw conveyors having transfer screw blades are provided, and the area around the transfer screw blades of each of these screw conveyors is close to the shaft surface of the other side with a predetermined gap, and is close to the inner wall surface of the porous inner cylinder. It is rotatably supported within the transfer chamber with a predetermined gap in between, and an outer cylinder is arranged around the outer circumference of the porous inner cylinder and forms an evacuation chamber inside. Therefore, each screw conveyor is driven to rotate in the transfer direction, and the powder and granules with low bulk density that are introduced into the transfer chamber from the input port are transferred, and the air mixed in the powder and granules is transferred to the porous inner cylinder. The bulk density of the powder and granules being transferred can be gradually increased and discharged from the evacuation chamber through the evacuation chamber. Since it is possible to scrape and transfer the powder particles that tend to adhere to the surface of the side screw shaft and the inner circumferential surface of the porous inner cylinder, appropriate transfer action and effective degassing action can be achieved over a long period of time. In addition, it has excellent features such as being relatively simple in structure and easy to implement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を適用した脱気装置の概要
構成の要部を欠截して示す平面図、第2図は同上■−■
線部の拡大断面図であり、また、第3図は従来例による
同上脱気装置の概要構成の要部を欠截して示す平面図、
第4図は同上IV−mV線部の拡大断面図である。 である。 l・・・・装置本体、la・・・・多孔質内筒、lb・
・・・外筒、2a・・・・移送室、2b・・・・真空排
気室、4a、 4b・・・・スクリュウコンベア、5a
、 5b・・・・移送スクリュウ羽根、6・・・・投入
口、7・・・・吸排気管、8・・・・圧縮空気管、9・
・・・排出口、lO・・・・駆動電動機。
Fig. 1 is a plan view showing a schematic configuration of a deaerator to which an embodiment of the present invention is applied, with main parts cut out, and Fig. 2 is the same as above.
FIG. 3 is an enlarged cross-sectional view of the lined portion, and FIG. 3 is a plan view showing, with main parts of the general configuration of the conventional degassing device, with the main parts cut out;
FIG. 4 is an enlarged sectional view of the same IV-mV line section. It is. l...Device main body, la...Porous inner cylinder, lb...
...outer cylinder, 2a...transfer chamber, 2b...vacuum exhaust chamber, 4a, 4b...screw conveyor, 5a
, 5b...transfer screw blade, 6...inlet, 7...intake/exhaust pipe, 8...compressed air pipe, 9...
...Exhaust port, lO...Drive motor.

Claims (4)

【特許請求の範囲】[Claims] (1)一端部側に粉粒体の投入口、他端部側に排出口を
開口させた装置本体を設け、かつ装置本体の中間部を、
横断面略繭形にされて内部に移送室を形成する多孔質内
筒とし、また、移送スクリュウ羽根を有する一対のスク
リュウコンベアを設けると共に、前記移送室内にあつて
、これらの各スクリュウコンベアの移送スクリュウ羽根
周辺部が、互いに相手側の軸部表面に所定間隙で接近し
、かつ多孔質内筒の内壁面との間に所定間隙を介するよ
うにして回転駆動可能に枢支させ、さらに、前記多孔質
内筒の外周囲には、内部に真空排気室を形成する外筒を
配置して構成した粉粒体の脱気装置。
(1) A device body is provided with an inlet for powder and granular material opened at one end and a discharge port at the other end, and the intermediate portion of the device body is
The porous inner cylinder has a substantially cocoon-shaped cross section and forms a transfer chamber therein, and is provided with a pair of screw conveyors each having a transfer screw blade. The peripheral portions of the screw blades are rotatably supported so as to be close to the surfaces of the shaft portions on the other side with a predetermined gap and with a predetermined gap between them and the inner wall surface of the porous inner cylinder, and further, A degassing device for powder and granular material that is configured by placing an outer cylinder around the outer circumference of a porous inner cylinder to form an evacuation chamber inside.
(2)一対のスクリュウコンベアが、それぞれに異なる
螺旋方向の移送スクリュウ羽根を有し、相互に相反する
方向に回転駆動されるようにした請求項1に記載の粉粒
体の脱気装置。
(2) The powder and granular material degassing device according to claim 1, wherein the pair of screw conveyors each have transfer screw blades in different helical directions and are driven to rotate in mutually opposite directions.
(3)一対のスクリュウコンベアが、それぞれに同一の
螺旋方向の移送スクリュウ羽根を有し、相互に同一の方
向に回転駆動されるようにした請求項1に記載の粉粒体
の脱気装置。
(3) The powder and granular material degassing device according to claim 1, wherein the pair of screw conveyors each have a transfer screw blade in the same helical direction and are driven to rotate in the same direction.
(4)多孔質内筒の内周面と、各スクリュウコンベアの
移送スクリュウ羽根周辺部との間の間隙が、ほゞ一定に
されている請求項1ないし3のいずれかに記載の粉粒体
の脱気装置。
(4) The granular material according to any one of claims 1 to 3, wherein the gap between the inner circumferential surface of the porous inner cylinder and the peripheral portion of the transfer screw blade of each screw conveyor is substantially constant. Deaerator.
JP31759589A 1989-12-08 1989-12-08 Device for deairing powdered/granular material Pending JPH03187802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31759589A JPH03187802A (en) 1989-12-08 1989-12-08 Device for deairing powdered/granular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31759589A JPH03187802A (en) 1989-12-08 1989-12-08 Device for deairing powdered/granular material

Publications (1)

Publication Number Publication Date
JPH03187802A true JPH03187802A (en) 1991-08-15

Family

ID=18089973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31759589A Pending JPH03187802A (en) 1989-12-08 1989-12-08 Device for deairing powdered/granular material

Country Status (1)

Country Link
JP (1) JPH03187802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041136A1 (en) 2008-09-16 2010-03-25 Tsubakimoto Chain Co., Nakanoshima Low-noise chain
JP2011084311A (en) * 2009-10-16 2011-04-28 Kamacho Scale Co Ltd Powder deaerating-filling machine
KR102178765B1 (en) * 2020-09-25 2020-11-13 (주)티에스아이 Slurry Mixer for Secondary battery Electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041136A1 (en) 2008-09-16 2010-03-25 Tsubakimoto Chain Co., Nakanoshima Low-noise chain
JP2011084311A (en) * 2009-10-16 2011-04-28 Kamacho Scale Co Ltd Powder deaerating-filling machine
KR102178765B1 (en) * 2020-09-25 2020-11-13 (주)티에스아이 Slurry Mixer for Secondary battery Electrode

Similar Documents

Publication Publication Date Title
JP4649110B2 (en) Granule pump feeder
WO1998026244A1 (en) Vacuum rotary dryer
JPH03187802A (en) Device for deairing powdered/granular material
JP4358816B2 (en) Powder deaerator
CN215665925U (en) Activated carbon feeding station capable of realizing quantitative conveying
CN207226305U (en) A kind of continuous uniform is stable and the adjustable discharge valve of feed quantity
JPH10170151A (en) Continuous dryer
JPH10170149A (en) Filtering and drying device
JPS59130700A (en) Method and device for continuously compressing minute powdered substance
CN212314952U (en) Material transferring device
CN210418469U (en) Novel anti-blocking discharger
CN115477168A (en) Food material powder supply device
JP3099358B2 (en) Powder degassing equipment
JP3759165B2 (en) Equipment for transferring bulk material between conveyors
CN220148640U (en) Powder discharge apparatus and powder conveying system
JP2746690B2 (en) Powder discharging device
KR20020066369A (en) Pressure filtration device and method employing a depressurizing chamber and material transport
CN217262184U (en) Wrap up in clothing product and store sieve bucket
JP7041817B2 (en) Vibration processing device for powder and granular material
US2681737A (en) Valve
CN211385757U (en) Single-mass vibration shakeout machine with good stability
JPS60167830A (en) Granular powder unloading and feeding apparatus
SU833316A1 (en) Method of automatic control of pneumatic feed of disintegration product from dry-grinding mill
CN107892145A (en) A kind of anti-block apparatus of conveying worm
JPS5924719Y2 (en) Sealing operation control mechanism in a powder transport port sealing device