JPH03185905A - Crystal processing method - Google Patents

Crystal processing method

Info

Publication number
JPH03185905A
JPH03185905A JP32388389A JP32388389A JPH03185905A JP H03185905 A JPH03185905 A JP H03185905A JP 32388389 A JP32388389 A JP 32388389A JP 32388389 A JP32388389 A JP 32388389A JP H03185905 A JPH03185905 A JP H03185905A
Authority
JP
Japan
Prior art keywords
crystal
etching
temperature
processing method
implemented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32388389A
Other languages
Japanese (ja)
Inventor
Tadahiro Okajima
岡島 忠弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP32388389A priority Critical patent/JPH03185905A/en
Publication of JPH03185905A publication Critical patent/JPH03185905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To reduce crystal strain at the time of working a crystal and to eliminate sufficiently the effect of a crystal impedance by leaving a crystal chip at the temperature of 450-560 deg.C for a prescribed time after the polishment process is ended. CONSTITUTION:A crystal chip cut from a raw material of an artificial crystal is polished close to a prescribed thickness with a fine particle polishing tool and the material is rinsed against oil and polished powder or the like. Then high temperature heat treatment (annealing) is implemented to heat the material for 5 min or over at the temperature of 450-560 deg.C, lower than the transposition temperature 573 deg.C of the crystal and higher than the temperature of 450 deg.C in which spontaneous polarization in the crystal starts its orientation toward single polarization. Then the etching is implemented. The quantity of etching is less because the crystal strain is decreased by the annealing and the etching time is considerably reduced. Finally, the etching liquid is rinsed off, electrode vapor-deposition is implemented, the crystal is bonded to the support and the frequency adjustment to attain the object frequency is implemented. Thus, the effect of the crystal impedance is sufficiently eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水晶加工方法に係り、特に、水晶振動子、水
晶フィルタのクリスタルインピーダンスの改善に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystal processing method, and particularly to improving the crystal impedance of a crystal resonator and a crystal filter.

(従来の技術) 従来、水晶振動子、水晶フィルタに用いられている水晶
を研磨する工程にて発生する加工層及び、その下部にお
いては、加工に起因する弾性歪(結晶歪〉により、クリ
スタルインピーダンスが大きくなり、しかも、バラツキ
も大きいものであった。
(Prior art) Conventionally, in the processed layer and its lower part, which are generated in the process of polishing the crystal used in crystal resonators and crystal filters, the crystal impedance is reduced due to elastic strain (crystal strain) caused by processing. was large, and the variation was also large.

そこで、この水晶片の研磨工程にて発生す・る弾性歪に
よるクリスタルインピーダンスの影響を取り除く方法と
して、以下に示す様な方法があった。
Therefore, as a method of removing the influence of crystal impedance due to elastic strain generated in the polishing process of the crystal piece, the following method has been proposed.

第3図(A)〜(E)は従来の水晶加工方法の工程を示
す図である。
FIGS. 3A to 3E are diagrams showing steps of a conventional crystal processing method.

以下同図を用いて従来の水晶加工方法の説明をする。The conventional crystal processing method will be explained below using the same figure.

[工程1]まず、人口水晶の原石から切り出した水晶片
を、例えば、酸化アルミナやグリンカーボン等の微粒子
からなる研磨材を用いて目的とする水晶振動子または水
晶フィルタ厚み近くにまで研磨する。        
   (同図(A))[工程2]上記研磨の際に使用し
た、研磨材及び、油等を洗浄する。       (同
図(B))[工程3コ洗浄を行った後、電極を蒸着した
時に、目的の周波数を発振する厚みになる様に、フッ化
アンモニウム液などのエツチング液を用いた腐蝕処理に
より水晶片の厚みの微調整を行なう。
[Step 1] First, a crystal piece cut from an artificial crystal raw stone is polished to a thickness close to the desired crystal resonator or crystal filter using an abrasive material made of fine particles such as alumina oxide or green carbon.
((A) of the same figure) [Step 2] The abrasive material, oil, etc. used in the above polishing are washed away. ((B) in the same figure) [After performing 3 cleaning steps, the crystal is etched by etching using an etching solution such as ammonium fluoride solution so that it has a thickness that will oscillate the desired frequency when the electrode is deposited. Make fine adjustments to the thickness of the pieces.

(同図(C)) [工程4]次に、エツチング液の洗浄をした後、再び、
電極蒸着を行ない、サポートへの接着をした後、最終的
に目的とする周波数にするために、周波数調整(または
、f調整)を行なう。
(Figure (C)) [Step 4] Next, after cleaning the etching solution,
After electrode deposition and adhesion to the support, frequency adjustment (or f adjustment) is performed to achieve the final target frequency.

(同図(D)、(E)) 上記の様な、従来の水晶加工方法においては、工程1に
おいて、表面か結晶組織の破壊された層で覆われており
、その下に研磨加工に起因する結晶歪の層ができるため
、特に、 (1)超微粒研磨材で仕上げ表面の結晶組織の破壊を少
なくする。
(Figures (D) and (E)) In the conventional crystal processing method as described above, in step 1, the surface is covered with a layer with a destroyed crystal structure, and beneath that is a layer with a destroyed crystal structure. In particular, (1) Use an ultrafine abrasive to reduce the destruction of the crystal structure on the finished surface.

(2)結晶歪が少なくなる様に、水晶片への圧力を弱く
する。
(2) Reduce the pressure on the crystal piece to reduce crystal distortion.

(3)前記工程3に示した様に、エツチング工程におい
て、結晶歪層まで腐蝕処理をする。
(3) As shown in step 3 above, in the etching step, the crystal strain layer is etched.

等の方法が用いられていた。methods were used.

(発明が解決しようとする課題) 上述の様な従来の水晶加工方法においては、以下の様な
問題点があった。
(Problems to be Solved by the Invention) The conventional crystal processing method as described above has the following problems.

(1)圧力を弱くし、超微粒研磨材で鏡面状の表面に仕
上げた場合にも、結晶組織の破壊された層及びその下に
、加工に起因する結晶歪が発生してしまっていた。また
、一般の研磨材を用いた研磨とは別に超微粒子研磨材を
用いて研磨するので、多くの研磨時間を必要とする。
(1) Even when the pressure was lowered and a mirror-like surface was finished with an ultrafine abrasive, crystal distortion due to processing occurred in the layer where the crystal structure was destroyed and beneath it. Furthermore, since polishing is performed using an ultrafine abrasive material in addition to polishing using a general abrasive material, a lot of polishing time is required.

(2)エツチング工程において、過度の腐蝕により、水
晶の表面性が失われ、しかも、多くのエツチング時間を
要する。
(2) In the etching process, the surface quality of the crystal is lost due to excessive corrosion, and moreover, a lot of etching time is required.

(3)周波数の調整量によっては、エツチングによって
研磨加工時の結晶歪まで取れないことがある。
(3) Depending on the amount of frequency adjustment, it may not be possible to remove crystal distortion during polishing by etching.

(課題を解決するための手段) 本発明は上記課題を解決するためになされたものであり
、所定の厚みにまで水晶片の表面を研磨する研磨工程と
、厚みの微調整を行なうエツチング工程と、電極蒸着工
程と、リード線サポートの接着工程、および周波数調整
工程とからなる水晶加工方法において、前記研磨工程の
後に、前記水晶片を450℃〜560°Cの温度にて所
定時間放置することを特徴とする水晶加工方法を提供し
ようとするものである。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and includes a polishing process for polishing the surface of a crystal piece to a predetermined thickness, and an etching process for finely adjusting the thickness. , a crystal processing method comprising an electrode vapor deposition step, a lead wire support bonding step, and a frequency adjustment step, in which the crystal piece is left at a temperature of 450° C. to 560° C. for a predetermined period of time after the polishing step. The present invention aims to provide a crystal processing method characterized by the following.

(実施例〉 第1図(A)〜(F)は本発明になる水晶加工方法の工
程を示す図である。
(Example) FIGS. 1A to 1F are diagrams showing steps of a crystal processing method according to the present invention.

同図が従来の水晶加工方法と異なる点は、高温熱処理(
または、アニール〉工程を有する点であり、従来の方法
と同様の工程についての説明は省略する。
The difference between this figure and the conventional crystal processing method is that the high-temperature heat treatment (
Alternatively, the method includes an annealing step, and a description of the steps similar to those of the conventional method will be omitted.

[工程1コ〜[工程2] 従来同様の、研磨工程、洗浄工程を行なう。[Step 1 ~ [Step 2] The polishing process and cleaning process are performed in the same manner as before.

(同図(A>、(B)) [工程3] 次に、アニールを行なう。即ち、水晶の転位温度(57
3℃付近)より低く、結晶中において自発分極が向きを
そろえ単一分極に動き出す温度(450℃)までの間の
温度(450℃〜560℃)を5分間以上加える。  
      (同図(C))[工程4] 次に、エツチングを行うが、上記アニールによす、結晶
歪が少なくなっているので、エツチング量は少なくてす
み、エツチング時間は従来に比べ大幅に少なくできる。
((A>, (B) in the same figure) [Step 3] Next, annealing is performed. That is, the crystal dislocation temperature (57
A temperature (450°C to 560°C) lower than 3°C (nearly 3°C) to a temperature (450°C) at which spontaneous polarization aligns in direction and begins to move to single polarization in the crystal is applied for 5 minutes or more.
((C) in the same figure) [Step 4] Next, etching is performed, but since the crystal distortion is reduced due to the above annealing, the amount of etching is small, and the etching time is significantly shorter than that of the conventional method. can.

     (同図(D))[工程5コ 従来と同様の洗浄工程、電極蒸着工程、接着工程、f調
整工程を行なう。
((D) in the same figure) [Step 5] The same cleaning process, electrode deposition process, adhesion process, and f adjustment process as in the conventional process are performed.

(同図(B)、(F)) 上述の様に、本発明になる水晶加工方法においは、研磨
工程の後にアニール工程を有しているので、結晶歪を少
なくすることができ、超微粒子研磨材を用いた研磨の研
磨時間を必要とせず、短いエツチング時間で結晶歪を除
去することができる。
(Figures (B) and (F)) As mentioned above, the crystal processing method of the present invention includes an annealing process after the polishing process, so crystal distortion can be reduced and ultrafine particles Crystal distortion can be removed in a short etching time without requiring polishing time using an abrasive material.

なお、アニール有りの場合と無しの場合の水晶加工方法
によるクリスタルインピーダンスの影響の違いは次の通
りであった。
The difference in influence of crystal impedance due to the crystal processing method with and without annealing was as follows.

第2図(a>は従来の水晶加工方法により加工した水晶
のクリスタルインピーダンスの一例で、N = 100
の場合の分布を示すグラフ、同図(b)は本発明になる
水晶加工方法により加工した水晶のクリスタルインピー
ダンスのN = 100の場合の分布を示すグラフ、両
図において、横軸は加工後の水晶の個数(個)、縦軸は
クリスタルインピーダンス(Ω)を示している。
Figure 2 (a> is an example of the crystal impedance of a crystal processed by the conventional crystal processing method, N = 100
(b) is a graph showing the distribution when N = 100 of the crystal impedance of the crystal processed by the crystal processing method of the present invention. In both figures, the horizontal axis is the distribution after processing. The number of crystals (pieces) and the vertical axis indicate crystal impedance (Ω).

両図より明らかな様に、アニール有りの場合には、クリ
スタルインピーダンスの値がバラツキが少なく、しかも
小さく抑えられていることがわかる。
As is clear from both figures, in the case of annealing, the variation in the crystal impedance value is small and is suppressed to a small value.

また、研磨、洗浄工程のすぐ後にアニール工程を行なう
のではなく、電極蒸着後にアニール工程を行なった場合
でも、研磨時に発生した結晶格子歪を少なくすることが
できる。
Further, even when the annealing process is performed after electrode deposition, rather than immediately after the polishing and cleaning steps, crystal lattice strain generated during polishing can be reduced.

(発明の効果) 上述の様に、本発明になる、水晶加工方法によれば、所
定の厚みにまで水晶片の表面を研磨する研磨工程と、厚
みの微調整を行なうエツチング工程と、電極蒸着工程と
、リード線サポートの接着工程、および周波数調整工程
とからなる水晶加工方法において、前記研磨工程の後に
、前記水晶片を450°C〜560℃の温度にて所定時
間放置することを特徴としたので、水晶の加工時におけ
る結晶歪を少なくすることができ、結晶歪によるクリス
タルインピーダンスの影響を十分に取り除くことが可能
な水晶加工方法の提供を可能とする。
(Effects of the Invention) As described above, the crystal processing method of the present invention includes a polishing process for polishing the surface of a crystal piece to a predetermined thickness, an etching process for finely adjusting the thickness, and an electrode deposition process. A crystal processing method comprising a step of adhering a lead wire support, and a frequency adjustment step is characterized in that, after the polishing step, the crystal piece is left at a temperature of 450° C. to 560° C. for a predetermined period of time. Therefore, it is possible to provide a crystal processing method that can reduce crystal strain during crystal processing and sufficiently eliminate the influence of crystal impedance due to crystal distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(F)は本発明になる水晶加工方法の工
程を示す図、第2図(a)は従来の水晶加工方法により
加工した水晶のクリスタルインピーダンスの一例で、N
=100の場合の分布を示すグラフ、同図(b)は本発
明になる水晶加工方法により加工した水晶のクリスタル
インピーダンスのN = 100の場合の分布を示すグ
ラフ、第3図(A)〜(’E )は従来の水晶加工方法
の工程を示す図。 特 許 出願人 日本ビクター株式会社代表者 垣木 
邦夫 lρ 2Q 3゜ ダQ (ts   6゜ イびν&C1目〕 12図
Figures 1 (A) to (F) are diagrams showing the steps of the crystal processing method according to the present invention, and Figure 2 (a) is an example of the crystal impedance of the crystal processed by the conventional crystal processing method.
Figure 3(b) is a graph showing the distribution when N=100 of the crystal impedance of the crystal processed by the crystal processing method of the present invention. 'E) is a diagram showing the steps of a conventional crystal processing method. Patent Applicant: Japan Victor Co., Ltd. Representative Kakiki
Kunio lρ 2Q 3゜daQ (ts 6゜ibi ν & C1th) Figure 12

Claims (1)

【特許請求の範囲】  所定の厚みにまで水晶片の表面を研磨する研磨工程と
、厚みの微調整を行なうエッチング工程と、電極蒸着工
程と、リード線サポートの接着工程、および周波数調整
工程とからなる水晶加工方法において、 前記研磨工程の後に、前記水晶片を450℃〜560℃
の温度にて所定時間放置することを特徴とする水晶加工
方法。
[Claims] A polishing process for polishing the surface of a crystal piece to a predetermined thickness, an etching process for finely adjusting the thickness, an electrode deposition process, a lead wire support bonding process, and a frequency adjustment process. In the crystal processing method, after the polishing step, the crystal piece is heated to 450°C to 560°C.
A crystal processing method characterized by leaving the crystal at a temperature of for a predetermined period of time.
JP32388389A 1989-12-15 1989-12-15 Crystal processing method Pending JPH03185905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32388389A JPH03185905A (en) 1989-12-15 1989-12-15 Crystal processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32388389A JPH03185905A (en) 1989-12-15 1989-12-15 Crystal processing method

Publications (1)

Publication Number Publication Date
JPH03185905A true JPH03185905A (en) 1991-08-13

Family

ID=18159666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32388389A Pending JPH03185905A (en) 1989-12-15 1989-12-15 Crystal processing method

Country Status (1)

Country Link
JP (1) JPH03185905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030075258A (en) * 2002-03-18 2003-09-26 케이큐티 주식회사 High fundamental frequency crystal resonator and the manufacturing method
KR100896557B1 (en) * 2001-07-18 2009-05-07 사빅 이노베이티브 플라스틱스 아이피 비.브이. Transparent, fire-resistant polycarbonate compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100896557B1 (en) * 2001-07-18 2009-05-07 사빅 이노베이티브 플라스틱스 아이피 비.브이. Transparent, fire-resistant polycarbonate compositions
KR20030075258A (en) * 2002-03-18 2003-09-26 케이큐티 주식회사 High fundamental frequency crystal resonator and the manufacturing method

Similar Documents

Publication Publication Date Title
DE102009055304B4 (en) Method for producing a composite substrate and composite substrate
US10211389B2 (en) Composite substrate
TW200524833A (en) Methods of finishing quartz glass surfaces and components made by the methods
US4412886A (en) Method for the preparation of a ferroelectric substrate plate
DE112019001960B4 (en) Bonded body composed of a substrate made of a piezoelectric material and a supporting substrate
JPH03185905A (en) Crystal processing method
JPH0442893A (en) Silicon wafer
CA1128840A (en) Method of growing quartz
CN209299226U (en) A kind of surface acoustic wave resonance Structure Filter
JP2000082931A (en) Piezoelectric single crystal wafer, its manufacture and surface acoustic wave device
US4154025A (en) Method for preparing oxide piezoelectric material wafers
JP7443808B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JP3722638B2 (en) Method for suppressing etch channel generated in artificial quartz, method for processing artificial quartz, and high-quality artificial quartz, quartz wafer, and quartz piece
EP1178135B1 (en) Piezoelectric oxide single crystal wafer
JP2845432B2 (en) Method for producing lithium tetraborate single crystal substrate
JPS6232160B2 (en)
JP7019052B2 (en) Substrate for surface acoustic wave element and its manufacturing method
JP7472546B2 (en) Method for manufacturing piezoelectric oxide single crystal substrate
JP2022068748A (en) Oxide single-crystal wafer, wafer for composite substrate, composite substrate, method for processing oxide single-crystal wafer, method for producing oxide single-crystal wafer, method for producing wafer for composite substrate, and method for producing composite substrate
JP3260039B2 (en) Manufacturing method of ferroelectric wafer
JPH04285025A (en) Method for rendering single domain to piezoelectric single crystal
JP2002167298A (en) Single crystal wafer
JPS63307200A (en) Production of single crystal wafer
RU2150172C1 (en) Chip manufacturing process
JPS5947479B2 (en) Ferroelectric material single crystal processing method