JPH03185279A - Heat exchanger for compressor - Google Patents

Heat exchanger for compressor

Info

Publication number
JPH03185279A
JPH03185279A JP32373489A JP32373489A JPH03185279A JP H03185279 A JPH03185279 A JP H03185279A JP 32373489 A JP32373489 A JP 32373489A JP 32373489 A JP32373489 A JP 32373489A JP H03185279 A JPH03185279 A JP H03185279A
Authority
JP
Japan
Prior art keywords
temperature side
cooling pipe
low
heat exchanger
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32373489A
Other languages
Japanese (ja)
Inventor
Hitoshi Nishimura
仁 西村
Masakazu Aoki
優和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32373489A priority Critical patent/JPH03185279A/en
Publication of JPH03185279A publication Critical patent/JPH03185279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

PURPOSE:To use different materials properly and precisely so as to reduce the manufacturing cost and the thermal stress of a heat exchanger for a compressor by forming low-and high-temperature side cooling pipes from different materials, the cooling pipes each connected between the inlet and outlet portion headers of the heat exchanger. CONSTITUTION:In a pre-cooler serving as a heat exchanger forming one part of the delivery system of an oil-free screw compressor, high-temperature compressed air allowed to flow into an inlet portion header 7 is heat exchanged with cooling air and cooled in a high-temperature side cooling pipe 8 and is then cooled in a low-temperature side cooling pipe 9 and transferred from an outlet portion header 10 to an after cooler. In this case, the cooling pipes 8, 9 are made from different materials; e.g., the high-temperature side cooling pipe 8 is made from stainless and the low-temperature side cooling pipe 9 from copper. A low-cost material (e.g., copper) is thus employed on the low temperature side of the pre-cooler so as to reduce the manufacturing cost of the pre- cooler. Also, the amounts of thermal expansion of the high-and low-temperature sides of the pre-cooler are maintained equal to each other so as to reduce the thermal stress.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空冷式オイルフリースクリユー圧縮機の圧縮機
本体から吐出される高温空気を一次冷却する熱交換器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger that primarily cools high-temperature air discharged from the compressor body of an air-cooled oil-free screw compressor.

〔従来の技術〕[Conventional technology]

従来の装置では、アフタークーラからの排風を利用する
もので、しかも熱交換器の入口部ヘッダと出口部ヘッダ
の間を連結する冷却管をU字形とし、片側をヘッダに固
定し他側は固定しない構造とし高温条件に於いて熱応力
を緩和できる構造のものがある。従来形の熱交換器の冷
却管は単一の材質で構成されており、例えば、ステンレ
ス材が使用されていた。
In conventional equipment, the exhaust air from the aftercooler is used, and the cooling pipe that connects the inlet header and outlet header of the heat exchanger is U-shaped, with one side fixed to the header and the other side fixed to the header. There is a structure that is not fixed and can relieve thermal stress under high temperature conditions. The cooling pipes of conventional heat exchangers are made of a single material, such as stainless steel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は冷却管の低温側に安価な材質の冷却管を
使用し熱交換器の製造コストを低減することにある。
An object of the present invention is to reduce the manufacturing cost of a heat exchanger by using a cooling pipe made of an inexpensive material on the low temperature side of the cooling pipe.

又、冷却管の高温側と低温側との熱膨張量を同等なもの
にし、従来技術よりさらに熱応力を緩和することにある
Another purpose is to equalize the amount of thermal expansion on the high-temperature side and the low-temperature side of the cooling pipe, thereby further relieving thermal stress than in the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、圧縮機本体から吐出される
高温空気を一次冷却する熱交換器において、熱交換器の
入口部ヘッダと出口部ヘッダの間を連結する冷却管を低
温側、高温側で異なる材質で構成し、温度条件に見合っ
た材料を適用する(例えば、低温側には鋼管を使用する
。)。
In order to achieve the above objective, in a heat exchanger that primarily cools high-temperature air discharged from the compressor main body, cooling pipes connecting between the inlet header and the outlet header of the heat exchanger are placed on the low-temperature side and the high-temperature side. They are made of different materials, and the materials that match the temperature conditions are used (for example, steel pipes are used on the low temperature side).

さらに、熱交換器の熱応力を緩和するために、圧縮機用
熱交換器において、低温側冷却管に線膨張係数の高い材
料(例えば鋼材)、高温側冷却管に線膨張係数の低い材
料(例えば、ステンレス材)を用いる。
Furthermore, in order to alleviate thermal stress in the heat exchanger, in the compressor heat exchanger, the low temperature side cooling pipe is made of a material with a high coefficient of linear expansion (such as steel), and the high temperature side cooling pipe is made of a material with a low coefficient of linear expansion (such as steel). For example, stainless steel material) is used.

〔作用〕[Effect]

単段圧縮機の場合、圧縮機本体から吐出される高温空気
を一次冷却する熱交換器では空気入口温度は約320′
C1!is度、出口温度は約100℃程度であり、冷却
管の中間点では約180’C程度である。高温側冷却管
では高温強度の高い材料が必要であるが、低温側では中
間点での温度まで耐えられる材料を用いれば充分である
。一般に、高温で機械的強度が高い材料程高価である。
In the case of a single-stage compressor, the air inlet temperature is approximately 320' in the heat exchanger that primarily cools the high-temperature air discharged from the compressor main body.
C1! is degree, the outlet temperature is about 100°C, and at the midpoint of the cooling pipe it is about 180'C. For the cooling pipe on the high temperature side, a material with high high temperature strength is required, but on the low temperature side, it is sufficient to use a material that can withstand the temperature at the intermediate point. Generally, materials with higher mechanical strength at high temperatures are more expensive.

さらに、低温側冷却管に線膨張係数の高い材料を、高温
側冷却管に線膨張係数の低い材料を用いれば、低温側、
高温側の冷却管の熱膨張量を同し程度にできる。
Furthermore, if a material with a high linear expansion coefficient is used for the low-temperature side cooling pipe and a material with a low linear expansion coefficient is used for the high-temperature side cooling pipe, the low-temperature side,
The amount of thermal expansion of the cooling pipe on the high temperature side can be made to be about the same.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図、第3図、第
4図により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4.

第2図により全体の構成フローと空冷式ブレクーラの位
置づけについて説明する。
The overall configuration flow and the positioning of the air-cooled breaker cooler will be explained with reference to FIG.

オイルフリースクリユー圧縮機の吐出系は主に圧縮機本
体1.吐出管2.プレクーラ3.逆止弁4、アフターク
ーラ5、で構成される。単段圧縮機の場合、吸入された
空気は圧縮機本体1によって所定の圧カフ kg / 
al gまで昇圧される。これにより約320℃まで高
温となった吐出空気は吐出管2を経由してプレクーラ3
に入る。ここで約100℃まで冷却され、逆止弁4を経
由してアフタークーラ5によって約50℃まで冷却され
て吐出される。逆止弁4は圧縮機が無負荷時にアフター
クーラ5側からの空気の逆流を防止するものである。又
、プレクーラ4.アフタークーラ5は空冷式であり冷却
ファン6からの送風により熱交換する。
The discharge system of an oil-free screw compressor mainly consists of the compressor body 1. Discharge pipe 2. Pre-cooler 3. It is composed of a check valve 4 and an aftercooler 5. In the case of a single-stage compressor, the inhaled air is compressed by the compressor body 1 to a predetermined pressure cuff kg /
The pressure is increased to alg. As a result, the discharged air, which has reached a high temperature of approximately 320°C, passes through the discharge pipe 2 to the precooler 3.
to go into. Here, it is cooled to about 100°C, passed through a check valve 4, cooled to about 50°C by an aftercooler 5, and then discharged. The check valve 4 prevents air from flowing backward from the aftercooler 5 when the compressor is under no load. Also, pre-cooler 4. The aftercooler 5 is of an air-cooling type and exchanges heat by blowing air from a cooling fan 6.

第1図により本発明の第一の実施例の空冷式プレクーラ
を説明する。
An air-cooled precooler according to a first embodiment of the present invention will be explained with reference to FIG.

プレクーラ3は主に入口部ヘッダ7、高温側冷却管8.
低温側冷却管9.出口部ヘッダ1oがら構成される。入
口部へラダ7に複数の高温側冷却管8が分岐して接合さ
れ、出口部へラダ10に複数の低温側冷却管9が接合さ
れ、高温側冷却管と低温側冷却管とが中間位置で結合(
ギンロー付等)されている。冷却管全体としてはU字形
である。
The precooler 3 mainly includes an inlet header 7 and a high temperature side cooling pipe 8.
Low temperature side cooling pipe9. It is composed of an outlet header 1o. A plurality of high temperature side cooling pipes 8 are branched and joined to the ladder 7 to the inlet part, a plurality of low temperature side cooling pipes 9 are joined to the ladder 10 to the exit part, and the high temperature side cooling pipe and the low temperature side cooling pipe are located at an intermediate position. Join with (
(with Ginro, etc.). The entire cooling pipe is U-shaped.

高温側冷却管8にはステンレス材を使用し、低温側冷却
管9には鋼材を使用する。又、入口部へツダ7.出口部
ヘッダ10の端部に他機器との取合用のフランジ11を
設け、高温側冷却管8.低温側冷却管9を支えるサポー
ト12を設ける。
The high temperature side cooling pipe 8 is made of stainless steel, and the low temperature side cooling pipe 9 is made of steel. Also, 7. A flange 11 for connection with other equipment is provided at the end of the outlet header 10, and a high temperature side cooling pipe 8. A support 12 is provided to support the low temperature side cooling pipe 9.

入口部ヘッダ7に流入した高温の圧縮空気は高温側冷却
管8で冷却風と熱交換して冷却され、さらに、低温側冷
却管9で冷却され、出口部ヘッダ10に集合し、アフタ
ークーラ5へ送られる。
The high-temperature compressed air that has flowed into the inlet header 7 is cooled by heat exchange with the cooling air in the high-temperature side cooling pipe 8, is further cooled in the low-temperature side cooling pipe 9, collects in the outlet header 10, and is sent to the aftercooler 5. sent to.

単段圧縮機の場合、圧縮機本体1より吐出された圧縮空
気の温度は、プレクーラに入口部ヘッダ7部で約320
℃、出口部ヘッダ10部で約100℃、冷却管接合部1
3付近で約180℃である。
In the case of a single-stage compressor, the temperature of the compressed air discharged from the compressor main body 1 is approximately 320°C at the inlet header 7 part of the precooler.
℃, about 100℃ at the outlet header 10, cooling pipe joint 1
The temperature is about 180°C near 3.

従来形のプレクーラでは、冷却管には単一の材料が使用
され、高温強度の高いステンレス材が使用されていた。
In conventional precoolers, the cooling tubes are made of a single material, which is stainless steel, which has high high-temperature strength.

逆に、冷却管を鋼材で製作するとステンレス材に比べて
製造コストは下るが、鋼材は使用温度が180℃以上で
は極端に強度が低下するという問題が生じた。
On the other hand, if the cooling pipe is made of steel, the manufacturing cost will be lower than that of stainless steel, but there is a problem in that the strength of steel material will be extremely reduced when the operating temperature is 180° C. or higher.

プレクーラの冷却管を低温側と高温側に二分割し、低温
側冷却管には鋼材を高温側冷却管にはステンレス材を使
用することにより、プレクーラの強度を低下させること
なく、プレクーラの製造コストを低減することができる
By dividing the cooling pipe of the pre-cooler into two into low-temperature and high-temperature sides, and using steel for the low-temperature cooling pipe and stainless steel for the high-temperature cooling pipe, the manufacturing cost of the precooler can be reduced without reducing the strength of the precooler. can be reduced.

次に、プレクーラの冷却管に低温側では鋼材、高温側で
はステンレス材を使用した場合のもう一つの効果を以下
説明する。
Next, another effect of using a steel material on the low temperature side and a stainless steel material on the high temperature side for the cooling pipe of the precooler will be explained below.

従来技術のように単一の材質で冷却管を構成すると、高
温側冷却管と低温側冷却管との間に熱膨張量の差が生じ
冷却管のU曲げ部、ヘッダ接合部に熱応力が生じる。本
発明の第一の実施例の様に冷却管の低温側に線膨張係数
の大きい材料(鋼材)、高温側に線膨張係数の小さい材
料(ステンレス材)を用いれば冷却管の高温側の熱膨張
量と低温側の熱膨張量とは同程度にでき、熱膨張量の差
による熱応力は緩和される。例えば、高温側冷却管(ス
テンレス材)の長さQu=0.8m、線膨張係数αo 
=1−2 X 10− ’ / ℃+平均温度TH= 
250℃、低温側冷却管(鋼材)の長さQc=1m、線
膨張係数ac=1.7X10−5/”C,平均温度TC
=14、0℃、とすれば、高温側、低温側での熱膨張量
ΔQu、ΔQcは、 ΔQ++= CEII ・Qo ・ΔTu= 2.40
 X 10−3mΔQc”ac’Qc’ΔTc= 2.
38 X 10−3mとむり、冷却管の高温側、低温側
の熱膨張量をほぼ等しくできる。
When the cooling pipe is made of a single material as in the conventional technology, there is a difference in thermal expansion between the high-temperature side cooling pipe and the low-temperature side cooling pipe, resulting in thermal stress at the U-bend of the cooling pipe and the header joint. arise. If a material with a large coefficient of linear expansion (steel material) is used on the low temperature side of the cooling pipe and a material with a small coefficient of linear expansion (stainless steel material) on the high temperature side as in the first embodiment of the present invention, the heat on the high temperature side of the cooling pipe can be The amount of expansion and the amount of thermal expansion on the low temperature side can be made to be approximately the same, and thermal stress due to the difference in the amount of thermal expansion is alleviated. For example, the length Qu of the high temperature side cooling pipe (stainless steel material) is 0.8 m, the linear expansion coefficient αo
= 1-2 X 10-' / °C + average temperature TH =
250℃, low temperature side cooling pipe (steel material) length Qc = 1m, linear expansion coefficient ac = 1.7X10-5/”C, average temperature TC
= 14, 0℃, the thermal expansion amounts ΔQu and ΔQc on the high temperature side and low temperature side are as follows: ΔQ++= CEII ・Qo ・ΔTu= 2.40
X 10-3mΔQc"ac'Qc'ΔTc=2.
38 x 10-3m, the amount of thermal expansion on the high temperature side and low temperature side of the cooling pipe can be approximately equal.

次に、第4図により第二の実施例の空冷式プレクーラを
説明する。
Next, an air-cooled precooler according to a second embodiment will be explained with reference to FIG.

これは第一の実施例の空冷式プレクーラの高温側冷却管
8にフィン14を設けたものである。冷却管を高温側、
低温側で分割した場合において、低温側冷却管に対する
高温側冷却管の材料による熱伝導率(熱交換率)の差を
補う場合、又、低温側冷却管での空気入口温度を下げる
必要がある場合、有効であり、フィン取付により伝熱面
積が増した分プレクーラ全体の大きさを小形化できる効
果がある。
This is the air-cooled precooler of the first embodiment in which fins 14 are provided on the high temperature side cooling pipe 8. Place the cooling pipe on the high temperature side,
When dividing on the low temperature side, it is necessary to compensate for the difference in thermal conductivity (heat exchange coefficient) due to the material of the high temperature side cooling pipe compared to the low temperature side cooling pipe, and it is also necessary to lower the air inlet temperature of the low temperature side cooling pipe. This is effective in cases where the heat transfer area is increased by attaching the fins, and the overall size of the precooler can be reduced in size.

以上は単段圧縮機の場合について述べたが第3図にフロ
ーを示す二段圧縮機の場合も本発明のプレクーラは適用
でき効果も同一である。以下、二段圧縮機の圧縮空気の
フローを説明する。−膜圧縮機本体20より吐出された
高温の圧縮空気は一段吐出管21を通りインタークーラ
22で冷却され二段吸込管23を通り二段圧縮機本体2
4へ送られる。二段圧縮機本体24でさらに圧縮された
空気は二段吐出管25を通りプレクーラ3aで一次冷却
され逆止弁4aを経由しアフタークーラ5aでさらに冷
却され吐出される。インタークーラ22.アフタークー
ラ5a、プレクーラ4aは冷却ファン6a、6bの通風
により熱交換する。
Although the case of a single-stage compressor has been described above, the precooler of the present invention can also be applied to a two-stage compressor whose flow is shown in FIG. 3, and the effects are the same. The flow of compressed air in the two-stage compressor will be explained below. - High temperature compressed air discharged from the membrane compressor main body 20 passes through the first stage discharge pipe 21, is cooled by the intercooler 22, and passes through the second stage suction pipe 23 to the two stage compressor main body 2.
Sent to 4. The air further compressed by the two-stage compressor main body 24 passes through the two-stage discharge pipe 25, is primarily cooled by the pre-cooler 3a, passes through the check valve 4a, is further cooled by the after-cooler 5a, and is discharged. Intercooler 22. The aftercooler 5a and precooler 4a exchange heat through ventilation from cooling fans 6a and 6b.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次のような効果がある。 According to the present invention, there are the following effects.

(1)プレクーラの低温側に安価な材料(鋼材等)が使
用できプレクーラの製造コストを低減できる。
(1) Cheap materials (such as steel) can be used on the low temperature side of the precooler, reducing the manufacturing cost of the precooler.

(2)高温条件下でプレクーラ内の熱応力が低下しプレ
クーラの寿命が大幅に延びる。
(2) Thermal stress within the precooler is reduced under high temperature conditions, significantly extending the life of the precooler.

(3)冷却管にフィンを設けることにより、プレクーラ
全体を小形化できる。
(3) By providing the cooling pipe with fins, the entire precooler can be made smaller.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)および(b)は本発明の第1実施例の空冷
式プレクーラの側面図および正面図、第2図は単段空冷
式オイルフリースクリユー圧縮機の系統図、第3図は二
段空冷式オイルフリースクリユー圧縮機の系統図、第4
図(a)、(b)および(c)は本発明の第2実施例の
空冷式プレクーラの側面図、正面図および断面図である
。 (・圧縮機本体、3・・・プレクーラ、5−・・アフタ
ークーラ、6・・・冷却ファン、7 ・人口部ヘッダ、
8・・高温側冷却管、9・・低温側冷却管、10・・・
出口部ヘッダ。 篤 図 (b) 為 3 図 拓 図 <L)
Figures 1 (a) and (b) are side and front views of an air-cooled precooler according to a first embodiment of the present invention, Figure 2 is a system diagram of a single-stage air-cooled oil-free screw compressor, and Figure 3 is a system diagram of a single-stage air-cooled oil-free screw compressor. is a system diagram of a two-stage air-cooled oil-free screw compressor, No. 4.
Figures (a), (b), and (c) are a side view, a front view, and a sectional view of an air-cooled precooler according to a second embodiment of the present invention. (・Compressor main body, 3... Pre-cooler, 5-... After cooler, 6-... Cooling fan, 7- Population section header,
8...High temperature side cooling pipe, 9...Low temperature side cooling pipe, 10...
Exit header. Atsushi (b) Tame 3 Illustrated drawing <L)

Claims (1)

【特許請求の範囲】 1、圧縮機本体から吐出される高温空気を一次冷却する
熱交換器を備えた空冷式オイルフリースクリュー圧縮機
において、 前記熱交換器の入口部ヘッダと出口部ヘッダの間を連結
する冷却管を低温側、高温側で異なる材質で構成したこ
とを特徴とする圧縮機用熱交換器。
[Claims] 1. In an air-cooled oil-free screw compressor equipped with a heat exchanger that primarily cools high-temperature air discharged from the compressor main body, between an inlet header and an outlet header of the heat exchanger. A heat exchanger for a compressor, characterized in that cooling pipes connecting the two are made of different materials on the low-temperature side and the high-temperature side.
JP32373489A 1989-12-15 1989-12-15 Heat exchanger for compressor Pending JPH03185279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32373489A JPH03185279A (en) 1989-12-15 1989-12-15 Heat exchanger for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32373489A JPH03185279A (en) 1989-12-15 1989-12-15 Heat exchanger for compressor

Publications (1)

Publication Number Publication Date
JPH03185279A true JPH03185279A (en) 1991-08-13

Family

ID=18158018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32373489A Pending JPH03185279A (en) 1989-12-15 1989-12-15 Heat exchanger for compressor

Country Status (1)

Country Link
JP (1) JPH03185279A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255160B2 (en) * 2003-04-03 2007-08-14 Sanden Corporation Heat exchanger
JP2016080263A (en) * 2014-10-17 2016-05-16 三浦工業株式会社 Heat recovery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7255160B2 (en) * 2003-04-03 2007-08-14 Sanden Corporation Heat exchanger
DE102004016344B4 (en) 2003-04-03 2021-11-04 Fuji Jukogyo K.K. Heat exchanger
JP2016080263A (en) * 2014-10-17 2016-05-16 三浦工業株式会社 Heat recovery system

Similar Documents

Publication Publication Date Title
GB2430247A (en) Integrated heat exchanger for use in a refrigeration system
CN105229407A (en) Duplex heat exchanger
US3858291A (en) Method of mounting a heat exchanger core
JPH01285725A (en) Air-cooled cooling device
CN105202793A (en) Vortex-tube-bearing CO2 double-stage compressive refrigerating system
CN109611994A (en) A kind of refrigerant radiator and its control method for air conditioner frequency conversion mould group
JPH03185279A (en) Heat exchanger for compressor
JP6607960B2 (en) Gas compressor
US4967572A (en) Compressor assembly for supplying helium to a cryo-refrigerator
CN115217737B (en) Heat radiation structure of multistage compressed gas and multistage compressor
JP2005195265A (en) Compression exhaust heat using system and compression exhaust heat using method of multi-stage air compressor
CN215260620U (en) Single-cooling type air conditioner
JP2718555B2 (en) Air-cooled oilless rotary two-stage compressor
CN220343282U (en) Compressed air refrigeration oxygenation equipment
CN220152989U (en) Compressed air step cooling refrigeration device
JPH07217580A (en) Two-stage oilless screw compressor
JP3975315B2 (en) Water-cooled oil-free screw compressor
JP5470064B2 (en) Two-stage compressor
CN210892218U (en) Integrated water-cooling vortex water chilling unit based on shell coil type heat exchanger
CN215490058U (en) Air condensing units and air conditioner
CN213116623U (en) Pre-cooling mechanism of dry-type oil-free air compressor
CN215566241U (en) Engine air inlet cooling system, engine air inlet system and vehicle
CN215566645U (en) Cooler combination structure of air-cooled oil injection screw air compressor
JPS6085286A (en) Oil-free screw compressor
JPS6195424U (en)