JPH03183178A - Joining method of semiconductor laser - Google Patents

Joining method of semiconductor laser

Info

Publication number
JPH03183178A
JPH03183178A JP32188389A JP32188389A JPH03183178A JP H03183178 A JPH03183178 A JP H03183178A JP 32188389 A JP32188389 A JP 32188389A JP 32188389 A JP32188389 A JP 32188389A JP H03183178 A JPH03183178 A JP H03183178A
Authority
JP
Japan
Prior art keywords
layers
layer
chip
widths
submount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32188389A
Other languages
Japanese (ja)
Inventor
Mitsuo Ishii
光男 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32188389A priority Critical patent/JPH03183178A/en
Publication of JPH03183178A publication Critical patent/JPH03183178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form an AuSn eutectic alloy when a junction is formed and form a reliable junction by alternately forming Au layers and Sn layers by evaporation on barrier layers on the principal surface and the rear surface of a sub- mount. CONSTITUTION:Barrier layers 5 composed of uppermost surface Au layers are formed on the principal surface and the rear surface of a sub-mount 4. Au layers 71 (widths: W2) and Sn layers (widths: W1) are alternately formed by evaporation by using a metal mask in a region wherein an LD chip 1 is placed on the barrier layer 5 on principal the surface side. The Au layers 71 (widths: W2) and the Sn layers (widths: W1) are alternately formed by evaporation over the whole region also on the rear side. When the LD chip 1 and a radiation block 6 are pressurized by a given constant load and heated at the same time, the Au layers 71 are diffused into the Sn layers 72 and Au and Sn form an alloy solder. Thus, the joining surfaces of the LD chip 1 and the sub-mount 4 radiation block 6 adhere to each other through an eutectic alloy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体レーザの半田接合方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for soldering semiconductor lasers.

〔従来の技術〕[Conventional technology]

第2図は従来の半導体レーザの接合方法を示す断面図で
ある。図にかいて、(1)は半導体レーザチップC以下
LDチップと称す)、伐)はLDチップ(1)の裏面電
極で、最表面Au層で形成されている。
FIG. 2 is a cross-sectional view showing a conventional semiconductor laser bonding method. In the figure, (1) is a semiconductor laser chip (hereinafter referred to as LD chip), and (1) is a back electrode of the LD chip (1), which is formed of an Au layer on the outermost surface.

(3)はAu8n半田ペレツトで、srlが20%(W
t*)のもの、(4)はサブマウント、(5)はサブマ
ウント(4)の主面及び裏面に形成された最表面Au層
より成るバリヤ層、(6)は放熱用ブロックで、仕上げ
はAuめつき層より成るっ 次に動作について説明する。LDチップ(1)はli!
装状態に於いて議事領域からの発光以外は熱に変換され
かなりの高温状態になり、この熱によりレーザ特性が低
下する。従って、−収約には熱伝導の高い金属ブロック
に載置されるが、熱膨張  の差に起因して寿命特性が
悪くなることから、LDチップ(1)はサブマウント(
4)を介して放熱用ブロック(6)に載置される。接着
は、従来、信頼性(特にヒートサイク〃特性)の高いA
uSn (Sr+20Ivwt%)半田を用いて行って
いた。サブマウント(4)の主面(LDチップ(1)が
載置される側)に、Au5LITペレツト(3)を仮付
し、LDチップ(1)をスクラブして、LDチップ(1
)の裏面に形成された最表面Au層より成る裏面型!M
(2)とサブマウント(4)の主面に形成された最表面
Au層より成るバリヤ層との間で合金接着を行っていた
。次に、放熱用ブロック(6)の上に、同様にAuSn
ベレット(3)を仮付し、LDチップ(1)が接着され
たサブマウント(4)をスクラブし、サブマウント(4
)の裏面に形成された最表面Au層より成るバリヤ層(
5)と最表面仕上げAu層より成る放熱用ブロック(6
)との間で合金接着を行なっていた。
(3) is an Au8n solder pellet with an srl of 20% (W
t*), (4) is the submount, (5) is the barrier layer consisting of the outermost Au layer formed on the main surface and back surface of the submount (4), (6) is the heat dissipation block, and is finished. The operation of the layer made of Au plated layer will be explained below. LD chip (1) is li!
In the installed state, all light emitted from the discussion area is converted into heat, resulting in a considerably high temperature state, and this heat deteriorates the laser characteristics. Therefore, the LD chip (1) is mounted on a metal block with high thermal conductivity, but the life characteristics deteriorate due to the difference in thermal expansion, so the LD chip (1) is mounted on a submount (
4) and placed on the heat dissipation block (6). Adhesion has traditionally been achieved using A, which has high reliability (especially heat cycle characteristics).
This was done using uSn (Sr+20Ivwt%) solder. Temporarily attach the Au5LIT pellet (3) to the main surface of the submount (4) (the side on which the LD chip (1) is placed), scrub the LD chip (1), and remove the LD chip (1).
) is a back type consisting of the outermost Au layer formed on the back side! M
(2) and a barrier layer made of the outermost Au layer formed on the main surface of the submount (4), alloy adhesion was performed. Next, on top of the heat dissipation block (6), AuSn
Temporarily attach the pellet (3), scrub the submount (4) to which the LD chip (1) is attached, and then
A barrier layer consisting of the outermost Au layer formed on the back surface of the
5) and a heat dissipation block (6) consisting of a top-finished Au layer.
) was used for alloy bonding.

〔発明が解決しようとする11題J 従来の半導体レーザ装置の接合方法は以上のように構成
されていたので、作業者が限矯されると共に、AuSn
半田ベレットを供給して接着する場合に、Au8口半田
ベレットの表面に形成された酸化膜を除去する為にスク
ラブ作業を必要とし、量産する上でネックとなり、特に
AuSn合金中の鋤はエントロピーが高く、酸化膜を除
去する為のスクラブ作業を避けられないなどの問題点が
あった。
[11 Problems to be Solved by the Invention J Since the conventional bonding method for semiconductor laser devices is configured as described above, the number of workers is limited and the number of AuSn
When supplying and bonding solder pellets, scrubbing is required to remove the oxide film formed on the surface of the 8-hole Au solder pellet, which is a bottleneck in mass production. There were problems such as the high cost and the unavoidable scrubbing work to remove the oxide film.

この発明は上記のような問題点を解消するためになされ
たもので、半田供給及びスクラブ作業を不要にした信頼
性の高い半導体レーザの接合方法を得ることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a highly reliable semiconductor laser bonding method that eliminates the need for solder supply and scrubbing operations.

【課題を解決するための手段〕[Means to solve problems]

第1の発明に係る半導体レーザの接合方法は、サブマウ
ントの主面(LDチップが接着する面)及び裏面の最表
面に、Au層とSn層を交互にあるピッチで(Sn層の
幅をWl、Au層の幅をW2とした場合、 W2=1,
5XWI )蒸着により形成し、半田溶融時にAuSn
合金半田(8020%:wt%)を形成して接着したも
のである。
The method for bonding a semiconductor laser according to the first invention is to form Au layers and Sn layers alternately at a certain pitch (the width of the Sn layer is When Wl and the width of the Au layer are W2, W2=1,
5XWI) formed by vapor deposition, and AuSn is formed during solder melting.
Alloy solder (8020%:wt%) was formed and bonded.

〔作用] この発明にかける半導体レーザの接合方法は、サブマウ
ントの主面及び裏面に各々Au層とSn層が交互に形成
されている為、半田溶融時に80層の中にAu、111
が拡散しs Au8nの合金半田が形成されると共に、
金属の幅W2=1.5X(Sn層の幅Wl)としている
事で、信頼性の高いAuSn合金半田(5n20q6:
wt96)が形成される。
[Function] In the semiconductor laser bonding method according to the present invention, since Au and Sn layers are alternately formed on the main surface and back surface of the submount, Au and 111 layers are formed in the 80 layers during solder melting.
is diffused and an alloy solder of Au8n is formed.
By setting the metal width W2 = 1.5X (Sn layer width Wl), highly reliable AuSn alloy solder (5n20q6:
wt96) is formed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図にかいて、(1)はLDチップ、伐)はLDチップ(
1)の裏面電極(最表面Au層よシ成る)(6)は放熱
用ブロック、(7)はAu層(71) &1層(72)
が交互に蒸着により形成された蒸着層で、サブマウント
(4)の主面及び裏面のバリヤ層(5)の上に形成され
ている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) is the LD chip, and (1) is the LD chip (
1) Back electrode (consisting of the outermost Au layer) (6) is a heat dissipation block, (7) is the Au layer (71) & 1 layer (72)
are vapor deposited layers formed alternately by vapor deposition, and are formed on the barrier layer (5) on the main surface and the back surface of the submount (4).

火に、この発明のtIjJ作について説明する。I will now explain the tIjJ creation of this invention.

サブマウント(4)の主面(LDチップ(1)が載置さ
れる面)及び裏面(放熱用ブロック(6)と接着する面
)に、最表面Au層より成るバリヤ層(5)を形成し、
このバリヤ層(5)の上には、主面側に、LDチップ(
1)が載置される領域に釦層(71) (@W2 ) 
、加層(72)(幅Wl)を交互にメタルマスクを用い
て蒸着形成する。裏面側に、全領域に、Au層(71)
 (幅W2)、Sn層(72) ([Wl )を交互に
、蒸着形成する。
A barrier layer (5) consisting of the outermost Au layer is formed on the main surface (the surface on which the LD chip (1) is placed) and the back surface (the surface to be bonded to the heat dissipation block (6)) of the submount (4). death,
On this barrier layer (5), an LD chip (
1) Button layer (71) (@W2) in the area where it is placed
, additional layers (72) (width Wl) are alternately formed by vapor deposition using a metal mask. Au layer (71) on the entire area on the back side
(width W2) and Sn layers (72) ([Wl) are alternately formed by vapor deposition.

この時、Au層(71)とSn層(72)の膜厚は同じ
にし、幅をW2=1.5xWtに設定する。サブマウン
トを用いて、LDチップ(1)、放熱用ブロック(6)
を同時にある一定荷重で加圧して加熱すると、鋤層(7
2)の中に、Au層(71)が拡散し、んとSnが合金
半田を形成するっ全層とSK1層の比は、 W2=1.
5xW+としている事から、信頼性の高いAu8n (
Sn 20%:wt%)の共晶合金が形成され、LDチ
ップ(1)とサブマウント(4)放熱用ブロック(6)
の接合面カ1共晶合金で接着されることになる。
At this time, the thickness of the Au layer (71) and the Sn layer (72) are made the same, and the width is set to W2=1.5xWt. Using a submount, LD chip (1), heat dissipation block (6)
When simultaneously pressurized and heated under a certain load, the plow layer (7
2), in which the Au layer (71) is diffused and the Sn and Sn form an alloy solder.The ratio of the total layer to the SK1 layer is W2=1.
Since it is 5xW+, it is highly reliable Au8n (
A eutectic alloy of Sn (20%:wt%) is formed, and the LD chip (1), submount (4), and heat dissipation block (6) are formed.
The joint surface of the two is bonded with a eutectic alloy.

なか、上記実施例で#iAu層と8口層の幅をある一定
比率になる様にした場合を示したが、幅を同じにして、
Au層の厚みt2.5XII層の厚みtlとした場合、
t2=jlとなる様に蒸着してもよい。
In the above example, the width of the #iAu layer and the 8-hole layer were made to have a certain ratio, but if the widths were made the same,
When the thickness of the Au layer is t2.5 and the thickness of the XII layer is tl,
Vapor deposition may be performed so that t2=jl.

又、蒸着形成以外はスパッタでもよい。In addition, sputtering may be used for formation other than vapor deposition.

〔発明の効果j 以上のようにこの発明によれば、サブマウントの主面及
び裏面のバリヤ層の上に、Au層(輻W2)、8r+層
(幅Wl)を12 = 1.5 Wlとなる様に交互に
蒸着形成したので、作業時に半田供給を必要とせず、又
、Auと鋤が別々に形成されて、半田溶融時に、AuS
n (5n20% : wt% )共晶合金が形成され
る為に、スクラブ作業を不要とし、量産性に適合した信
頼性の高い接合が得られる。
[Effects of the Invention j As described above, according to the present invention, the Au layer (width W2) and the 8r+ layer (width Wl) are formed with a width of 12 = 1.5 Wl on the barrier layers on the main and back surfaces of the submount. Since they are formed by vapor deposition alternately, there is no need to supply solder during work, and since the Au and spade are formed separately, when the solder is melted, the AuS
Since a n (5n20%: wt%) eutectic alloy is formed, scrubbing is not necessary and a highly reliable bond suitable for mass production can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による半導体レーザの接合
方法を示す断面図、第2図は従来の半導体レーザの接合
方法を示す断面図であるう図に釦いて、(1)はLDチ
ップ、(2)はLDチップ(1)の裏面!極、(4)は
すブマウン1− 、(5)はサブマウント(4)の主面
及び裏面に形成されたバリヤ層、(6)は放熱用ブロッ
ク、(7)はAu層(71)、お層(72)が各々交互
に蒸着により形成された蒸着層を示すつ尚1図中、同一
符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a semiconductor laser bonding method according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional semiconductor laser bonding method. , (2) is the back side of the LD chip (1)! pole, (4) a submount 1-, (5) a barrier layer formed on the main and back surfaces of the submount (4), (6) a heat dissipation block, (7) an Au layer (71), The layers (72) each represent a vapor deposited layer formed by vapor deposition alternately, and the same reference numerals in FIG. 1 indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] レーザチップがサブマウントを介して放熱用ブロックに
固着される接合に於いて、前記サブマウントの主面及び
裏面にはバリヤ層が形成され、そのバリヤ層上に、主面
側には前記レーザチップが載置される領域に、裏面側に
は全領域に、2元より成る合金半田を最終的に形成する
為の各々の金属を交互にあるピッチで形成した事を特徴
とする半導体レーザの接合方法。
In the bonding process in which the laser chip is fixed to the heat dissipation block via the submount, a barrier layer is formed on the main surface and the back surface of the submount, and the laser chip is placed on the main surface side of the barrier layer. Bonding of a semiconductor laser, characterized in that each metal is alternately formed at a certain pitch in the area where the metal is placed, and in the entire area on the back side, to ultimately form an alloy solder consisting of two elements. Method.
JP32188389A 1989-12-12 1989-12-12 Joining method of semiconductor laser Pending JPH03183178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32188389A JPH03183178A (en) 1989-12-12 1989-12-12 Joining method of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32188389A JPH03183178A (en) 1989-12-12 1989-12-12 Joining method of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH03183178A true JPH03183178A (en) 1991-08-09

Family

ID=18137470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32188389A Pending JPH03183178A (en) 1989-12-12 1989-12-12 Joining method of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH03183178A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305340A (en) * 1992-12-16 1994-04-19 International Business Machines Corporation Waveguide ridge laser device with improved mounting and ridge protection
US5307357A (en) * 1992-11-05 1994-04-26 International Business Machines Corporation Protection means for ridge waveguide laser structures using thick organic films
JPH0891970A (en) * 1994-09-16 1996-04-09 Nippon Steel Corp Method for forming copper alloy layer on surface of ceramic
JP2010073758A (en) * 2008-09-16 2010-04-02 Furukawa Electric Co Ltd:The Semiconductor laser module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307357A (en) * 1992-11-05 1994-04-26 International Business Machines Corporation Protection means for ridge waveguide laser structures using thick organic films
US5305340A (en) * 1992-12-16 1994-04-19 International Business Machines Corporation Waveguide ridge laser device with improved mounting and ridge protection
JPH0891970A (en) * 1994-09-16 1996-04-09 Nippon Steel Corp Method for forming copper alloy layer on surface of ceramic
JP2010073758A (en) * 2008-09-16 2010-04-02 Furukawa Electric Co Ltd:The Semiconductor laser module

Similar Documents

Publication Publication Date Title
EP0542475B1 (en) Bonding method using solder composed of multiple alternating gold and tin layers
US7219825B2 (en) SnAgAu solder bumps, method of manufacturing the same, and method of bonding light emitting device using the same
US20070246829A1 (en) Semiconductor device and method for producing the same
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
US20060249744A1 (en) Submount for light emitting device
JP4514400B2 (en) Member joining method and joining member obtained by the method
JP3146735B2 (en) Stack laser
JPH03183178A (en) Joining method of semiconductor laser
JPH0750813B2 (en) Submount for semiconductor laser device
JPH07115247A (en) Semiconductor laser and its fabrication
JP3269251B2 (en) Manufacturing method of stacked semiconductor device
JPH04186688A (en) Semiconductor laser
JPS63132495A (en) Sub-mount for photo-semiconductor device
JPS60157284A (en) Semiconductor device
JPH03148192A (en) Manufacture of semiconductor device
JPH04329681A (en) Optical semiconductor device
RU2075140C1 (en) Method for assembly of laser diodes and other optoelectronic and electronic elements
JP2611441B2 (en) P-type ohmic electrode of semiconductor laser device
JPS5858786A (en) Mounting structure of compound semiconductor element
JPH04186689A (en) Semiconductor laser
JPH0430588A (en) Submount of semiconductor laser element radiator
JPH01134983A (en) Sub-mount for optical semiconductor element
JPH09237941A (en) Manufacture of semiconductor laser device
JPS61187288A (en) Manufacture of striped type semiconductor laser
JPS6055687A (en) Semiconductor laser