JPH0318308B2 - - Google Patents

Info

Publication number
JPH0318308B2
JPH0318308B2 JP58004537A JP453783A JPH0318308B2 JP H0318308 B2 JPH0318308 B2 JP H0318308B2 JP 58004537 A JP58004537 A JP 58004537A JP 453783 A JP453783 A JP 453783A JP H0318308 B2 JPH0318308 B2 JP H0318308B2
Authority
JP
Japan
Prior art keywords
positive electrode
porous carbon
battery
carbon body
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58004537A
Other languages
Japanese (ja)
Other versions
JPS59128772A (en
Inventor
Shuji Yamada
Takahisa Oosaki
Kyoshi Mitsuyasu
Juichi Sato
Yoshasu Aoki
Kazuya Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP453783A priority Critical patent/JPS59128772A/en
Priority to EP19840100066 priority patent/EP0118657B1/en
Priority to DE8484100066T priority patent/DE3485349D1/en
Priority to CA000445273A priority patent/CA1222542A/en
Publication of JPS59128772A publication Critical patent/JPS59128772A/en
Priority to US07/129,902 priority patent/US4767683A/en
Publication of JPH0318308B2 publication Critical patent/JPH0318308B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非水溶媒電池に関し、特に正極材料を
改良した非水溶媒電池に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a non-aqueous solvent battery, and particularly to a non-aqueous solvent battery with an improved positive electrode material.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質としてリチウム、ナトリウムを用い
た非水溶媒電池はエネルギー密度が大きく、貯蔵
特性に優れ、しかも作動温度範囲が広いという特
長をもち、電卓、時計、メモリのバツクアツプ電
源として多用されている。かかる電池は負極、電
解液、正極から構成されており、一般に負極とし
てリチウムやナトリウムなどのアルカリ金属を電
解液としてプロピレンカーボネート、r−ブチロ
ラクトン、ジメトキシエタンなどの非水溶媒中に
過塩素酸リチウム、ホウフツ化リチウムなどの電
解質を溶解してなる溶液を、正極として二酸化マ
ンガン、フツ化黒鉛等を、夫々用いている。
Nonaqueous solvent batteries that use lithium or sodium as negative electrode active materials have high energy density, excellent storage characteristics, and a wide operating temperature range, and are often used as backup power sources for calculators, watches, and memories. Such batteries are composed of a negative electrode, an electrolyte, and a positive electrode, and generally, the negative electrode is an alkali metal such as lithium or sodium, and the electrolyte is a nonaqueous solvent such as propylene carbonate, r-butyrolactone, or dimethoxyethane, in which lithium perchlorate, lithium perchlorate, A solution prepared by dissolving an electrolyte such as lithium borofluoride is used, and manganese dioxide, graphite fluoride, etc. are used as the positive electrode, respectively.

上述した電池の中でも負極にリチウムを用い、
塩化チオニル(SOCl2)を主正極活物質とした、
いわゆるリチウム塩化チオニル系電池は、特にエ
ネルギー密度が大きいため注目されている。こう
した電池は多孔質炭素体及び金属集電体からなる
正極を有し、一般に塩化リチウム(LiCl)及び塩
化アルミニウム(AlCl3)を溶解した塩化チオニ
ル(SOCl2)を電解液として用いている。したが
つて、SOCl2は正極活物質と電解液との双方を兼
用している。
Among the batteries mentioned above, lithium is used for the negative electrode,
With thionyl chloride (SOCl 2 ) as the main positive electrode active material,
So-called lithium-thionyl chloride batteries are attracting attention because of their particularly high energy density. These batteries have a positive electrode made of a porous carbon body and a metal current collector, and generally use thionyl chloride (SOCl 2 ) in which lithium chloride (LiCl) and aluminum chloride (AlCl 3 ) are dissolved as an electrolyte. Therefore, SOCl 2 serves both as a positive electrode active material and as an electrolyte.

ところで、SOCl2を正極活物質とする電池にお
いて、負極反応は負極金属が金属イオンとして電
解液中に溶解する反応であり、一方正極反応はそ
の正極の一構成材である多孔質炭素体上で起こ
り、反応主成物が該多孔質炭素体表面に主成する
反応である。しかしながら、アセチレンブラツク
をポリテトラフルオロエチレン等のポリマー結着
材と共に混合し、所定形状に成形した後、乾燥し
て得た多孔質炭素体からなる正極を有する従来の
電池では、前記反応主成物が該多孔質炭素体上に
作られると、電極反応が著しく阻害され、放電容
量が低下する。しかも、前記電池では、大電流放
電では、低電流放電に比べて放電効率が著しく低
下するという欠点があつた。
By the way, in a battery using SOCl 2 as the positive electrode active material, the negative electrode reaction is a reaction in which the negative electrode metal dissolves in the electrolyte as metal ions, while the positive electrode reaction is a reaction in which the negative electrode metal dissolves on the porous carbon material that is one of the constituent materials of the positive electrode. This is a reaction in which the main reaction product is mainly formed on the surface of the porous carbon body. However, in conventional batteries having a positive electrode made of a porous carbon body obtained by mixing acetylene black with a polymer binder such as polytetrafluoroethylene, molding it into a predetermined shape, and drying it, the main reaction product is is formed on the porous carbon body, the electrode reaction is significantly inhibited and the discharge capacity is reduced. Moreover, the above-mentioned battery has a drawback in that the discharge efficiency is significantly lower in large current discharge than in low current discharge.

〔発明の目的〕[Purpose of the invention]

本発明は放電容量及び大電流放電時での放電効
率の優れた非水溶媒電池を提供しようとするもの
である。
The present invention aims to provide a non-aqueous solvent battery with excellent discharge capacity and discharge efficiency during large current discharge.

〔発明の概要〕[Summary of the invention]

本発明者は正極の多孔質炭素体表面での反応主
成物による電極反応の阻害化が該多孔質炭素体の
気孔率や気孔径に顕著に影響されることに着目
し、気孔率、気孔径を特性化すると共に、特定化
した径の占有割合を規定した多孔質炭素体からな
る正極を用いることによつて、放電容量及び大電
流放電時での放電効率の優れた非水溶媒電池を見
い出したものである。
The present inventor focused on the fact that the inhibition of the electrode reaction by the main reaction components on the surface of the porous carbon body of the positive electrode is significantly influenced by the porosity and pore diameter of the porous carbon body. By characterizing the pore diameter and using a positive electrode made of a porous carbon material with a defined occupancy ratio of the specified diameter, we have created a non-aqueous solvent battery with excellent discharge capacity and discharge efficiency during large current discharge. This is what I discovered.

すなわち、本発明は缶体内面に設けられたアル
カリ金属からなる筒状の負極と、この負極内側の
缶体内にセパレータを介して配設され、多孔質炭
素体及び金属集電体からなる正極と、前記缶体内
に収容された塩化チオニルを主成分とし、正極活
物質を兼ねる電解液とを具備した非水溶媒電池に
おいて、前記正極の多孔質炭素体として気孔率が
70〜80%で、0.1〜2μmの細孔が全気孔の30%以
上占める構造のものを用いたことを特徴とするも
のである。
That is, the present invention comprises a cylindrical negative electrode made of an alkali metal provided on the inner surface of the can body, a positive electrode made of a porous carbon body and a metal current collector, and disposed inside the can body inside the negative electrode with a separator interposed therebetween. , in a non-aqueous solvent battery containing thionyl chloride as a main component housed in the can body and comprising an electrolytic solution that also serves as a positive electrode active material, the porous carbon body of the positive electrode has a porosity.
It is characterized by using a structure in which pores of 0.1 to 2 μm occupy 30% or more of the total pores.

上記多孔質炭素体の気孔率を限定した理由はそ
の気孔率を70%未満にすると、反応効率の低下を
招き、かといつて80%を越えると、多孔質炭素体
の強度低下等を招くからである。また、この多孔
質炭素体中の気孔の30%以上の気孔の径を限定し
た理由はその気孔径を0.1μm未満にすると、正極
活物質である塩化チオニルの反応生成物により気
孔が塞がれて電池の機能低下を招き、かといつて
2μmを越えると、多孔質炭素体の反応面積が低
下し、ひいては反応効率の低下を招くからであ
る。更に、0.1〜2μmの気孔の全気孔中の占有割
合を限定した理由は、その占有割合を30%未満に
すると反応効率の増大化を十分達成できなくなる
からである。
The reason for limiting the porosity of the porous carbon body is that if the porosity is less than 70%, the reaction efficiency will decrease, whereas if it exceeds 80%, it will cause a decrease in the strength of the porous carbon body. It is. In addition, the reason why we limited the diameter of 30% or more of the pores in this porous carbon body is that if the pore diameter is less than 0.1 μm, the pores will be blocked by the reaction product of thionyl chloride, which is the positive electrode active material. This may lead to a decline in battery performance, and
This is because if the thickness exceeds 2 μm, the reaction area of the porous carbon body decreases, resulting in a decrease in reaction efficiency. Furthermore, the reason why the proportion of pores of 0.1 to 2 μm in the total pores is limited is that if the proportion of pores is less than 30%, the reaction efficiency cannot be sufficiently increased.

上記正極は例えば以下に示す方法により製造さ
れる。カーボンブラツク等の炭素材にポリテトラ
フルオロエチレン等のポリマー結着剤を混合し、
エチルアルコール等の溶剤を添加して充分に撹
拌、混練した後、この混練物を金網、パンチメタ
ル、エキスパンドメタル等の金属集電体に圧着
し、乾燥することにより正極を造る。
The above-mentioned positive electrode is manufactured, for example, by the method shown below. By mixing a carbon material such as carbon black with a polymer binder such as polytetrafluoroethylene,
After adding a solvent such as ethyl alcohol and thoroughly stirring and kneading, the kneaded product is pressed onto a metal current collector such as a wire mesh, punched metal, or expanded metal, and dried to produce a positive electrode.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図はリチウム塩化チオニル電池の断面図で
あり、図中の1は負極端子を兼ねる上面が開口さ
れた例えばステンレス製の缶体である。この缶体
1の内面には金属リチウムからなる筒状の負極2
が圧着されている。この負極2の内側の缶体1内
には正極が該負極2の内面に配置されたガラス
繊維の不織布からなるセパレータ4を介して設け
られている。なお、正極と缶体1底面との間に
は絶縁紙5が介装されている。前記正極は気孔
率70〜80%、0.1〜2μmの気孔が全気孔中の30%
以上を占める筒状の多孔質炭素体6と、この多孔
質炭素体6の中空部内面に配設された筒状の金属
集電体7とから構成されている。
FIG. 1 is a cross-sectional view of a lithium-thionyl chloride battery, and numeral 1 in the figure is a can made of, for example, stainless steel and having an open top that also serves as a negative electrode terminal. On the inner surface of this can body 1 is a cylindrical negative electrode 2 made of metallic lithium.
is crimped. A positive electrode 3 is provided inside the can body 1 inside the negative electrode 2 with a separator 4 made of a nonwoven glass fiber fabric disposed on the inner surface of the negative electrode 2 . Note that an insulating paper 5 is interposed between the positive electrode 3 and the bottom surface of the can body 1. The positive electrode 3 has a porosity of 70 to 80%, and pores of 0.1 to 2 μm account for 30% of the total pores.
It is composed of a cylindrical porous carbon body 6 that occupies the above-mentioned portions, and a cylindrical metal current collector 7 disposed inside the hollow portion of the porous carbon body 6.

また、前記正極上方の缶体1内には前記セパ
レータ4に支持された絶縁紙8が配設されてい
る。前記缶体1の上面開口部にはメタルトツプ9
がレーザ溶接等により封着されている。このメタ
ルトツプ9の中心には穴10が開孔されている。
前記缶体1内にはLiAlCl4を溶解した塩化チオニ
ル(SOCl2)溶液からなる電解液が前記穴10を
通して注入、収容されている。また、前記メタル
トツプ9の穴10には正極端子11がメタル−ガ
ラスシール材12により電気的に絶縁され、固定
されている。この正極端子11はその下端に取付
けたリード線13を介して前記正極3の金属集電
体7に接続されている。
Further, an insulating paper 8 supported by the separator 4 is disposed inside the can body 1 above the positive electrode 3 . A metal top 9 is provided at the upper opening of the can body 1.
are sealed by laser welding or the like. A hole 10 is made in the center of this metal top 9.
An electrolytic solution consisting of a thionyl chloride (SOCl 2 ) solution in which LiAlCl 4 is dissolved is injected into the can body 1 through the hole 10 and housed therein. Further, a positive electrode terminal 11 is electrically insulated and fixed in the hole 10 of the metal top 9 by a metal-glass sealing material 12. This positive electrode terminal 11 is connected to the metal current collector 7 of the positive electrode 3 via a lead wire 13 attached to its lower end.

しかして、本発明によれば正極の多孔質炭素
体6は気孔率が70〜80%、0.1〜2μmの気孔が全
気孔中の30%以上占める構造になつているため、
正極活物質の多孔質炭素体6への供給を容易にす
ると共に反応表面積の増大化が図られ、その結
果、高率放電特性に優れ、放電容量の大きいリチ
ウム塩化チオニル電池を得ることができる。
According to the present invention, the porous carbon body 6 of the positive electrode 3 has a structure in which the porosity is 70 to 80% and the pores of 0.1 to 2 μm account for 30% or more of the total pores.
The supply of the positive electrode active material to the porous carbon body 6 is facilitated, and the reaction surface area is increased. As a result, a lithium thionyl chloride battery with excellent high rate discharge characteristics and a large discharge capacity can be obtained.

次に、本発明の具体的な実施例を説明する。 Next, specific examples of the present invention will be described.

実施例 1 平均粒径40mμm、DBP吸油量200cm3/100g
のストラクチヤーの高度に発達したカーボンブラ
ツクにポリテトラフルオロエチレンを10wt%の
割合で混合した後、エタノールを添加して十分に
混練した。この混練物をステンレス製網体からな
る金属集電体7と共に該集電体7が内周面に配置
されるように成形して円筒状物を作り、つづいて
150℃の真空下で乾燥して同金属集電体7の外周
に圧着された円筒状の多孔質炭素体6を形成する
ことにより正極を作製した。この正極の多孔
質炭素体6は気孔率が80%で、水銀圧入法により
細孔分布を調べたところ、0.1〜2μmの気孔が全
体の37%を占めていた。次いで、この正極の内
周面に負極2が圧着された缶体1内にセパレータ
4を介して収納し、絶縁紙8の配置、メタルトツ
プ9の封着、更に缶体1内にメタルトツプ9の穴
10を通してLiAlCl4を溶解した1.8mol濃度の塩
化チオニル(SOCl2)溶液からなる電解液を収容
した後、予め金属集電体7とリードを介して接続
した正極端子11をメタルトツプ9の穴10にシ
ール材12を介して固定し、第1図図示のAAサ
イズのリチウム塩化チオニル電池を組立てた。
Example 1 Average particle size 40mμm, DBP oil absorption 200cm 3 /100g
After mixing polytetrafluoroethylene at a ratio of 10 wt% to carbon black with a highly developed structure, ethanol was added and thoroughly kneaded. This kneaded material is molded together with a metal current collector 7 made of a stainless steel net so that the current collector 7 is placed on the inner peripheral surface to make a cylindrical object, and then
The positive electrode 3 was prepared by drying under vacuum at 150° C. and forming a cylindrical porous carbon body 6 which was pressed onto the outer periphery of the same metal current collector 7. The porous carbon body 6 of this positive electrode 3 had a porosity of 80%, and when the pore distribution was examined by mercury intrusion method, it was found that pores of 0.1 to 2 μm accounted for 37% of the total. Next, the positive electrode 3 is housed in a can body 1 with the negative electrode 2 crimped onto the inner circumferential surface of the positive electrode 3 via a separator 4, and an insulating paper 8 is placed and a metal top 9 is sealed. After accommodating an electrolytic solution consisting of a 1.8 mol thionyl chloride (SOCl 2 ) solution containing LiAlCl 4 dissolved therein through the hole 10 , the positive terminal 11 , which has been previously connected to the metal current collector 7 via a lead, is inserted into the hole 10 of the metal top 9 . A lithium thionyl chloride battery of AA size as shown in FIG. 1 was assembled.

比較例 1 平均粒径30mμm、DBP吸油量185cm3/100g
のストラクチヤーのやや発達したカーボンブラツ
クを用いて実施例1と同様な方法で正極を作製し
た。なお、この正極の多孔質炭素体は気孔率が82
%で、0.1〜2μmの気孔の全気孔中の占有割合が
34%のものであつた。次いで、この正極を用いて
実施例1と同様な順序で第1図図示のリチウム塩
化チオニル電池を組立てた。
Comparative example 1 Average particle size 30mμm, DBP oil absorption 185cm 3 /100g
A positive electrode was prepared in the same manner as in Example 1 using carbon black with a slightly developed structure. The porous carbon body of this positive electrode has a porosity of 82
%, the proportion of 0.1 to 2 μm pores in the total pores is
It was 34%. Next, using this positive electrode, the lithium thionyl chloride battery shown in FIG. 1 was assembled in the same order as in Example 1.

比較例 2 平均粒径30mμm、DBP吸油量100cm3/100g
のストラツクチヤーのあまり発達していないカー
ボンブラツクを用いて実施例1と同様に正極を作
製し、更にこの正極を用いて第1図図示と同構造
のリチウム塩化チオニル電池を組立てた。なお、
前記正極の多孔質炭素体は、気孔率が84%で、
0.1〜2μmの気孔の全気孔中の占有割合が24%の
ものであつた。
Comparative example 2 Average particle size 30mμm, DBP oil absorption 100cm 3 /100g
A positive electrode was prepared in the same manner as in Example 1 using carbon black with a poorly developed structure, and a lithium thionyl chloride battery having the same structure as shown in FIG. 1 was assembled using this positive electrode. In addition,
The porous carbon body of the positive electrode has a porosity of 84%,
The proportion of pores of 0.1 to 2 μm in total pores was 24%.

しかして、上記実施例1の電池及び比較例1、
2の電池について放電電流に対する放電容量の関
係を調べたところ、第2図に示す特性図を得た。
なお、第2図中のAは本実施例1の電池における
放電電流対放電容量の特性曲線、Bは比較例1の
電池の同特性曲線、Cは比較例2の電池の同特性
曲線、である。この第2図から明らかな如く、本
発明の電池(図中のA)は従来の電池(図中の
C)に比べて小電流放電ではその放電容量はほぼ
等しいが、大電流放電では放電容量が極めて大き
いことがわかる。また、本発明の電池は比較例1
の電池(図中のB)に比べても大電流放電での放
電容量が大きいことがわかる。
Therefore, the battery of Example 1 and Comparative Example 1,
When the relationship between the discharge capacity and the discharge current for the battery No. 2 was investigated, the characteristic diagram shown in FIG. 2 was obtained.
In addition, in FIG. 2, A is the characteristic curve of discharge current versus discharge capacity of the battery of Example 1, B is the same characteristic curve of the battery of Comparative Example 1, and C is the same characteristic curve of the battery of Comparative Example 2. be. As is clear from FIG. 2, the battery of the present invention (A in the diagram) has almost the same discharge capacity as the conventional battery (C in the diagram) in small current discharge, but the discharge capacity in large current discharge is approximately the same as that of the conventional battery (C in the diagram). It can be seen that is extremely large. In addition, the battery of the present invention is Comparative Example 1
It can be seen that the discharge capacity at large current discharge is larger than that of the battery (B in the figure).

なお、上記実施例では正極として円筒状のもの
を用いたが、これに限定されない。例えばカーボ
ンブラツクとポリマー結着材との混練物を金属集
電体に圧着して帯状物とし、これを巻回して乾燥
した渦巻状の正極を用いてもよい。
Note that in the above embodiments, a cylindrical positive electrode was used, but the positive electrode is not limited to this. For example, a spiral positive electrode may be used, in which a kneaded mixture of carbon black and a polymer binder is pressed onto a metal current collector to form a band, which is then wound and dried.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば放電容量の
大巾に向上し、かつ放電効率の優れた非水溶媒電
池を提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a non-aqueous solvent battery with greatly improved discharge capacity and excellent discharge efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すリチウム塩化
チオニル電池の断面図、第2図は本発明の電池及
び従来の電池における放電電流と放電容量との関
係を示す特性図である。 1……缶体、2……負極、……正極、4……
セパレータ、6……多孔質炭素体、7……金属集
電体、9……メタルトツプ、11……正極端子。
FIG. 1 is a cross-sectional view of a lithium thionyl chloride battery showing one embodiment of the present invention, and FIG. 2 is a characteristic diagram showing the relationship between discharge current and discharge capacity in the battery of the present invention and a conventional battery. 1...Can body, 2...Negative electrode, 3 ...Positive electrode, 4...
Separator, 6... Porous carbon body, 7... Metal current collector, 9... Metal top, 11... Positive electrode terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 缶体内面に設けられたアルカリ金属からなる
筒状の負極と、この負極内側の缶体内にセパレー
タを介して配設され、多孔質炭素体及び金属集電
体からなる正極と、前記缶体内に収容された塩化
チオニルを主成分とし、正極活物質を兼ねた電解
液とを具備した非水溶媒電池において、前記正極
の多孔質炭素体として気孔率70〜80%で、0.1〜
2μmの細孔が全気孔の30%以上占める構造のも
のを用いたことを特徴とする非水溶媒電池。
1 A cylindrical negative electrode made of an alkali metal provided on the inner surface of the can, a positive electrode made of a porous carbon body and a metal current collector disposed inside the negative electrode inside the can with a separator in between, and a positive electrode made of a porous carbon body and a metal current collector. In a non-aqueous solvent battery comprising thionyl chloride contained in a carbon dioxide as a main component and an electrolytic solution that also serves as a positive electrode active material, the porous carbon body of the positive electrode has a porosity of 70 to 80% and a porosity of 0.1 to 80%.
A nonaqueous solvent battery characterized by using a structure in which 2 μm pores account for 30% or more of the total pores.
JP453783A 1983-01-14 1983-01-14 Nonaqueous solvent battery Granted JPS59128772A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP453783A JPS59128772A (en) 1983-01-14 1983-01-14 Nonaqueous solvent battery
EP19840100066 EP0118657B1 (en) 1983-01-14 1984-01-04 Non-aqueous electrochemical cell
DE8484100066T DE3485349D1 (en) 1983-01-14 1984-01-04 NONWATER ELECTROCHEMICAL CELL.
CA000445273A CA1222542A (en) 1983-01-14 1984-01-13 Non-aqueous electrochemical cell
US07/129,902 US4767683A (en) 1983-01-14 1987-12-07 Non-aqueous electrochemical cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP453783A JPS59128772A (en) 1983-01-14 1983-01-14 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS59128772A JPS59128772A (en) 1984-07-24
JPH0318308B2 true JPH0318308B2 (en) 1991-03-12

Family

ID=11586788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP453783A Granted JPS59128772A (en) 1983-01-14 1983-01-14 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS59128772A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077669B2 (en) * 1984-07-06 1995-01-30 日立マクセル株式会社 Method for manufacturing non-aqueous electrolyte battery
US4790969A (en) * 1987-07-16 1988-12-13 Eveready Battery Company Dry molded cathode collector for liquid cathode systems
FR2872347B1 (en) * 2004-06-25 2006-09-29 Accumulateurs Fixes CARBON AEROGEL CATHODE ELECTROCHEMICAL GENERATOR

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116639A (en) * 1978-01-31 1979-09-11 Accumulateurs Fixes Primary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116639A (en) * 1978-01-31 1979-09-11 Accumulateurs Fixes Primary cell

Also Published As

Publication number Publication date
JPS59128772A (en) 1984-07-24

Similar Documents

Publication Publication Date Title
US4197366A (en) Non-aqueous electrolyte cells
JPH07296849A (en) Nonaqueous electrolyte secondary battery
JPH0318308B2 (en)
JP2940015B2 (en) Organic electrolyte secondary battery
JPH0426075A (en) Organicelectrolyte battery
JPH067483B2 (en) Non-aqueous electrolyte battery
JPS6381762A (en) Button type alkaline battery
JPH0244105B2 (en) HISUIYOBAIDENCHI
JPH022270B2 (en)
JP2692932B2 (en) Non-aqueous secondary battery
JP2686072B2 (en) Non-aqueous electrolyte battery
JPS5951470A (en) Non-aqueous solvent cell
JP3163444B2 (en) Lithium secondary battery
JPH0439187B2 (en)
JPS60200465A (en) Method of manufacturing electrolyte for nonaqueous- solvent cell
JPH0545022Y2 (en)
JP2698180B2 (en) Non-aqueous secondary battery
JPH0439188B2 (en)
JPH073785B2 (en) Non-aqueous electrolyte battery
JPS60241646A (en) Alkali-manganese cell
JPH01302659A (en) Organic solvent battery
JPS58209068A (en) Battery
JPH0259590B2 (en)
JPH0547944B2 (en)
JPS59209274A (en) Nonaqueous solvent battery