JPH03182036A - Cathode ray tube device - Google Patents

Cathode ray tube device

Info

Publication number
JPH03182036A
JPH03182036A JP32064989A JP32064989A JPH03182036A JP H03182036 A JPH03182036 A JP H03182036A JP 32064989 A JP32064989 A JP 32064989A JP 32064989 A JP32064989 A JP 32064989A JP H03182036 A JPH03182036 A JP H03182036A
Authority
JP
Japan
Prior art keywords
conductive film
cathode ray
electron gun
ray tube
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32064989A
Other languages
Japanese (ja)
Other versions
JP2854642B2 (en
Inventor
Masami Hasegawa
政美 長谷川
Shiyoujirou Hazama
間 詳二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32064989A priority Critical patent/JP2854642B2/en
Publication of JPH03182036A publication Critical patent/JPH03182036A/en
Application granted granted Critical
Publication of JP2854642B2 publication Critical patent/JP2854642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To stabilize the electron gun orbit by intermittently forming in turn semiconductor films, having from high resistivity to low resistivity over from the electron gun vicinity region on a neck part outer surface to a funnel part outside conductive film, with given intervals provided. CONSTITUTION:A fluorescent screen 4 is coveredly formed on a panel part 1 inner surface, and an electron gun 5 facing the panel part 1 is arranged on a neck part 2. An inside conductive film 7 and an outside conductive film 8 are formed on the inner and outer surfaces of a funnel part 3 respectively. A deflection device 9 is insertedly attached to a part over from the funnel part 3 to the neck part 2. Plural semiconductor films 10 are intermittently formed in turn from high resistivity to low resistivity over from the focusing electrode 6 vicinity region of the electron gun 5 on the neck part 2 outer surface to the funnel part 3 outside conductive film 8, and given intervals are provided between plural semiconductor films and between the semiconductor films 10 and the outside conductive film 8. Thus the static electricity generated in the focusing electrode 6 vicinity can be eliminated to stabilize the electron beam orbit.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は陰極線管装置に関するものであり、特に電子銃
の高電圧電極近傍に発生する静電気を迅速に解消するこ
とにより電子ビームの軌道の安定化を計り、耐電圧特性
を向上させた陰極線管装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a cathode ray tube device, and in particular, the present invention relates to a cathode ray tube device. This invention relates to a cathode ray tube device that stabilizes the trajectory of the beam and improves withstand voltage characteristics.

(従来の技術) 従来、陰極線管装置のファンネル部の内部及び外部に導
電膜を設けることは既知である。内部導電膜は電子銃か
ら射出された電子ビームをパネル部に導くための高電圧
を印加するために設けられ、外部導電膜は高電圧の平滑
コンデンサーを形成するために設けられている。上記の
ように、陰極線管装置には高電圧が印加されているので
、電源スィッチを入れた時や動作中に高圧部に放電が生
じ、放電電流によりカソード電極やヒーター電極または
トランジスタ等の回路素子を破壊してしまう欠点があっ
た。このような欠点を防止するために、特開昭52−1
39358号公報に示されているように外部導電膜に電
気的に接続された半導体膜を形成するものや、特開昭5
9−171439号公報に示されているように内部導電
膜の抵抗値を変化させる手法が提案されている。即ち導
電膜を一種の抵抗膜とすることによって高圧部の放電電
流を抑制し、周辺回路の損傷を防止している。
(Prior Art) Conventionally, it is known to provide a conductive film inside and outside a funnel portion of a cathode ray tube device. The inner conductive film is provided to apply a high voltage to guide the electron beam emitted from the electron gun to the panel section, and the outer conductive film is provided to form a high voltage smoothing capacitor. As mentioned above, a high voltage is applied to a cathode ray tube device, so when the power switch is turned on or during operation, a discharge occurs in the high voltage section, and the discharge current damages circuit elements such as cathode electrodes, heater electrodes, transistors, etc. It had the disadvantage of destroying the. In order to prevent such drawbacks, Japanese Unexamined Patent Publication No. 52-1
39358, in which a semiconductor film is electrically connected to an external conductive film;
As shown in Japanese Patent No. 9-171439, a method of changing the resistance value of an internal conductive film has been proposed. That is, by using the conductive film as a type of resistive film, the discharge current in the high voltage section is suppressed and damage to the peripheral circuits is prevented.

通常、陰極線管装置の電子銃構体は理想的には電子ビー
ムの無偏向時には蛍光面の中心に集中するように設計さ
れている。しかしながら実際には陰極線管と関連部品の
製造時の許容誤差や組み立て誤差のために、上記集中誤
差を修正するための適当な手段を陰極線管に設ける必要
がある。そのため陰極線管装置の製造工程において、電
子銃をネック部に封着した後偏向装置を挿着し、偏向装
置の管軸及び半径方向位置等の取り付は位置を調整し、
更に特公昭51−45936号公報に示されるように電
子ビームの管軸に対する磁気的調整をするための色純度
調整用円環磁石を装着する必要がある。
Normally, the electron gun structure of a cathode ray tube device is ideally designed so that the electron beam is concentrated at the center of the phosphor screen when it is not deflected. However, in practice, due to manufacturing tolerances and assembly errors of cathode ray tubes and related components, it is necessary to provide suitable means for correcting the concentration errors in cathode ray tubes. Therefore, in the manufacturing process of cathode ray tube devices, the deflection device is inserted after the electron gun is sealed to the neck, and the tube axis and radial position of the deflection device are adjusted.
Furthermore, as shown in Japanese Patent Publication No. 51-45936, it is necessary to install a color purity adjusting ring magnet for magnetically adjusting the electron beam with respect to the tube axis.

これらの主として電子ビームの位置と色純度の調整作業
(以下ITC作業と略記)は陰極線管装置を動作させな
がら行う為、電源スィッチを入れた時ネック部に静電気
が発生する。ネック部ガラス表面に誘起される静電気は
上記特開昭59−171439号公報の手法によっても
完全に解消する事は出来ない。陰極線管装置のスイッチ
を入れた瞬間のネック部の電荷分布を第5図に示す。第
5図において横軸は外部導電膜端部からの管軸方向の距
離を示すが、第5図の電荷分布のピークは電子銃の集束
電極近傍にある。この電荷の帯電状況を模式的に示すと
第6図のようになる。前記ネック部の静電気は第7図に
示すように時間の経過とともに自然放電のため減衰し、
電荷分布が変化することは電子ビームの軌道が不安定な
状態となることを意味する。このような状態でITC作
業を行うと、静電気が解消された時点で再調整を行う必
要があり、作業効率の悪化を招くことになる。また特開
昭53−98773号公報に示されているように、偏向
装置の外囲器表面側に位置する領域に高抵抗層を形成し
この高抵抗層をファンネル部の低抵抗層に電気的に接続
する方法があるが、偏向装置の水平偏向コイルの絶縁被
膜が不完全な場合、大電流のリ一りが発生する恐れがあ
る。
These operations, mainly adjusting the electron beam position and color purity (hereinafter abbreviated as ITC operations), are performed while the cathode ray tube device is operating, so static electricity is generated at the neck when the power switch is turned on. The static electricity induced on the glass surface of the neck portion cannot be completely eliminated even by the method disclosed in Japanese Patent Application Laid-open No. 171439/1983. FIG. 5 shows the charge distribution at the neck at the moment the cathode ray tube device is turned on. In FIG. 5, the horizontal axis indicates the distance from the end of the external conductive film in the tube axis direction, and the peak of the charge distribution in FIG. 5 is near the focusing electrode of the electron gun. The state of this charge is schematically shown in FIG. 6. As shown in Fig. 7, the static electricity in the neck part attenuates due to natural discharge over time.
A change in the charge distribution means that the trajectory of the electron beam becomes unstable. If ITC work is performed in such a state, it will be necessary to perform readjustment once the static electricity has been eliminated, resulting in deterioration of work efficiency. Furthermore, as shown in Japanese Patent Application Laid-Open No. 53-98773, a high resistance layer is formed in the area located on the surface side of the envelope of the deflection device, and this high resistance layer is electrically connected to the low resistance layer of the funnel part. However, if the insulation coating of the horizontal deflection coil of the deflection device is incomplete, there is a risk that a large current will flow.

(発明が解決しようとする課題) 本発明は以上のような電子ビームの軌道を不安定にして
いる静電気を迅速に解消することによりITC作業の効
率を高め、尚且つ大電流のリークの発生の恐れのない陰
極線管装置を得ることを目的とする。
(Problems to be Solved by the Invention) The present invention improves the efficiency of ITC work by quickly eliminating the static electricity that makes the trajectory of the electron beam unstable, and also prevents the occurrence of large current leaks. The purpose is to obtain a fear-free cathode ray tube device.

[発明の構成] (課題を解決するための手段) 上記目的のため本発明では、内面に蛍光面を形成したパ
ネル部と、前記蛍光面に対向する電子銃を内部に装着し
たネック部と、前記パネル部とネック部とを結合するフ
ァンネル部と、前記ファンネル部から前記ネック部にか
けての外囲器部分に装着された偏向装置とを少なくとも
備え、前記ファンネル部の内面に内部導電膜を外面に外
部導電膜を各々形成した陰極線管装置において、前記ネ
ック部外面の電子銃近傍の領域から前記ファンネル部の
外部導電膜にかけて、高抵抗率の半導体膜から低抵抗率
の半導体膜へと順次断続的に形成された複数の半導体膜
を形成し、前記複数の半導体膜間及び前記半導体膜と前
記外部導電膜との間に所定の間隔を設けであることを特
徴とする。
[Structure of the Invention] (Means for Solving the Problems) For the above-mentioned purpose, the present invention includes: a panel portion having a fluorescent screen formed on its inner surface; a neck portion having an electron gun mounted therein facing the fluorescent screen; It includes at least a funnel part that connects the panel part and the neck part, and a deflection device attached to an envelope part from the funnel part to the neck part, and an internal conductive film is provided on the inner surface of the funnel part on the outer surface. In a cathode ray tube device in which external conductive films are respectively formed, from the region near the electron gun on the outer surface of the neck part to the external conductive film in the funnel part, a semiconductor film of high resistivity is intermittently changed from a semiconductor film of high resistivity to a semiconductor film of low resistivity. A plurality of semiconductor films are formed, and a predetermined interval is provided between the plurality of semiconductor films and between the semiconductor film and the external conductive film.

(作用) 電子銃の集束電極部近傍のネック部ガラスに誘起される
電荷を、電子銃の集束電極部近傍に形成された固有の抵
抗率の半導体膜に集中させ、前記電荷を複数段階を経て
外部導電膜に移動せしめることにより迅速に静電気を解
消し、安定した電子ビーム軌道を得ることが可能となる
。また、複数の半導体膜の間には所定の間隔を設けであ
るので、電荷の移動を妨げることなく、偏向装置の水平
偏向コイルが接触する部分での電流のリークの発生を防
止することが可能となる。
(Function) Charges induced in the neck glass near the focusing electrode of the electron gun are concentrated on a semiconductor film having a unique resistivity formed near the focusing electrode of the electron gun, and the charges are transferred through multiple stages. By moving the electrons to the external conductive film, static electricity can be quickly eliminated and a stable electron beam trajectory can be obtained. In addition, since a predetermined interval is provided between the multiple semiconductor films, it is possible to prevent current leakage at the part where the horizontal deflection coil of the deflection device makes contact without interfering with the movement of charges. becomes.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

実施例1 本発明の一実施例について第1図及び第2図を参照して
説明する。第1図は本発明をカラー陰極線管に実施した
例についての全体構成を示す断面図、第2図は第1図の
電子銃からファンネル部を示す部分断面図である。パネ
ル部(1)と、漏斗状のファンネル部(3)及びネック
部(2)から真空外囲器が形成されている。そして前記
パネル部(1)の内面には蛍光面(4)が被着形成され
ており、ネック部(2)にはパネル部(+)の水平軸に
沿って一列に配列された3本の電子ビームを射出するイ
ンライン型電子銃(5)が配設されている。また蛍光面
に近接対向する位置にはシャドウマスク(II)がマス
クフレーム(12)によって支持固定されている。
Example 1 An example of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a cross-sectional view showing the overall configuration of an example in which the present invention is implemented in a color cathode ray tube, and FIG. 2 is a partial cross-sectional view showing a funnel portion from the electron gun of FIG. 1. A vacuum envelope is formed from a panel part (1), a funnel-shaped funnel part (3), and a neck part (2). A fluorescent screen (4) is formed on the inner surface of the panel section (1), and the neck section (2) has three fluorescent screens arranged in a line along the horizontal axis of the panel section (+). An in-line electron gun (5) that emits an electron beam is provided. Further, a shadow mask (II) is supported and fixed by a mask frame (12) at a position close to and opposite to the phosphor screen.

ここで前記ファンネル部(3)の内面には内部導電膜(
7)が外面に外部導電膜(8)が各々形成されている。
Here, the inner surface of the funnel part (3) has an internal conductive film (
7) each have an external conductive film (8) formed on their outer surface.

このようなカラー陰極線管に、前記ファンネル部(3)
から前記ネック部(2)にかけての部分に偏向装置(9
)が挿着されている。上記のカラ陰極線管において、前
記ネック部(2)外面の電子銃(5)の集束電極(6)
近傍の領域から前記ファンネル部(3)の外部導電膜(
8)にかけて、高抵抗率から低抵抗率へと順次断続的に
複数の半導体膜(10)を形成し、前記複数の半導体膜
間及び前記半導体膜(10)と前記外部導電膜(8)と
の間に所定の間隔を設けである。即ち電子銃の集束電極
(6)近傍には抵抗率が109乃至10”Ωmの半導体
膜(10゜1)を形成し、この高抵抗率の半導体膜(1
0,1)から外部導電膜(8)に向かって抵抗率が緩や
かに外部導電膜(8)の抵抗率10乃至102Ωmに近
づくように5乃至15mmの間隔で膜幅10■の半導体
膜を複数形成する。形成する半導体膜の数はネック部(
2)から外部導電膜(8)までの距離を上記の膜幅、間
隔で形成できる程度とし、このとき半導体膜の抵抗率の
変化は、黒鉛に含む酸化鉄の量を変化させることによっ
て調整する。また、膜の形成方法としてはスプレー法と
刷毛塗りの二つがあるが、膜の均一性という点でスプレ
ー法の方が有利である。
In such a color cathode ray tube, the funnel part (3)
A deflection device (9
) is inserted. In the above color cathode ray tube, the focusing electrode (6) of the electron gun (5) on the outer surface of the neck part (2)
The outer conductive film (
8), a plurality of semiconductor films (10) are formed intermittently in sequence from high resistivity to low resistivity, and between the plurality of semiconductor films and between the semiconductor film (10) and the external conductive film (8). A predetermined interval is provided between them. That is, a semiconductor film (10°1) with a resistivity of 109 to 10''Ωm is formed near the focusing electrode (6) of the electron gun, and this high resistivity semiconductor film (10°1) is formed near the focusing electrode (6) of the electron gun.
A plurality of semiconductor films each having a film width of 10 cm are formed at intervals of 5 to 15 mm so that the resistivity gradually approaches the resistivity of 10 to 102 Ωm of the external conductive film (8) from 0,1) to the external conductive film (8). Form. The number of semiconductor films to be formed is determined by the neck part (
The distance from 2) to the external conductive film (8) is set to such an extent that it can be formed with the above film width and spacing, and at this time, the change in resistivity of the semiconductor film is adjusted by changing the amount of iron oxide contained in the graphite. . There are two methods for forming a film: spraying and brush coating, but the spraying method is more advantageous in terms of uniformity of the film.

第2図に示す実施例では、半導体膜(10,1)の抵抗
率は109乃至108Ωm1半導体膜(10,2)の抵
抗率は108乃至107Ωm1半導体膜(10,31の
抵抗率は107乃至106Ωm1半導体膜(10,4)
の抵抗率は106乃至105Ωmとなるように変化させ
た。尚、抵抗率を複数ある半導体膜の間で例えば、半導
体膜(10,1)から半導体膜(10,4)までの抵抗
率の変化を10sΩm、 10’Ωm、 105Ωm、
 10’Ωmのように不連続に変化させると、電荷の移
動が局部的に急激となり局部的な電荷集中を生じ、ネッ
ク部のガラスにクラックが発生し真空度の低下を引き起
こす現象(以下ネック貫通と略称)の恐れがあるので好
ましくない。
In the example shown in FIG. 2, the resistivity of the semiconductor film (10,1) is 109 to 108Ωm1, the resistivity of the semiconductor film (10,2) is 108 to 107Ωm1, and the resistivity of the semiconductor film (10,31 is 107 to 106Ωm1). Semiconductor film (10,4)
The resistivity was varied from 106 to 105 Ωm. Note that the change in resistivity between multiple semiconductor films, for example, from semiconductor film (10, 1) to semiconductor film (10, 4), is 10sΩm, 10'Ωm, 105Ωm,
When the resistance is changed discontinuously like 10'Ωm, the charge moves rapidly locally, causing local charge concentration, which causes cracks in the glass at the neck and a decrease in the degree of vacuum (hereinafter referred to as "neck penetration"). (abbreviation)), so it is not desirable.

次にこのようにして断続的に形成した半導体膜(10)
の作用について説明する。第5図に示すように陰極線管
装置にスイッチを入れた瞬間のネック部の電荷分布にお
いて、原点はファンネル部(3)の外部導電膜(8)端
に相当しており、この部分はアースに接続されているた
め、電荷分布は0となっている。また電荷分布のピーク
は電子銃の集束電極(6)近傍に発生している。この電
荷を複数の半導体膜(10)を断続形成することにより
、第一段階として電子銃の集束電極近傍のネック部に形
成された半導体膜(10,1)に集中させ、これを第3
図(a)乃至(C)に示すように順次複数段階を経て抵
抗率の低い半導体膜に移動させ、最終的に外部導電膜(
8)に移動させることにより静電気を解消する。このと
き断続的に形成される半導体膜(10)の抵抗率をネッ
ク部(2)から外部導電膜(8)にかけて緩やかに変化
させることにより電荷を円滑にアスに導くことができる
。第4図は第2図の実施例によるネック部(2)の電荷
分布の時間的変化を示すもので、従来の陰極線管装置に
おける電荷分布の時間的変化を示す第7図と比較して迅
速に静電気が解消されていることがわかる。また、この
ように断続的とした理由は、半導体膜が形成される部分
には偏向装置(9)の水平偏向コイルが接触するため、
半導体膜が連続的に形成されていると水平偏向コイルの
絶縁が不十分な場合、大電流のリークが発生する可能性
があるからである。
Next, the semiconductor film (10) formed intermittently in this way
The effect of this will be explained. As shown in Figure 5, in the charge distribution at the neck part at the moment the cathode ray tube device is turned on, the origin corresponds to the end of the external conductive film (8) of the funnel part (3), and this part is connected to the ground. Since they are connected, the charge distribution is zero. Moreover, the peak of the charge distribution occurs near the focusing electrode (6) of the electron gun. By intermittently forming a plurality of semiconductor films (10), this charge is concentrated in the semiconductor film (10, 1) formed at the neck near the focusing electrode of the electron gun as a first step, and then in the third step.
As shown in Figures (a) to (C), the film is transferred to a semiconductor film with low resistivity through several steps, and finally the external conductive film (
8) to eliminate static electricity. At this time, by gradually changing the resistivity of the semiconductor film (10) which is intermittently formed from the neck portion (2) to the external conductive film (8), charges can be smoothly guided to As. FIG. 4 shows the temporal change in the charge distribution of the neck portion (2) according to the embodiment of FIG. 2, which is faster than that shown in FIG. It can be seen that static electricity is eliminated. The reason for this intermittent pattern is that the horizontal deflection coil of the deflection device (9) comes into contact with the part where the semiconductor film is formed.
This is because if the semiconductor film is continuously formed and the insulation of the horizontal deflection coil is insufficient, a large current leak may occur.

上記実施例では半導体膜間の間隔を均一にとっているが
、この間隔を変化させても良い。この場合、図示してい
ないが、電子銃側の間隔を20狐程度に大きくとり、外
部導電膜側の間隔を5u程度に小さくとってもよい。
In the above embodiment, the distance between the semiconductor films is uniform, but this distance may be changed. In this case, although not shown, the distance on the electron gun side may be set as large as about 20mm, and the space on the external conductive film side may be set as small as about 5u.

実施例2 本発明の他の実施例について説明する。尚、この実施例
の全体構成は実施例1と同じなので詳細な説明は省略す
る。実施例2において、前記ネック部(2)外面の電子
銃(5)の集束電極(6)近傍の領域から前記ファンネ
ル部(3)の外部導電膜(8)にかけて、吸湿性をもち
水分を吸収したときの抵抗率が半導体の領域となる高分
子膜を吸湿性の低いものから高いものへと断続的に複数
形成し、実質的に高抵抗から低抵抗へと変化せしめ、ま
た前記複数の吸湿性高分子膜間及び前記吸湿性高分子膜
と前記外部導電膜(8)との間に所定の間隔を設けであ
る。吸湿性高分子膜は空気中の水分を吸収することによ
り、その抵抗値を下げ半導体膜として作用することが可
能となる。即ち、抵抗率を変化させる手段としてこの実
施例では吸湿性高分子膜を用いている。吸湿性の高いも
のを低抵抗、低いものを高抵抗として作用させる。複数
の吸湿性高分子膜間の電荷の移動作用については上記実
施例1と同様であり、詳細な説明は省略する。
Example 2 Another example of the present invention will be described. Incidentally, the overall configuration of this embodiment is the same as that of the first embodiment, so detailed explanation will be omitted. In Example 2, the area from the outer surface of the neck part (2) near the focusing electrode (6) of the electron gun (5) to the outer conductive film (8) of the funnel part (3) has hygroscopic properties and absorbs moisture. A plurality of polymer films whose resistivity is that of a semiconductor are formed intermittently from low to high hygroscopicity to substantially change the resistance from high to low, and the resistivity of the plurality of hygroscopic A predetermined interval is provided between the hygroscopic polymer films and between the hygroscopic polymer film and the external conductive film (8). By absorbing moisture in the air, the hygroscopic polymer film can lower its resistance value and function as a semiconductor film. That is, in this embodiment, a hygroscopic polymer film is used as a means for changing the resistivity. A material with high hygroscopicity acts as a low resistance, and a material with a low hygroscopicity acts as a high resistance. The charge transfer function between the plurality of hygroscopic polymer films is the same as in Example 1 above, and detailed explanation will be omitted.

上記実施例では吸湿性半導体として高分子膜を用いたが
、高分子膜に限らず吸湿性があり水分を吸収したときの
抵抗値が上記実施例1で示した抵抗値の範囲内となる半
導体として機能するものであればよい。
In the above example, a polymer film was used as the hygroscopic semiconductor, but it is not limited to polymer films; it is a semiconductor that has hygroscopic properties and whose resistance value when absorbing moisture is within the range of the resistance value shown in Example 1 above. It is sufficient as long as it functions as such.

実施例3 吸湿性半導体膜を用いて抵抗率を変化させる他の手段と
して、同一の吸湿性を持った複数の膜の膜幅を大きいも
のから小さいものへと変化させることにより、実質的に
高抵抗から低抵抗へと変化させてもよい。実施例2と比
較して膜ごとに吸湿性を変化させる必要がないので、コ
スト的に有利となる。
Example 3 As another means of changing the resistivity using a hygroscopic semiconductor film, by changing the film width of multiple films having the same hygroscopicity from a large one to a small one, a substantially high resistivity can be obtained. It may be changed from resistance to low resistance. Compared to Example 2, there is no need to change the hygroscopicity for each film, which is advantageous in terms of cost.

また、実施例2と同様に吸湿性半導体膜として高分子膜
に限らないのは言うまでもない。
Further, as in Example 2, it goes without saying that the hygroscopic semiconductor film is not limited to a polymer film.

上記実施例2及び3において、上記実施例1と同様に膜
間の間隔を変化させてもよい。
In Examples 2 and 3 above, the spacing between the films may be changed as in Example 1 above.

[発明の効果] 以上説明したように、ネック部からファンネル部の外部
導電膜にかけて順次抵抗率を下げて半導体膜を断続的に
形成することにより、電子銃の集束電極近傍に発生した
静電気を局部的な電荷集中によるネック貫通を起こすこ
となく迅速に解消することが可能となる。また半導体膜
の間には間隔を設けであるので、偏向装置からの電流の
リークを防止することが可能となる。
[Effects of the Invention] As explained above, by sequentially lowering the resistivity and forming a semiconductor film intermittently from the neck part to the external conductive film in the funnel part, static electricity generated near the focusing electrode of the electron gun can be locally removed. This makes it possible to quickly solve the problem without causing neck penetration due to charge concentration. Furthermore, since there is a gap between the semiconductor films, it is possible to prevent current leakage from the deflection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の陰極線管装置の実施例を示す断面図、
第2図は第1図における半導体膜の形成状態を示す一部
拡大断面図、第3図(a)乃至第3図(c)は第2図の
電荷の移動を説明するための模式断面図、第4図は本発
明の実施例におけるネック部電荷分布の時間的変化を示
すグラフ、第5図は従来の陰極線管装置のネック部分の
電荷分布状況を示すグラフ、第6図は従来の陰極線管装
置のネック部分の帯電状況を示す模式断面図、第7図は
従来の陰極線管装置におけるネック部電荷分布の時間的
変化を示すグラフである。 (1)・・・パネル (2)・・・ネック (3)・・・ファンネル ・・・蛍光面 ・・・電子銃 ・・・集束電極 ・・・内部導電膜 ・・・外部導電膜 ・・・偏向装置 ・・・半導体膜 ・・・シャドウマスク ・・・マスクフレーム
FIG. 1 is a sectional view showing an embodiment of the cathode ray tube device of the present invention;
FIG. 2 is a partially enlarged sectional view showing the formation state of the semiconductor film in FIG. 1, and FIGS. 3(a) to 3(c) are schematic sectional views for explaining the movement of charges in FIG. 2. , FIG. 4 is a graph showing the temporal change in neck charge distribution in the embodiment of the present invention, FIG. 5 is a graph showing the charge distribution situation in the neck portion of a conventional cathode ray tube device, and FIG. FIG. 7 is a schematic cross-sectional view showing the charging state of the neck portion of the tube device, and is a graph showing temporal changes in the neck portion charge distribution in a conventional cathode ray tube device. (1)...Panel (2)...Neck (3)...Funnel...Phosphor screen...Electron gun...Focusing electrode...Inner conductive film...Outer conductive film...・Deflection device...Semiconductor film...Shadow mask...Mask frame

Claims (1)

【特許請求の範囲】[Claims] 内面に蛍光面を形成したパネル部と、前記蛍光面に対向
する電子銃を内部に装着したネック部と、前記パネル部
と前記ネック部とを結合するファンネル部と、前記ファ
ンネル部から前記ネック部にかけての外囲器部分に装着
された偏向装置とを少なくとも備え、前記ファンネル部
の内面に内部導電膜を外面に外部導電膜を各々形成した
陰極線管装置において、前記ネック部外面の電子銃近傍
の領域から前記ファンネル部の外部導電膜にかけて、実
質的に高抵抗率から低抵抗率となる順次断続的に形成さ
れた複数の半導体膜を有し、前記複数の半導体膜間及び
前記半導体膜と前記外部導電膜との間に所定の間隔を設
けてなることを特徴とする陰極線管装置。
A panel portion having a phosphor screen formed on its inner surface, a neck portion having an electron gun mounted therein facing the phosphor screen, a funnel portion connecting the panel portion and the neck portion, and from the funnel portion to the neck portion. In the cathode ray tube apparatus, the cathode ray tube device includes at least a deflection device attached to an envelope portion of the neck portion, and an inner conductive film is formed on the inner surface of the funnel portion, and an outer conductive film is formed on the outer surface of the funnel portion. A plurality of semiconductor films are sequentially and intermittently formed from the region to the outer conductive film of the funnel portion, and have substantially high resistivity to low resistivity, and between the plurality of semiconductor films and between the semiconductor film and the semiconductor film. A cathode ray tube device characterized in that a predetermined distance is provided between the cathode ray tube device and an external conductive film.
JP32064989A 1989-12-12 1989-12-12 Cathode ray tube device Expired - Fee Related JP2854642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32064989A JP2854642B2 (en) 1989-12-12 1989-12-12 Cathode ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32064989A JP2854642B2 (en) 1989-12-12 1989-12-12 Cathode ray tube device

Publications (2)

Publication Number Publication Date
JPH03182036A true JPH03182036A (en) 1991-08-08
JP2854642B2 JP2854642B2 (en) 1999-02-03

Family

ID=18123772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32064989A Expired - Fee Related JP2854642B2 (en) 1989-12-12 1989-12-12 Cathode ray tube device

Country Status (1)

Country Link
JP (1) JP2854642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204342A (en) * 2016-05-09 2017-11-16 松定プレシジョン株式会社 Insulation structure, charged particle gun, and charged particle beam application device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017204342A (en) * 2016-05-09 2017-11-16 松定プレシジョン株式会社 Insulation structure, charged particle gun, and charged particle beam application device

Also Published As

Publication number Publication date
JP2854642B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JPH02223136A (en) Cathode-ray tube
EP0840347B1 (en) Color cathode ray tube
JPH03182036A (en) Cathode ray tube device
US6316871B2 (en) Compensation device for convergence drift used in cathode ray tube
US4671776A (en) Manufacturing method of color picture tube
KR100243948B1 (en) Electron gun assembly of cathode-ray tube
US6515411B1 (en) Cathode ray tube having reduced convergence drift
KR100392574B1 (en) Color cathode ray tube having an internal voltage-dividing resistor
US3771003A (en) Shielded cathode ray tube electron gun
EP0933798A1 (en) Inner resistor for cathode-ray tube
KR930004795Y1 (en) Electron gun for color cathode-ray tube
JP3095445B2 (en) Method of manufacturing color picture tube
JP3133352B2 (en) Withstand voltage treatment method for cathode ray tube
US6646393B1 (en) Method of operating a positive tolerance CRT
KR200151012Y1 (en) An electron gun for a crt
KR970004311B1 (en) Electron gun for bid glass
EP0333421A2 (en) Cathode ray tubes
JPS6310859B2 (en)
KR20010017763A (en) electron gun for color cathode ray tube
JPS62272430A (en) Color cathode-ray tube
JPS62188135A (en) Color picture tube
JP2000173496A (en) Color cathode-ray tube
JPS645739B2 (en)
JP2004095284A (en) Cathode-ray tube
KR20010068243A (en) Color cathode ray tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees