JPH03179709A - Artificial tooth fixing magnet - Google Patents

Artificial tooth fixing magnet

Info

Publication number
JPH03179709A
JPH03179709A JP2213736A JP21373690A JPH03179709A JP H03179709 A JPH03179709 A JP H03179709A JP 2213736 A JP2213736 A JP 2213736A JP 21373690 A JP21373690 A JP 21373690A JP H03179709 A JPH03179709 A JP H03179709A
Authority
JP
Japan
Prior art keywords
magnet
platinum
atomic
iron
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2213736A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsui
康浩 松井
Kazuhiko Fukamachi
一彦 深町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to DE4027681A priority Critical patent/DE4027681C2/en
Priority to US07/575,743 priority patent/US5161972A/en
Publication of JPH03179709A publication Critical patent/JPH03179709A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an artificial tooth fixing magnet having both excellent corrosion-resisting property and magnet performance by a method wherein a magnet, containing the prescribed quantity of platinum and the remaining part consisting of iron, is used. CONSTITUTION:A platinum magnet, containing platinum of 33 to 47 atomic % and the remainder consisting of iron, or another platinum magnet, containing platinum of 33 to 47 atomic % and a kind or two or more kinds selected from Ti, Mo, Nb, Ta, W, Cr, V and the like of 0.1 to 10 atomic % and the remainder consisting of iron, is used. When platinum is 33 atomic % or less, the maximum energy product decreases to 4 MGOe or less, when the platinum exceeds 47 atomic %, residual magnetic flux density decreased to 6kG or less, and these two cases are unsuitable. When one or two or more kinds of the adding elements such as Ti, Mo, Nb and the like is added in the range of 0.1 to 10 atomic %, the fusing treatment conditions to obtain the efficiency of magnet can be shortened substantially, and a highly efficient magnet having small variation in magnet performance can be obtained in a stable manner.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は義歯の固定用磁石に関するものである。 The present invention relates to a magnet for fixing dentures.

【従来の技術】[Conventional technology]

S m Co s系やSm1CO+y系の希土類磁石を
義歯の内面または下面に取付けて、口内の歯床に埋め込
んだ軟磁性を有するFe−Cr系耐食ステンレス鋼等で
造った根面板に義歯を磁力で固定する方法が日本はもと
より各国で活発に研究されている。この方法は義歯を機
械的に固定する従来方法に対抗する方法で義歯の安定と
口内の美観をより高めることを狙っている。しかし上記
義歯固定法は現時点ではまだ厚生省の認可が下りず、認
可をめざしての事前研究の段階である。 研究の初期的段階ではフェライト系磁石やアルニコ系磁
石で検討されていたが、これらの磁石は磁力が弱く、そ
の欠点を補おうとするとどうしても大きな磁石形状にな
らざるを得ず、義歯内部に磁石が納まらない問題があっ
た。 ところが前述の希土類系磁石が開発されて、義歯内部に
装着できる程度に小型化しても義歯を固定するための磁
力が確保出来るようになってきている。
SmCos or Sm1CO+y rare earth magnets are attached to the inner or lower surface of the denture, and the denture is magnetically attached to the root plate made of soft magnetic Fe-Cr corrosion-resistant stainless steel, etc., which is embedded in the tooth base in the mouth. Methods of fixing are being actively researched not only in Japan but also in other countries. This method is an alternative to the conventional method of mechanically fixing dentures, and aims to further improve the stability of dentures and the aesthetic appearance of the mouth. However, the above-mentioned denture fixation method has not yet been approved by the Ministry of Health and Welfare, and is still at the stage of preliminary research aimed at approval. In the early stages of research, ferrite magnets and alnico magnets were considered, but these magnets have weak magnetic force, and to compensate for this drawback, the magnet shape would have to be large, making it difficult to place the magnet inside the denture. There was a problem that I couldn't resolve. However, with the development of the above-mentioned rare earth magnet, it has become possible to secure the magnetic force for fixing the denture even if the magnet is made small enough to be attached inside the denture.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら希土類系の磁石は、アルニコなどの金属磁
石に比較して耐食性が極めて悪く、表面被覆等を施さな
い裸のままでは口内の劣悪な環境に全く耐え得ないこと
と、磁石自体が非常に脆く歯科技工時の取扱いや義歯と
して口内に装着時に簡単に割れやチップ欠けが発生する
という問題がある。 耐食性の問題を解決するために希土類磁石の表面にニッ
ケルめっきを施すか、希土類磁石を耐食性のあるステン
レスの小箱に納めて蓋部を溶接して密封すること等が具
体的に研究されている。 第2図は後者の方法を説明する概略図である。 1は磁石、2aは小箱、2bは蓋、3はtllm、4は
義歯基部、5は根面板、6は歯根、7は歯肉である。根
面板5は耐食性フェライト系ステンレス鋼よりなり、底
部にねじを有し、歯根6にねじにより固定されている。 8は義歯固定前の間隙である。固定の際には磁石1を蓋
2bを介して根面板5に磁力により密着させる。この際
、軟磁性を有するフェライト系ステンレス鋼よりなる小
箱2aは磁路すなわちヨークとして機能するので、1.
2a、5により閉磁路が作られ、人体への磁力の漏洩を
避けることができるとともに磁束を義歯固定に有効に使
用することができる。 ところで前者のNiめっき法の場合には、ニッケルに対
して体質的にアレルギー反応を示す人が少なくないこと
と、ニッケルめっきに内在するピンホールやめっき部の
クラックあるいは腐食に端を発して磁石成分のSmやC
Oが溶出して体内に吸収される恐れがあることが問題に
なる。ちなみにSmやCoが人体に対する細胞毒性の評
価で無毒であるかどうかの医学的な結論は出ていない。 さらに致命的なことには、当該磁石に腐食が出始めると
磁石性能(具体的には保磁力)が急速に劣化して、義歯
の固定の用をなさなくなる。 次に後者の小箱、蓋を用いる方法(第2図)の場合にも
、磁石を所定寸法形状に加工する技工が難しい;磁石と
口内の歯根1に埋め込んだ軟磁性根面板5との間を小箱
2の蓋2bの板厚分だけ離すことによって磁力が弱めら
れる;小箱本体2aと蓋2bの溶接部の熱影響部から腐
食が発生してSmやCoイオンが溶出する等とやはり大
きな課題を残している。 したがって、一般用途に対して磁力的に高性能なSm 
Co s系やS m t Co□系磁石でも、義歯の固
定用途には腐食の問題で適用が極めて難しいと考えられ
る。 そこで本発明者らは従来の欠点を解決すべく、発明者等
が鋭意研究した結果、以下の発明をなした。
However, rare earth magnets have extremely poor corrosion resistance compared to metal magnets such as alnico, and if left bare without any surface coating, they cannot withstand the harsh environment inside the mouth, and the magnets themselves are extremely brittle. There is a problem in that cracks and chips easily occur when handling during dental technicians or when installed in the mouth as a denture. In order to solve the problem of corrosion resistance, specific research is being carried out on methods such as applying nickel plating to the surface of rare earth magnets, or storing rare earth magnets in corrosion-resistant small stainless steel boxes and sealing the lids by welding. . FIG. 2 is a schematic diagram illustrating the latter method. 1 is a magnet, 2a is a small box, 2b is a lid, 3 is a tllm, 4 is a denture base, 5 is a root plate, 6 is a tooth root, and 7 is a gingiva. The root plate 5 is made of corrosion-resistant ferritic stainless steel, has a screw at the bottom, and is fixed to the tooth root 6 with a screw. 8 is the gap before fixing the denture. When fixing, the magnet 1 is brought into close contact with the root plate 5 through the lid 2b by magnetic force. At this time, since the small box 2a made of ferritic stainless steel having soft magnetic properties functions as a magnetic path, that is, a yoke, 1.
A closed magnetic path is created by 2a and 5, and leakage of magnetic force to the human body can be avoided, and the magnetic flux can be effectively used for fixing the denture. By the way, in the case of the former Ni plating method, there are many people who have a constitutional allergic reaction to nickel, and the magnet components may be damaged due to pinholes inherent in the nickel plating or cracks or corrosion in the plating area. Sm and C
The problem is that O may be eluted and absorbed into the body. By the way, no medical conclusion has been reached as to whether Sm and Co are non-toxic in the evaluation of their cytotoxicity to the human body. Even more fatally, when the magnet begins to corrode, its performance (specifically, coercive force) rapidly deteriorates, rendering it useless for fixing dentures. Next, even in the case of the latter method using a small box and lid (Fig. 2), the technique of processing the magnet into a predetermined size and shape is difficult; there is a gap between the magnet and the soft magnetic root plate 5 embedded in the tooth root 1 in the mouth. By separating them by the thickness of the lid 2b of the small box 2, the magnetic force is weakened; corrosion occurs from the heat-affected zone of the weld between the small box body 2a and the lid 2b, and Sm and Co ions are eluted. Big challenges remain. Therefore, magnetically high performance Sm for general use
Even Cos-based and S m t Co□-based magnets are considered to be extremely difficult to apply to fixing dentures due to corrosion problems. Therefore, the inventors of the present invention have made the following invention as a result of intensive research in order to solve the conventional drawbacks.

【課題を解決するための手段】[Means to solve the problem]

本発明の第1は、白金が33〜47原子%含み、残部が
鉄よりなるプラチナ磁石を義歯の固定用に用いることを
特徴とし、第2は白金が33〜47原子%含み、微量添
加元素としてTi。 Mo、Nb、Ta、W、Cr、V等のうち一種類または
二種類以上を0.1−10原子%含み、残りが鉄よりな
るプラチナ磁石を義歯の固定用に用いることを特徴とす
る。
The first feature of the present invention is that a platinum magnet containing 33 to 47 atom% of platinum and the remainder iron is used for fixing dentures; As Ti. A platinum magnet containing 0.1 to 10 atomic percent of one or more of Mo, Nb, Ta, W, Cr, V, etc., with the remainder being iron, is used for fixing dentures.

【作用】[Effect]

本発明においては、白金33〜47原子%で残部が鉄か
らなる合金、望ましくは白金が37゜5〜42.0原子
%であり残部が鉄からなる合金に調整するか、あるいは
白金33〜47原子%とTi、Mo、Nb、Ta、W、
Cr、V等のうち一種類または二種類以上をO,1〜1
0原子%含み残部が鉄からなり、耐食性抜群のいわゆる
プラチナ磁石をとりつけた義歯を根面板に固定するため
に用いることを特徴とする。 この組成からなる磁石の磁石性能は、例えば残留磁束密
度10〜11kG、保磁力4.5〜5゜5kOe、最大
エネルギー積20〜25MGOeを有してSm−Go系
希土類磁石とほぼ同等に高性能のものである。 本発明の目的とする義歯固定に対していわゆるプラチナ
磁石の成分範囲を規定した理由は、先ず白金に対して3
3原子%未満では磁石性能で最大エネルギー積が4MG
Oe以下と著しく低下して義歯固定用途には不適なこと
と、47原子%を超える場合では残留磁束密度が6kG
以下に低下してしまい、やはり義歯の固定用途には不適
なことによる0次にTi、Mo、Nb等の添加元素を含
む理由は、これ等の一種類または二種類以上を0.1〜
10原子%の範囲で添加した場合には、磁石性能を出す
ために必要な溶体化処理条件が900〜1400℃の温
度で1分乃至100時間から、1分乃至10時間程度に
大幅に短縮可能であり、しかも磁石性能にバラツキが少
なく安定して高性能が得られて義歯固定用途に適してい
るからである。さらに、本発明に用いるいわゆるプラチ
ナ磁石の特徴として、極めて耐食性が高く前述の希土類
磁石の場合のようにNiめっき等による表面コーティン
グが一切不要なことである。 これ等の特徴に加えて最も重要なことに、いわゆるプラ
チナ磁石の基本元素である白金と鉄は磁石とは異なる使
い方であるが、それぞれ歯科用の歯冠用途や医薬品用途
として永年使用実績があり、いずれも人体に全く無毒な
元素であることがすでに医学的に結論づけられている点
がある。 そこで今回、磁力的にはSm−Go系の希土類磁石と同
等に十分強力でかつ磁石を構成する基本元素が人体に無
毒ないわゆるプラチナ磁石が人間の口内に擬した劣悪な
環境で十分に使用に耐えうるかどうかの耐食性能試験を
行って前記の発明をした。 本発明において義歯固定用磁石に適用する、いわゆるプ
ラチナ磁石の加工方法については、例えば先ず真空高周
波溶解を行って小さなインゴット・ケースに鋳造して角
棒状のインゴットを製造する;鋳造インゴットに対して
は真空中または非酸化性の雰囲気中で溶体化処理を行う
。条件は900〜1400℃の温度で1分以上100時
間以内の熱処理を行い、その後ただちに水冷または油冷
する。 次に上記処理したインゴットから試験片を切り出して真
空中または非酸化性の雰囲気中で450〜800℃の温
度で1分乃至500時間熱処理した後冷却する。なおい
わゆる白金磁石の熱処理は例えばU S P 4,39
6,441に説明されている。その後Iti&仕上げを
行い、2テスラ以上の直流磁場中で着磁を施す。 〔実施例] 以下、実施例によりさらに詳しく本発明を説明する。 実施例1 真空高周波溶解をして白金39.0原子%で残部が鉄よ
りなる合金組成の角棒状インゴットを造った。 それを真空雰囲気中で1250℃の温度で5時間溶体化
処理を行ったあと油中に急冷した。 次にインゴットから4IIIIl縦X4ma縦横43m
m高の試片を切り出して、これを610℃で10時間真
空中で熱処理して炉冷した。 この試片を直流磁場2テスラ中で高さ方向に着磁して、
いわゆるプラチナ磁石を得た。この磁石の磁石特製は、
測定用の別試片で残留磁束密度10.3kGauss、
保磁力4.7kOe、最大エネルギー積21MGOeの
値を得た。 このいわゆるプラチナ磁石の腐食試験を以下の条件で行
った。なお試料は腐食試験を行う前に粗度1200番の
エメリー研磨を施して表面を平滑にした。 1)0.1%N a * S溶:1Jj(37℃)に3
日間浸漬後外観を目視検査 2)5%NaCJ2+2%Hoot溶液(40℃)に1
時間浸漬後外観を目視検査と腐食減量の測定 その結果、表1のごとく極めて良好な結果が得られた。 c以下余白) 腐 食試験結果 ○印 表面良好 △印 弱い変色 ×印 変色発生 実施例2 同様に真空高周波溶解をして白金39.1原子%とNb
0.5原子%で残部が鉄よりなる合金組成につき実施例
1と同様の方法で処理したところ残留磁束密度I Q 
、 Q KGauss保磁力4゜5kOe1最大工ネル
ギー積20MGOeの値を得た。 実施例1と同様の腐食試験の結果、表1のごとくきわめ
て良好な結果が得られた。 比較例 比較試料として、11表面処理を施さない裸のSm5C
oty系希土類磁石と、21表面に20tLm厚のニッ
ケルめっきを施したSmtCo□系希土類磁石と、3.
純ニツケル試料と、4.裸のままでも一般用途では耐食
性に定評がある25Cr−15Co−残Feのスピノー
ダル系圧延磁石をいずれも4mm縦X4mm横X3mm
高さの寸法に切り出して準備した。この際Sm2Cop
y系希土類磁石表面にニッケルめっき、水洗、乾燥の工
程を経て仕上げた。ちなみに電解脱脂は、脱脂液クリー
ナー160(市販品)を45g/42の漬度で試料を陽
極にして電流密度5A/dm”X30秒(50℃)で実
施した。次に酸洗は洟塩酸の2倍希釈液中に30秒間(
室温)浸漬した。ニッケルストライクめっきはN i 
C(1m ・6H!Oを200 g/βとHCl100
cc/nの浴組成で電流密度5 A / d m ”X
90秒(室温)で実施した。 最後にニッケルめっきはN i S O4・6H富0−
280g/I2とN i C12z ・6Ha 0−5
0g/βとホウ酸−45g/I2を混合したいわゆるワ
ット浴で電流密度5 A / d m ”で表面に20
μmのニッケルを電着させた。 ニッケルめっきを施した試料以外の試料は、腐食試験を
行う前にいずれも粗度1200番のエメリー紙研磨を施
して表面を平滑にした。 次に腐食試験を上記と同様の条件で行った。その結果、
表1に示すごとく好ましい値ではなかった。 更にプラチナ磁石の耐食性の有効性を再確認する目的で
、口内環境を模した各種の腐食溶液に浸漬して液中に腐
食溶出するイオン量をICP発光分光分析装置(Ind
uctively Coupled PlasmaEm
ission Spectrometer )によって
精密な定量を行った。 その結果を表2及び表3に示すが、プラチナ磁石、及び
根面板に適用する26%Cr−1%Mo系耐食ステンレ
ス鋼板それぞれ単独の場合と、両者を磁力的に吸引状態
にした場合のいずれにおいても、溶出イオン量は2μg
/cm”/72Hr程度の極微量であった。 なお参考までに、公知文献よりSm−Co系希土類磁石
の腐食液中での溶出イオン量を表4に示すが、表面を被
覆しない状態では溶出量が非常に多いことが分かる。 (以下余白) 表2 腐食液中への溶出イオン量 (単位μg/am”/)lr) (腐食条件は、 37±2℃の温度で72Hr浸 漬) (注1) 試験に使用したプラチナ磁石組成は、 39゜ l原子%pt−o。 5原子%Nb−Fe (注2)〈は分析の定量下限以下 (注3)人工唾液の組成は、GREENWOOD氏液で
、蒸留水1,000mg中にKCl22.4g、 Ca
3(PO4) 2 0.6g、にzsO40,9g、 
KzHP041.4g、 Na5PO40,8g、アル
ブミン5.0gを溶解して、使用の際に液中に、CO2
ガスを吹き込んでpH6,7に調整 (注4)試験片は、表面を800番の湿式研磨後、水洗
、アセトン中で超音波洗浄して乾燥(以下余白) 表3磁力吸引時の溶出イオン量( 単位p m+/c+m”/72Hr) (腐食条件は37±2℃の温度で72Hr浸漬)表4 溶出イオン量比較例( 単位u +i/cm”/72Hr) 本発明に基づき義歯固定の有効性を裏付けるものとして
、義歯内部に装着が可能な寸法形状にて、第3図に示す
方法により、根面板に見立てた26%Cr−1%MO系
耐食ステンレス鋼板とプラチナ磁石との間で義歯を磁力
で固定させるのに必要なだけの吸引力が得られるかどう
かを別途確認した。 その結果を表5に示すが、義歯の固定に最低限必要な吸
引力(100g以上)を十分確保できることを確認した
。なお当然ながら、磁石の寸法形状を義歯固定用途で許
容される範囲内(5mmφ×5md以内)で大きく設計
すれば、吸引力はさらに高まる。 (以下余白) 表5 吸引力測定結果 (注1) (注2) 開磁路測定では根面板上に磁石を直接吸引させた状態か
ら磁石を引き離すのに必要な力を測定した。 磁石上面側の磁力線は吸引に利用されずに外部に飛散す
るので吸引効率が低い。 閉磁路測定では第1図に示すように磁石lの厚さ方向の
両端面を根面板材質と同じ26%Cr−1%MO系の耐
食ステンレス鋼製ヨーク9 (1,51IIITX 4
mmWX 5+amL)で挟み、これらの間を樹脂で接
着し、根面板5上にヨーク9を介して吸引させた状態か
らヨーク9を引離すに必要な力が測定される。 (注3)比較例C,DはRon Highton et
 al;The  Journal  of  Pro
sthetic  Dentistry。 Vol、 56. No、1. p104(1986)
のデータを引用した。 〔発明の効果〕 本発明に係る合金は、義歯の固定用として、磁石性能及
び耐食性の観点から極めて好ましいものである。
In the present invention, an alloy consisting of 33 to 47 at% platinum and the balance iron, preferably an alloy consisting of 37.5 to 42.0 at% platinum and the balance iron, or an alloy consisting of 33 to 47 at. Atomic % and Ti, Mo, Nb, Ta, W,
O, 1 to 1 of one or two or more of Cr, V, etc.
It is characterized by being used to fix a denture to a root plate, to which a so-called platinum magnet, which contains 0 atomic % and the remainder is iron, has excellent corrosion resistance. The magnetic performance of a magnet made of this composition is, for example, a residual magnetic flux density of 10 to 11 kG, a coercive force of 4.5 to 5°5 kOe, and a maximum energy product of 20 to 25 MGOe, which is almost equivalent to that of an Sm-Go rare earth magnet. belongs to. The reason for specifying the component range of so-called platinum magnets for denture fixation, which is the object of the present invention, is that
At less than 3 atomic %, the maximum energy product is 4 MG due to magnetic performance.
The residual magnetic flux density is 6kG if it exceeds 47 at%, and it is unsuitable for denture fixing applications because it is significantly lower than Oe.
The reason for the inclusion of zero-order additive elements such as Ti, Mo, and Nb is that they are unsuitable for use in fixing dentures.
When added in the range of 10 atom%, the solution treatment conditions required to achieve magnet performance can be significantly shortened from 1 minute to 100 hours at a temperature of 900 to 1400°C to about 1 minute to 10 hours. Moreover, there is little variation in magnetic performance, and stable high performance can be obtained, making it suitable for use in fixing dentures. Furthermore, a feature of the so-called platinum magnet used in the present invention is that it has extremely high corrosion resistance and does not require any surface coating such as Ni plating as is the case with the rare earth magnets mentioned above. In addition to these characteristics, the most important thing is that platinum and iron, the basic elements of so-called platinum magnets, are used in different ways from magnets, but each has a long history of use in dental crowns and pharmaceutical applications. It has already been medically concluded that all of these elements are completely non-toxic to the human body. Therefore, this time, we have developed a so-called platinum magnet, which is magnetically as strong as Sm-Go rare earth magnets and whose basic elements are non-toxic to the human body. The above invention was developed after conducting a corrosion resistance performance test to see if it could withstand the corrosion. Regarding the processing method of so-called platinum magnets applied to denture fixing magnets in the present invention, for example, first, vacuum high-frequency melting is performed and cast into a small ingot case to produce a rectangular bar-shaped ingot; Solution treatment is performed in vacuum or in a non-oxidizing atmosphere. The conditions are that heat treatment is performed at a temperature of 900 to 1400° C. for 1 minute or more and 100 hours or less, and then immediately cooled with water or oil. Next, a test piece is cut out from the above-treated ingot, heat treated in vacuum or in a non-oxidizing atmosphere at a temperature of 450 to 800°C for 1 minute to 500 hours, and then cooled. The so-called heat treatment of platinum magnets is described in USP 4,39, for example.
6,441. Thereafter, iti&finishing is performed, and magnetization is performed in a DC magnetic field of 2 Tesla or more. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 A rectangular rod-shaped ingot having an alloy composition of 39.0 atomic percent platinum and the balance iron was produced by vacuum high-frequency melting. It was subjected to solution treatment in a vacuum atmosphere at a temperature of 1250° C. for 5 hours and then quenched in oil. Next, from the ingot 4III1 length x 4ma length and width 43m
A specimen with a height of m was cut out, heat treated in vacuum at 610° C. for 10 hours, and cooled in a furnace. This sample was magnetized in the height direction in a DC magnetic field of 2 Tesla,
Obtained a so-called platinum magnet. The special magnet of this magnet is
A separate specimen for measurement has a residual magnetic flux density of 10.3 kGauss,
A coercive force of 4.7 kOe and a maximum energy product of 21 MGOe were obtained. A corrosion test of this so-called platinum magnet was conducted under the following conditions. Note that the surface of the sample was smoothed by emery polishing with a roughness of No. 1200 before conducting the corrosion test. 1) 0.1% Na*S solution: 3 to 1Jj (37℃)
Visual inspection of appearance after immersion for one day 2) 1% in 5% NaCJ2 + 2% Hoot solution (40℃)
Visual inspection of the appearance and measurement of corrosion weight loss after immersion for a period of time resulted in extremely good results as shown in Table 1. (margins below c) Corrosion test results ○ mark Good surface △ mark Weak discoloration × mark Discoloration Example 2 Similarly, vacuum high frequency melting was performed to produce 39.1 atomic % of platinum and Nb.
When an alloy composition of 0.5 atomic % and the balance was iron was treated in the same manner as in Example 1, the residual magnetic flux density IQ
, Q KGauss coercive force 4°5kOe1 and maximum engineering product 20MGOe were obtained. As a result of the same corrosion test as in Example 1, very good results as shown in Table 1 were obtained. Comparative Example As a comparative sample, bare Sm5C without 11 surface treatment
oty-based rare earth magnet, SmtCo□-based rare earth magnet whose surface is plated with 20 tLm of nickel; 3.
a pure nickel sample; 4. Both 25Cr-15Co-remaining Fe spinodal rolled magnets are 4mm long x 4mm wide x 3mm long and have a reputation for corrosion resistance for general use even when left bare.
I prepared it by cutting it to the desired height. At this time, Sm2Cop
The surface of the Y-based rare earth magnet was finished by nickel plating, washing with water, and drying. Incidentally, electrolytic degreasing was carried out using degreasing liquid Cleaner 160 (commercially available) at a dipping strength of 45 g/42, using the sample as an anode, and a current density of 5 A/dm'' x 30 seconds (50°C).Next, pickling was carried out using diluted hydrochloric acid. 30 seconds in the 2x diluted solution (
room temperature). Nickel strike plating is Ni
C (1 m ・200 g/β of 6H!O and 100 HCl
Current density 5 A/d m”X with bath composition of cc/n
It was carried out for 90 seconds (room temperature). Finally, the nickel plating is NiSO4・6H rich 0-
280g/I2 and N i C12z ・6Ha 0-5
0 g/β and boric acid -45 g/I2 on the surface at a current density of 5 A/d m'' in a so-called Watts bath.
Nickel of μm was electrodeposited. All of the samples other than the nickel-plated samples were polished with emery paper having a roughness of 1200 to smooth the surface before conducting the corrosion test. Next, a corrosion test was conducted under the same conditions as above. the result,
As shown in Table 1, the values were not desirable. Furthermore, in order to reconfirm the effectiveness of the corrosion resistance of platinum magnets, we immersed them in various corrosive solutions simulating the oral environment and measured the amount of ions corroded and eluted into the solution using an ICP emission spectrometer (Ind.
uctively coupled plasma em
Precise quantification was carried out using an Ission Spectrometer. The results are shown in Tables 2 and 3. Both the platinum magnet and the 26%Cr-1%Mo corrosion-resistant stainless steel plate applied to the root plate were used alone, and the two were magnetically attracted to each other. Also, the amount of eluted ions was 2μg
/cm"/72Hr. For reference, Table 4 shows the amount of ions eluted in the corrosive solution of Sm-Co rare earth magnets from known literature. It can be seen that the amount is extremely large. (See the margin below) Table 2 Amount of ions eluted into the corrosive solution (unit: μg/am"/lr) (Corrosion conditions: immersion for 72 hours at a temperature of 37±2°C) (Note) 1) The platinum magnet composition used in the test was 39°l atomic %pt-o. 5 atomic% Nb-Fe (Note 2) < is below the lower limit of quantitation for analysis (Note 3) The composition of the artificial saliva is GREENWOOD liquid, containing 22.4 g of KCl and Ca in 1,000 mg of distilled water.
3(PO4) 2 0.6g, zsO40.9g,
Dissolve 41.4 g of KzHP, 40.8 g of Na5PO, and 5.0 g of albumin, and add CO2 to the liquid during use.
Adjust the pH to 6 or 7 by blowing gas (Note 4) The surface of the test piece was wet polished with No. 800, washed with water, ultrasonically cleaned in acetone, and dried (see margin below) Table 3 Amount of ions eluted during magnetic attraction (Unit: p m+/c+m"/72Hr) (Corrosion conditions: 72Hr immersion at a temperature of 37±2°C) Table 4 Comparative example of elution ion amount (Unit: u+i/cm"/72Hr) Effectiveness of denture fixation based on the present invention In order to support this, a denture was constructed between a 26% Cr-1% MO corrosion-resistant stainless steel plate, which was likened to a root plate, and a platinum magnet, using the method shown in Figure 3, with a size and shape that could be attached inside the denture. We separately confirmed whether the suction force required for fixation using magnetic force could be obtained. The results are shown in Table 5, and it was confirmed that the minimum suction force (100 g or more) required for fixing the denture could be sufficiently secured. Of course, if the size and shape of the magnet are designed to be large within the range allowed for denture fixing use (within 5 mmφ x 5 md), the attractive force will be further increased. (Leaving space below) Table 5 Attraction force measurement results (Note 1) (Note 2) In the open magnetic path measurement, the force required to pull the magnet away from the state where the magnet was directly attracted to the root plate was measured. The magnetic lines of force on the top surface of the magnet are not used for attraction and are scattered outside, resulting in low attraction efficiency. In the closed magnetic circuit measurement, as shown in Fig. 1, both end faces of the magnet l in the thickness direction were made of 26%Cr-1%MO corrosion-resistant stainless steel yoke 9 (1,51IIITX 4), which is the same material as the root plate.
The force required to separate the yoke 9 from the state in which it is sandwiched between the base plate 5 (mmWX 5+amL) and adhered between them with resin and sucked onto the root plate 5 via the yoke 9 is measured. (Note 3) Comparative examples C and D are Ron Highton et al.
al;The Journal of Pro
sthetic dentistry. Vol, 56. No, 1. p104 (1986)
The data was cited. [Effects of the Invention] The alloy according to the present invention is extremely preferable for use in fixing dentures from the viewpoint of magnetic performance and corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例における閉磁路測定に供した試片
の図であり、 第2図は磁石を使用した従来の義歯固定法の説明図であ
り、 第3図は、本発明の適正な磁力を測定する装置の一態様
である。
Fig. 1 is a diagram of a specimen used for closed magnetic circuit measurement in an embodiment of the present invention, Fig. 2 is an explanatory diagram of a conventional denture fixation method using a magnet, and Fig. 3 is a diagram showing an appropriate method of the present invention. This is one embodiment of a device that measures magnetic force.

Claims (2)

【特許請求の範囲】[Claims] 1.白金を33〜47原子%含み、残部が鉄と不可避的
不純物よりなる磁石からなることを特徴とする義歯固定
用磁石。
1. A magnet for fixing dentures, comprising a magnet containing 33 to 47 atomic percent of platinum, with the balance being iron and unavoidable impurities.
2.白金を33〜47原子%と、Ti,Mo,Nb,T
a,W,Cr,V等のうち一種類または二種以上を0.
1〜10原子%含み、残部が鉄と不可避的不純物よりな
る磁石からなる義歯固定用磁石。
2. 33 to 47 at% of platinum, Ti, Mo, Nb, T
One or more of a, W, Cr, V, etc. is added to 0.
A magnet for fixing dentures comprising a magnet containing 1 to 10 atomic %, the balance being iron and unavoidable impurities.
JP2213736A 1989-09-04 1990-08-14 Artificial tooth fixing magnet Pending JPH03179709A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE4027681A DE4027681C2 (en) 1989-09-04 1990-08-31 Fastening device for at least one artificial tooth
US07/575,743 US5161972A (en) 1989-09-04 1990-08-31 Method and magnetic device for fixing a denture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-227507 1989-09-04
JP22750789 1989-09-04

Publications (1)

Publication Number Publication Date
JPH03179709A true JPH03179709A (en) 1991-08-05

Family

ID=16861982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213736A Pending JPH03179709A (en) 1989-09-04 1990-08-14 Artificial tooth fixing magnet

Country Status (1)

Country Link
JP (1) JPH03179709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564645A (en) * 1991-09-06 1993-03-19 Nikko Kyodo Co Ltd Magnetic force attraction apparatus for medical apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144189A (en) * 1976-05-26 1977-12-01 Hideki Sasaki Denture base stabilizer
JPS57178305A (en) * 1981-04-27 1982-11-02 Res Inst Electric Magnetic Alloys Extra-high coercive force permanent magnet with maximum energy product and manufacture therefor
JPS58130253A (en) * 1982-01-28 1983-08-03 Res Inst Electric Magnetic Alloys Superhigh coercivity permanent magnet having large maximum energy product and its preparation
JPS63272007A (en) * 1987-04-30 1988-11-09 Res Inst Electric Magnetic Alloys Ultra-high coercive force permanent magnet exhibiting maximum energy product and manufacture thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144189A (en) * 1976-05-26 1977-12-01 Hideki Sasaki Denture base stabilizer
JPS57178305A (en) * 1981-04-27 1982-11-02 Res Inst Electric Magnetic Alloys Extra-high coercive force permanent magnet with maximum energy product and manufacture therefor
JPS58130253A (en) * 1982-01-28 1983-08-03 Res Inst Electric Magnetic Alloys Superhigh coercivity permanent magnet having large maximum energy product and its preparation
JPS63272007A (en) * 1987-04-30 1988-11-09 Res Inst Electric Magnetic Alloys Ultra-high coercive force permanent magnet exhibiting maximum energy product and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0564645A (en) * 1991-09-06 1993-03-19 Nikko Kyodo Co Ltd Magnetic force attraction apparatus for medical apparatus

Similar Documents

Publication Publication Date Title
Riley et al. Magnets in prosthetic dentistry
WO1996002206A1 (en) Artificial tooth stabilizing permanent magnet structure, artificial tooth stabilizing keeper, and artificial tooth stabilizing magnetic attachment
KITSUGI et al. The corrosion behavior of Nd2Fe14B and SmCo5 magnets
Hai et al. Corrosion resistance of a magnetic stainless steel ion‐plated with titanium nitride
JPH01303145A (en) Artificial tooth attachment
JPH03179709A (en) Artificial tooth fixing magnet
Laird et al. The use of magnetic forces in prosthetic dentistry
Haoka et al. Corrosion resistance of the Pt-Fe-Nb magnets for dental-casting
Kinouchi et al. Pd-Co dental casting ferromagnetic alloys
Wu et al. Corrosion behaviours of the dental magnetic keeper complexes made by different alloys and methods
JP2908637B2 (en) Surface treatment method for Fe-BR-based sintered magnet
Nakamura et al. Galvanic corrosion of ferritic stainless steels used for dental magnetic attachments in contact with an iron-platinum magnet
Okuno et al. Corrosion resistance and biocompatibility of a dental magnetic attachment
JP3031404B2 (en) Surface treatment method for stainless steel for high purity alcohol
Hu et al. Influence of four heat treatments on the corrosion resistance of magnetic attachment keepers
JP2617113B2 (en) Rare earth permanent magnet excellent in corrosion resistance and method for producing the same
JP3287531B2 (en) Magnetic attachment for fixing a denture and method of manufacturing the same
Kusumadewi et al. The effect of acid solution on dental magnetic attachment
JP2633401B2 (en) Magnetic attraction equipment for medical equipment
JP3003920B2 (en) Dental magnetic attraction device
JPH0564645A (en) Magnetic force attraction apparatus for medical apparatus
JP3543591B2 (en) Root device for denture attachment and method of manufacturing the same
JPH0499302A (en) Soft magnetic thin film and its manufacture
JPH04235289A (en) High corrosion resistant and high saturation magnetic flux density material
JPH10277062A (en) Dental magnetic attachment and its manufacture