JPH03178227A - Echo canceller - Google Patents

Echo canceller

Info

Publication number
JPH03178227A
JPH03178227A JP31736389A JP31736389A JPH03178227A JP H03178227 A JPH03178227 A JP H03178227A JP 31736389 A JP31736389 A JP 31736389A JP 31736389 A JP31736389 A JP 31736389A JP H03178227 A JPH03178227 A JP H03178227A
Authority
JP
Japan
Prior art keywords
correlation
signal
tap
echo
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31736389A
Other languages
Japanese (ja)
Inventor
Kaoru Nakajo
薫 中条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP31736389A priority Critical patent/JPH03178227A/en
Publication of JPH03178227A publication Critical patent/JPH03178227A/en
Priority to US07/974,664 priority patent/US5305309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To attain self-restoration even when an echo canceller is diverged by cleaning a tap storage section and a tap coefficient storage section when conditions of a reception side input signal power and a transmission side output signal power being nearly the same and no correlation between the transmission side input signal and the transmission side output signal are satisfied simultaneously. CONSTITUTION:The canceller is provided with a pseudo echo generating section 12 receiving the output of a tap storage section 10 and a tap coefficient storage section 11, revising the tap coefficient and generating a pseudo echo, an arithmetic section 13 subtracting an output of the pseudo echo generating section 12 from the transmission side input signal and applying echo cancellation, a correlation calculation section 14 taking the correlation between the transmission side input signal and the transmission side output signal and a signal power calculation section 15 receiving the transmission side output signal and the reception side input signal and calculating the signal power. Then the tap storage section 10 and the tap coefficient storage section 11 are cleared when there is no correlation between the outputs of the correlation calculation section 14 and the signal power calculation section 15 and the power of the transmission side output signal and the power of the reception side input signal are almost identical. Thus, self-restoration is attained even when the echo canceller is diverged.

Description

【発明の詳細な説明】 [概要] 電話回線におけるエコーキャンセラに関し、エコーキャ
ンセラが発散しても自己復帰できるようにすることを目
的とし、 アダプティブフィルタのタップを格納するタップ格納部
と、アダプティブフィルタのタップ係数を格納するタッ
プ係数格納部と、これらタップ格納部及びタップ係数格
納部の出力を受けてタップ係数を更新して擬似エコーを
発生する擬似エコ発生部と、送信側入力信号から擬似エ
コー発生部の出力を減算してエコーキャンセルを行う演
算部と、送信側入力信号と送信側出力信号との相関をと
る相互相関算出部と、送信側出力信号と受信側入力信号
を受けて信号電力を算出する信号電力算山部と、これら
相互相関算出部と信号型ツノ算出部の出力を受け、相互
相関がなく、かつ送信側出力信号と受信側入力信号の電
力がほぼ等しい場合に、前記タップ格納部及びタップ係
数格納部をクリアする判定部とにより構成される。
[Detailed Description of the Invention] [Summary] Regarding an echo canceller in a telephone line, the purpose is to enable self-recovery even if the echo canceller diverges. a tap coefficient storage section that stores tap coefficients; a pseudo echo generation section that receives the outputs of the tap storage section and the tap coefficient storage section and updates the tap coefficients to generate a pseudo echo; and a pseudo echo generation section that generates a pseudo echo from a transmitting side input signal. an arithmetic unit that performs echo cancellation by subtracting the output of the transmitter, a cross-correlation calculation unit that calculates the correlation between the transmitting side input signal and the transmitting side output signal, and a cross correlation calculation unit that receives the transmitting side output signal and the receiving side input signal and calculates the signal power. The outputs of the signal power calculator, the cross-correlation calculator, and the signal type horn calculator are received, and when there is no cross-correlation and the power of the transmitting side output signal and the receiving side input signal are almost equal, It is composed of a storage section and a determination section that clears the tap coefficient storage section.

[産業上の利用分野] 本発明は電話回線におけるエコーキャンセラに関する。[Industrial application field] The present invention relates to an echo canceller in a telephone line.

エコーキャンセラ(E C)は、衛生通信回線を含む長
距離回線で生じるエコーによる通話品質の劣化を防止す
るものである。現在では、エコーキャンセラ技術は、鳴
音余裕度の改善という目的で、着信転送サービス用双方
向中継器、電話会議用中継器及び遠隔音声会議ンステム
等へも適用されており、今後ますます適用領域が広がっ
ていくものと考えられる。
An echo canceller (EC) prevents deterioration in speech quality due to echoes occurring on long-distance lines, including satellite communication lines. Currently, echo canceller technology is being applied to two-way repeaters for call forwarding services, repeaters for telephone conferences, remote audio conferencing systems, etc. for the purpose of improving the sound margin, and its application areas will increase in the future. It is thought that this will continue to spread.

[従来の技術] 第6図はエコー現象の説明図である。図において、1,
2は加入者で例えば電話機である。加入者1,2間を長
距離回線で接続する場合を考える。
[Prior Art] FIG. 6 is an explanatory diagram of the echo phenomenon. In the figure, 1,
2 is a subscriber, for example a telephone. Consider the case where subscribers 1 and 2 are connected via a long-distance line.

一般に、長距離回線では、両端の加入者回線3゜4は2
本の線路で信号の送受を行う2線式回線で、これらを結
ぶ伝送路5は、送受別々の線路を用いる4線式回線で構
成される。2線式と4線式の変換には、ハイブリッドト
ランス6.7が用いられるが、接続点におけるインピー
ダンスの不整合により受信側入力信号の一部が送信側に
洩れてしまう。これを一般にエコーという。
Generally, in long-distance lines, the subscriber lines 3 and 4 at both ends are 2
This is a two-wire line that sends and receives signals using a main line, and the transmission line 5 that connects these lines is a four-wire line that uses separate lines for sending and receiving signals. A hybrid transformer 6.7 is used to convert between the two-wire system and the four-wire system, but a portion of the input signal on the receiving side leaks to the transmitting side due to impedance mismatch at the connection point. This is generally called an echo.

国内通話では、音声信号の伝搬時間が短く、送信信号と
相手側の接続点を経由して戻ってくるエコーとの時間的
ずれが最大でも50m5と少ないため、話者には側音と
して聞こえ、通話の妨害にならない。一方、衛星回線等
を使用する国際回線では、通話者間の往復信号伝搬時間
が300 m s以上になる場合もあり、通話者は遅延
を伴った自分の声のエコーを聞きながら話すことになり
、話しづらく、通話がスムーズに進まなくなる。
In domestic calls, the propagation time of the voice signal is short, and the time difference between the transmitted signal and the echo that returns via the connection point on the other party's side is small, at most 50m5, so the speaker hears it as sidetone. Does not interfere with calls. On the other hand, on international lines that use satellite lines, etc., the round-trip signal propagation time between callers can be over 300 ms, and callers end up speaking while hearing echoes of their own voices with a delay. , it becomes difficult to speak and calls do not go smoothly.

このようなエコーを抑圧するために、エコーキャンセラ
が開発された。第7図はエコーキャンセラの原理図であ
る。第6図と同一のものは同一の符号を付して示す。図
において、8.9がエコーキャンセラで、エコー経路の
特性を推定し、擬似エコー信号を出力する擬似エコー発
生部8a、9aと実際のエコー信号から擬似エコー信号
(エコーレプリカという)を差し引く廣算部8b、9b
から構成されている。
Echo cancellers were developed to suppress such echoes. FIG. 7 is a diagram showing the principle of an echo canceller. Components that are the same as those in FIG. 6 are designated by the same reference numerals. In the figure, reference numeral 8.9 is an echo canceller, which includes pseudo echo generators 8a and 9a that estimate the characteristics of the echo path and output pseudo echo signals, and a subtracter that subtracts the pseudo echo signal (called an echo replica) from the actual echo signal. Parts 8b, 9b
It consists of

擬似エコー発生部8a、9aでは、トランスバーサルフ
ィルタを用いてエコー経路のインパルス応答を推定する
が、インパルス応答の変化に対応するため、通常フィル
タの係数は受信信号を用いて適応的に変化させる構成を
とっている。フィルタの適応アルゴリズムとしては、一
般にハードウェア構成が簡単で、比較的特性のよい学習
同定法を用いることが多く、残留エコーの二乗値を0に
近づけるよう逐次更新するようになっている。
The pseudo-echo generators 8a and 9a estimate the impulse response of the echo path using a transversal filter, but in order to cope with changes in the impulse response, the coefficients of the normal filter are configured to be adaptively changed using the received signal. is taking. As an adaptive algorithm for a filter, a learning identification method that generally has a simple hardware configuration and relatively good characteristics is often used, and is successively updated so that the square value of the residual echo approaches zero.

[発明か解決しようとする課題] しかしながら、学習同定法若しくはそれに類した適応ア
ルゴリズムを用いた場合、FM変調による低ビツトレー
トモデム信号や単一周波数信号等の狭帯域信号が人力さ
れた場合、推定インパルス応答(フィルタのタップ係数
)の値が大きくなりハードウェアの構成上窓めたビット
の制限を越えるといった発散現象を示すことがある。ま
た、実回線にエコーキャンセラを適用した際には、回線
が接続されており、エコー経路が存在する場合だけでな
く、回線が切換わってエコー経路が存在しなくなる場合
等、エコーキャンセラが常時インパルス応答の推定を正
しく行える状態にあるとは限らない。
[Problem to be solved by the invention] However, when using a learning identification method or a similar adaptive algorithm, when a narrowband signal such as a low bit rate modem signal by FM modulation or a single frequency signal is manually generated, the estimation A divergence phenomenon may occur in which the value of the impulse response (filter tap coefficient) becomes large and exceeds the windowed bit limit due to the hardware configuration. In addition, when an echo canceller is applied to an actual line, the echo canceller is always activated not only when the line is connected and an echo path exists, but also when the line is switched and the echo path no longer exists. It is not always possible to estimate the response correctly.

そのような場合に対応するため、通常は、エコーキャン
セラは内部に状況を判断し、常に安定な動作を行うため
の制御機能を備えている。しかしながら、これらの制御
機能は必ずしも全ての状況に対応可能とはいえず、何ら
かの理由でインパルス応答の推定ができない状態で長時
間適応動作を続けると、演算誤差が徐々に累積され、発
散現象に陥ることもある。
To cope with such cases, echo cancellers usually have internal control functions to judge the situation and always operate stably. However, these control functions are not necessarily applicable to all situations, and if adaptive operation continues for a long time without being able to estimate the impulse response for some reason, calculation errors will gradually accumulate, leading to a divergence phenomenon. Sometimes.

エコーキャンセラは第7図に示すように2つのエコーキ
ャンセラ間て閉ループを形成するため、−旦係数が発散
した後では、正常な動作に復帰することは非常に難しい
といえる。従って、従来は上記のように何らかの理由で
発散現象が生じた場合には、実際に障害となって現れ、
人間の判断によってエコーキャンセラをリセットする以
外に方法がなかった。
Since the echo canceller forms a closed loop between the two echo cancellers as shown in FIG. 7, it is extremely difficult to return to normal operation once the coefficient has diverged. Therefore, in the past, when the divergence phenomenon occurred for some reason as mentioned above, it actually appeared as an obstacle.
There was no other option than to reset the echo canceller using human judgment.

本発明はこのような課題に鑑みてなされたものであって
、発散しても自己復帰できるエコーキャンセラを提供す
ることを目的としている。
The present invention has been made in view of such problems, and an object of the present invention is to provide an echo canceller that can self-recover even if it diverges.

[課題を解決するための手段] 第1図は本発明の原理ブロック図である。第7図と同一
のものは、同一の符号を付して示す。図において、10
はアダプティブフィルタのタップを格納するタップ格納
部、11はアダプティブフィルタのタップ係数を格納す
るタップ係数格納部、12はこれらタップ格納部1〇−
及びタップ係数格納部11の出力を受けてタップ係数を
更新して擬似エコーを発生する擬似エコー発生部、13
は送信側入力信号から擬似エコー発生部12の出力を減
算してエコーキャンセルを行う演算部、14は送信側入
力信号と送信側出力信号との相関をとる相互相関算出部
、15は送信側出力信号と受信側入力信号を受けて信号
電力を算出する信号電力算出部、16はこれら相互相関
算出部14と信号電力算出部15の出力を受け、相互相
関がなく、かつ送信側出力信号と受信側入力信号の電力
がほぼ等しい場合に、前記タップ格納部lO及びタップ
係数格納部11をクリアする判定部である。
[Means for Solving the Problems] FIG. 1 is a block diagram of the principle of the present invention. Components that are the same as those in FIG. 7 are designated by the same reference numerals. In the figure, 10
11 is a tap storage unit that stores taps of the adaptive filter; 11 is a tap coefficient storage unit that stores tap coefficients of the adaptive filter; 12 is a tap storage unit 10-
and a pseudo echo generating section 13 that receives the output of the tap coefficient storage section 11, updates the tap coefficients, and generates a pseudo echo.
14 is a calculation unit that performs echo cancellation by subtracting the output of the pseudo echo generation unit 12 from the transmission side input signal, 14 is a cross-correlation calculation unit that calculates the correlation between the transmission side input signal and the transmission side output signal, and 15 is the transmission side output A signal power calculation unit 16 receives the outputs of the cross-correlation calculation unit 14 and the signal power calculation unit 15, and calculates the signal power by receiving the signal and the receiving side input signal. This is a determination unit that clears the tap storage unit 10 and the tap coefficient storage unit 11 when the powers of the side input signals are approximately equal.

以上、回線の一方のエコーキャンセラの構成について示
したが、他方のエコーキャンセラの構成についても同様
である。
Although the configuration of the echo canceller on one side of the line has been described above, the configuration of the echo canceller on the other side is also the same.

[作用] フィルタのタップ係数が発散している状態では、対にな
るエコーキャンセラで作られる閉ループ内では発散した
係数によって発生される信号が伝送されるため、受信側
入力信号電力と送信側出力信号電力とがほぼ等しくなる
。片方向通話時には、どちらが話者になっても受信側入
力信号電力及び送信側出力信号電力が等しくなることは
ないが、双方向同時通話(ダブルトーク)時を考えると
、たまたま両方の話者が同レベルで話をした場合、それ
ぞれの信号電力がほぼ等しくなることも生じる。そのた
め、更に送信側入力信号と送信側出力信号との相互相関
をもとめ、相関の度合いによって発散時とダブルトーク
時の識別をする。
[Operation] When the tap coefficients of the filter diverge, the signal generated by the divergent coefficients is transmitted in the closed loop created by the paired echo canceller, so the input signal power on the receiving side and the output signal on the transmitting side are The electric power becomes almost equal. During a one-way call, the input signal power on the receiving side and the output signal power on the transmitting side are not equal no matter who is talking, but when considering a simultaneous two-way call (double talk), it happens that both speakers When speaking at the same level, the signal power of each signal may become approximately equal. Therefore, the cross-correlation between the transmitter input signal and the transmitter output signal is further determined, and divergence and double talk are distinguished based on the degree of correlation.

相互相関算出部14は送信側入力信号(演算部13の入
力)と送信側出力信号(演算部13の出力)との相関を
とる。発散状態では、前述したように送信側入力信号と
送信側出力信号の電力がほぼ等しくなる。一方、ダブル
トーク状態でも同じように送信側入力信号と送信側出力
信号の電力がほぼ等しくなるがこの場合は発散状態では
ない。
The cross-correlation calculating section 14 calculates the correlation between the transmitting side input signal (input of the calculating section 13) and the transmitting side output signal (output of the calculating section 13). In the divergent state, as described above, the power of the transmitting side input signal and the transmitting side output signal are approximately equal. On the other hand, in the double talk state, the power of the transmitting side input signal and the transmitting side output signal are almost equal, but in this case, it is not a divergent state.

そこで、発散状態とダブルトーク状態とを識別するため
に送信側入力信号と送信側出力信号との相関をとる。
Therefore, in order to distinguish between the divergent state and the double talk state, the correlation between the transmitting side input signal and the transmitting side output signal is taken.

ダブルトーク状態では、同一話者の話声がベースとなっ
てエコー信号及び残留エコー信号が加算されるので、両
者の間に強い相関が現れるため、入力と出力との間に必
ず相関がある。これに対し、発散時には人力と出力との
間には相関はない。そこで、このような点に鑑みて相互
相関算出部14で送信側入力信号と送信側出ツノ信号と
の相関をとるようにしたものである。
In a double talk state, since the echo signal and the residual echo signal are added based on the speech of the same speaker, a strong correlation appears between the two, so there is always a correlation between the input and the output. On the other hand, during divergence, there is no correlation between human power and output. Therefore, in view of this point, the cross-correlation calculating section 14 calculates the correlation between the transmitting side input signal and the transmitting side output horn signal.

また、信号電力算出部15は受信側入力信号と送信側出
力信号の信号電力を算出する。エコーキャンセラが発散
している場合には受信側入力信号と送信側出力信号の電
力はほぼ等しくなる。一方、ダブルトークの場合も受信
側入力信号と送信側出力信号の電力はほぼ等しくなる。
Further, the signal power calculation unit 15 calculates the signal power of the receiving side input signal and the transmitting side output signal. When the echo canceller is diverging, the power of the input signal on the receiving side and the output signal on the transmitting side are approximately equal. On the other hand, in the case of double talk as well, the power of the input signal on the receiving side and the output signal on the transmitting side are approximately equal.

判定部16は、相互相関算出部14と信号電力算出部1
5の出力を受けて、「受信側入力信号電力及び送信側出
力信号電力がほぼ同じであり、かつ送信側入力信号と送
信側出力信号の相関がほとんどない」という2つの条件
が同時に満たされた場合に、タップ格納部10及びタッ
プ係数格納部11をクリアする。
The determination unit 16 includes the cross-correlation calculation unit 14 and the signal power calculation unit 1
In response to the output of step 5, the following two conditions were simultaneously met: "The input signal power on the receiving side and the output signal power on the transmitting side are almost the same, and there is almost no correlation between the input signal on the transmitting side and the output signal on the transmitting side." In this case, the tap storage section 10 and the tap coefficient storage section 11 are cleared.

これにより、エコーキャンセラが発散した場合ても自己
復帰することができる。
Thereby, even if the echo canceller diverges, it can self-recover.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第2図は相互相関算出部14を示す図である。FIG. 2 is a diagram showing the cross-correlation calculation section 14.

2つの入力信号x、yが人力すると、次式で示されるよ
うな相関演算を行って、相互相関係数Rを算出する。
When two input signals x and y are manually input, a correlation calculation as shown in the following equation is performed to calculate a cross-correlation coefficient R.

R−E[xy]X 1/ (E [x2]  ・E [y2])”’ここで
、X■x、〜−Xn−1 y騨yn  ””’ Y n−M とすると、 E [x yl −(1/M)ΣXn−1ynE [x
2] = (1/M)ΣX++−+2E [y2] −
(1/M)Σyn−+2である。入力x、y(ここでは
x、yとしては送信側入力信号を例えばX、送信側出力
信号を例えばyとする。この逆でもよい)間に相関があ
る時には、相関係数Rは大きくなり、相関がない時には
相関係数Rは小さくなる。
R-E[xy]X 1/ (E [x2] ・E [y2])"'Here, if X yl −(1/M)ΣXn−1ynE [x
2] = (1/M)ΣX++−+2E [y2] −
(1/M)Σyn-+2. When there is a correlation between the inputs x and y (here, x and y are the input signals on the transmitting side, for example, X, and the output signals on the transmitting side, for example, y. The reverse is also possible), the correlation coefficient R becomes large, When there is no correlation, the correlation coefficient R becomes small.

第3図は信号電力算出部15を示す図である。FIG. 3 is a diagram showing the signal power calculation section 15.

入力信号xi(ここでは、xiとして受信側入力信号及
び送信側出力信号が用いられる)は信号電力算出部15
に入り、該信号電力算出部15は次式で信号電力Pを求
める。
The input signal xi (here, a receiving side input signal and a transmitting side output signal are used as xi) is input to the signal power calculation unit 15.
The signal power calculation unit 15 calculates the signal power P using the following equation.

第4図は判定部16の構成例を示すブロック図である。FIG. 4 is a block diagram showing an example of the configuration of the determination section 16.

図において、20は相互相関係数Rを受けて相互相関係
数閾値ThRと比較し、RくTh8の時に“1”を出力
する相互相関判定部、21は信号電力Pを受けて信号電
力閾値Thpと比較し、P>Th、の時に“1“を出力
する信号電力判定部、22はこれら相互相関判定部20
及び信号電力判定部21の出力をうける2人力のアンド
ゲートである。
In the figure, 20 receives the cross-correlation coefficient R, compares it with the cross-correlation coefficient threshold ThR, and outputs "1" when R is Th8, and 21 receives the signal power P and compares it with the cross-correlation coefficient threshold ThR. 22 is a cross-correlation determining unit 20 that compares Thp and outputs “1” when P>Th.
This is a two-person AND gate that receives the outputs of the signal power determining section 21 and the signal power determining section 21.

相互相関判定部20は相互相関係数Rが閾値ThRより
も小さい時には“1″を出力する。一方、信号電力判定
部21は受信側入力信号電力及び送信側出力信号電力の
いずれもが閾値ThRよりも大きい時に1″を出力する
。アンドゲート22は両方の入力が“1”の時だけ“1
”を出力する。
The cross-correlation determining unit 20 outputs "1" when the cross-correlation coefficient R is smaller than the threshold ThR. On the other hand, the signal power determination unit 21 outputs 1" when both the receiving side input signal power and the transmitting side output signal power are greater than the threshold ThR.The AND gate 22 outputs "1" only when both inputs are "1". 1
” is output.

アンドゲート22の出力が“1″の時は、前述した「受
信側入力信号電力及び送信側出力信号電力がほぼ同じで
あり、かつ送信側入力信号と送信側出力信号の相関がほ
とんどない」状態、っまりエコーキャンセラが発散して
いる状態である。
When the output of the AND gate 22 is "1", the above-mentioned "input signal power on the receiving side and output signal power on the transmitting side are almost the same, and there is almost no correlation between the input signal on the transmitting side and the output signal on the transmitting side". , the echo canceller is in a state of divergence.

第5図はタップ及びタップ係数クリア回路の一実施例を
示すブロック図である。第1図で示したタップ格納部1
0及びタップ係数格納部11を詳細に示したものである
。実際にはタップ及びタップ係数はタップ及びタップ係
数格納メモリ30に格納されている。タップ及びタップ
係数格納メモリ30としては、例えばRAMが用いられ
ている。
FIG. 5 is a block diagram showing one embodiment of a tap and tap coefficient clearing circuit. Tap storage section 1 shown in Fig. 1
0 and tap coefficient storage section 11 in detail. Actually, the taps and tap coefficients are stored in the tap and tap coefficient storage memory 30. As the tap and tap coefficient storage memory 30, for example, a RAM is used.

R/W制御回路31は、メモリ30にチップイネーブル
信号CEを与えると共に、メモリ30のリード(R)、
ライト(W)を制御し、アドレスカウンタ32の動作も
制御する。
The R/W control circuit 31 provides a chip enable signal CE to the memory 30, and also controls read (R) of the memory 30,
It controls write (W) and also controls the operation of the address counter 32.

通常は、アドレスカウンタ32は1ずつ更新され、リー
ドライト信号R/Wに応じて、対応した番地にタップ、
及びタップ係数を格納し、或いは格納されているタップ
及びタップ係数データを読出す。ここで、若し判定部1
6(第1図参照)からエコーキャンセラの発散状態を示
す信号″l″が来たら、R/W制御回路31はアドレス
カウンタ32を初期値にクリアし、当該アドレスにより
アクセスされるメモリ30の番地にデータ“0”が入っ
ているレジスタ33から“0″データを書込む。これに
より、メモリ30に格納されているタップ及びタップ係
数は全て“0”にクリアされることになり、この結果、
アダプティブフィルタの誤動作によるエコーキャンセラ
の発散は解消され、正常状態に自己復帰することになる
Normally, the address counter 32 is updated by 1, and the corresponding address is tapped in response to the read/write signal R/W.
and tap coefficients, or read stored taps and tap coefficient data. Here, if the determination unit 1
6 (see FIG. 1), the R/W control circuit 31 clears the address counter 32 to the initial value, and clears the address of the memory 30 accessed by the address. Write "0" data from the register 33 that contains data "0". As a result, all the taps and tap coefficients stored in the memory 30 are cleared to "0", and as a result,
The echo canceller's divergence due to the malfunction of the adaptive filter is eliminated, and the echo canceller automatically returns to its normal state.

[発明の効果コ 以上、詳細に説明したように、本発明によれば相互相関
算出部と信号電力算出部を設けることにより、「受信側
入力信号電力及び送信側出力信号電力がほぼ同じであり
、かつ送信側入力信号と送信側出力信号の相関がほとん
どない」という2つの条件が同時に満たされた場合に、
タップ格納部10及びタップ係数格納部11をクリアす
ることにより、エコーキャンセラが発散した場合でも自
己復帰することができる。
[Effects of the Invention] As explained in detail above, according to the present invention, by providing the cross-correlation calculating section and the signal power calculating section, it is possible to realize that the input signal power on the receiving side and the output signal power on the transmitting side are almost the same. , and there is almost no correlation between the transmitting side input signal and the transmitting side output signal.'' When the following two conditions are simultaneously satisfied:
By clearing the tap storage section 10 and the tap coefficient storage section 11, even if the echo canceller diverges, it can self-recover.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理ブロック図、 第2図は相互相関算出部を示す図、 第3図は信号電力算出部を示す図、 第4図は判定部の構成例を示すブロック図、第5図はタ
ップ及びタップ係数クリア回路の一実施例を示すブロッ
ク図、 第6図はエコー現象の説明図、 第7図はエコーキャンセラの原理図である。 第1図において、 1は電話機、 6はハイブリッドトランス、 10はタップ格納部、 1はタップ係数格納部、 2は擬似エコー発生部、 3は演算部、 4は相互相関算出部、 5は信号電力算出部である。
FIG. 1 is a block diagram of the principle of the present invention; FIG. 2 is a diagram showing a cross-correlation calculating section; FIG. 3 is a diagram showing a signal power calculating section; FIG. 4 is a block diagram showing an example of the configuration of the determining section; FIG. 5 is a block diagram showing an embodiment of a tap and tap coefficient clearing circuit, FIG. 6 is an explanatory diagram of an echo phenomenon, and FIG. 7 is a diagram of the principle of an echo canceller. In FIG. 1, 1 is a telephone, 6 is a hybrid transformer, 10 is a tap storage section, 1 is a tap coefficient storage section, 2 is a pseudo echo generation section, 3 is an arithmetic section, 4 is a cross-correlation calculation section, and 5 is a signal power This is the calculation part.

Claims (1)

【特許請求の範囲】 アダプティブフィルタのタップを格納するタップ格納部
(10)と、 アダプティブフィルタのタップ係数を格納するタップ係
数格納部(11)と、 これらタップ格納部(10)及びタップ係数格納部(1
1)の出力を受けてタップ係数を更新して擬似エコーを
発生する擬似エコー発生部(12)と、 送信側入力信号から擬似エコー発生部(12)の出力を
減算してエコーキャンセルを行う演算部(13)と、 送信側入力信号と送信側出力信号との相関をとる相互相
関算出部(14)と、 送信側出力信号と受信側入力信号を受けて信号電力を算
出する信号電力算出部(15)と、これら相互相関算出
部(14)と信号電力算出部(15)の出力を受け、相
互相関がなく、かつ送信側出力信号と受信側入力信号の
電力がほぼ等しい場合に、前記タップ格納部(10)及
びタップ係数格納部(11)をクリアする判定部(16
)とにより構成されたエコーキャンセラ。
[Claims] A tap storage section (10) that stores taps of an adaptive filter, a tap coefficient storage section (11) that stores tap coefficients of an adaptive filter, and these tap storage section (10) and tap coefficient storage section. (1
A pseudo-echo generation section (12) that receives the output of 1) and updates the tap coefficients to generate a pseudo-echo, and an operation that performs echo cancellation by subtracting the output of the pseudo-echo generation section (12) from the transmitting side input signal. a cross-correlation calculation unit (14) that calculates the correlation between the transmission side input signal and the transmission side output signal, and a signal power calculation unit that receives the transmission side output signal and the reception side input signal and calculates the signal power. (15) and the outputs of the cross-correlation calculating section (14) and signal power calculating section (15), and when there is no cross-correlation and the power of the transmitting side output signal and the receiving side input signal are almost equal, the above-mentioned a determination unit (16) that clears the tap storage unit (10) and the tap coefficient storage unit (11);
) and an echo canceller.
JP31736389A 1989-12-06 1989-12-06 Echo canceller Pending JPH03178227A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31736389A JPH03178227A (en) 1989-12-06 1989-12-06 Echo canceller
US07/974,664 US5305309A (en) 1989-12-06 1992-11-12 Echo canceller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31736389A JPH03178227A (en) 1989-12-06 1989-12-06 Echo canceller

Publications (1)

Publication Number Publication Date
JPH03178227A true JPH03178227A (en) 1991-08-02

Family

ID=18087408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31736389A Pending JPH03178227A (en) 1989-12-06 1989-12-06 Echo canceller

Country Status (1)

Country Link
JP (1) JPH03178227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033771A (en) * 2003-06-16 2005-02-03 Matsushita Electric Ind Co Ltd Echo canceler, echo canceling method, and recording medium
JP2007274714A (en) * 2007-05-07 2007-10-18 Matsushita Electric Works Ltd Echo canceller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005033771A (en) * 2003-06-16 2005-02-03 Matsushita Electric Ind Co Ltd Echo canceler, echo canceling method, and recording medium
JP2007274714A (en) * 2007-05-07 2007-10-18 Matsushita Electric Works Ltd Echo canceller
JP4600423B2 (en) * 2007-05-07 2010-12-15 パナソニック電工株式会社 Echo canceller

Similar Documents

Publication Publication Date Title
US5305309A (en) Echo canceller
KR100559752B1 (en) Operation method of echo canceller system and echo canceller system
US6961422B2 (en) Gain control method for acoustic echo cancellation and suppression
US5668794A (en) Variable gain echo suppressor
US8750493B2 (en) Method and system for stereo echo cancellation for VoIP communication systems
US5764753A (en) Half-duplex controller
WO1995031052A1 (en) Echo canceler and echo path estimating method
JPH07508866A (en) Methods of fail-safe operation in speakerphone systems
US7366118B2 (en) Echo cancellation
US6108412A (en) Adaptive echo cancelling system for telephony applications
JP3385221B2 (en) Echo canceller
US8121260B2 (en) Method and apparatus for retraining of echo cancellation
JPH03178227A (en) Echo canceller
US6839427B2 (en) Method and apparatus for echo canceller automatic gain control
JP2861888B2 (en) Echo / noise canceller and echo / noise elimination method
JP3220979B2 (en) Voice switch
US7876892B1 (en) Multiple echo cancellation using a fixed filter delay
JP2507652B2 (en) Eco-canceller
JPH07226697A (en) Echo canceler, echo canceling method and transmitter/ receiver having echo canceler
JP3212796B2 (en) Echo canceller
JP3355594B2 (en) Echo canceller device
JPH03171810A (en) Echo canceller
JP3248551B2 (en) Echo canceler
JPH07283859A (en) Echo canceller
JPS6218836A (en) Method and circuit for suppression of howling