JPH03176628A - Stress estimating method by fixation of bending stress direction of tube - Google Patents

Stress estimating method by fixation of bending stress direction of tube

Info

Publication number
JPH03176628A
JPH03176628A JP31417489A JP31417489A JPH03176628A JP H03176628 A JPH03176628 A JP H03176628A JP 31417489 A JP31417489 A JP 31417489A JP 31417489 A JP31417489 A JP 31417489A JP H03176628 A JPH03176628 A JP H03176628A
Authority
JP
Japan
Prior art keywords
stress
bending stress
tube
curve
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31417489A
Other languages
Japanese (ja)
Other versions
JPH0769227B2 (en
Inventor
Yasuo Ogawa
安雄 小川
Shojiro Oka
岡 正治郎
Yuji Matoba
的場 有治
Sadaaki Sakai
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Osaka Gas Co Ltd
Priority to JP31417489A priority Critical patent/JPH0769227B2/en
Publication of JPH03176628A publication Critical patent/JPH03176628A/en
Publication of JPH0769227B2 publication Critical patent/JPH0769227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To estimate a corresponding bending stress value by fixing the direction of bending stress indicated by an SIN approximation curve in the direction of the actual bending stress of a tube material, calculating the SIN approximation curve which approximates measured values obtained by a magnetostriction sensor, and using the signal amplitude values of the SIN approximation curve. CONSTITUTION:When there is an initial magnetic anisotropy distribution in the circum ferential direction of the tube and the SINtheta approximation curve is calculated from measured values, the bending direction is the same at any position between two supporting points of the tube, so the direction of the actual bending stress of the tube is found and the direction of the bending stress is fixed in this direction for approximation. In an example (c), the SINtheta approximation curve is calculated from measured values while the maximum amplitude value of the SINtheta approximation curve is fixed in a 0 deg. direction where maximum tensile stress is generated and in a 180 deg. direction where maximum compressive stress is generated. The full line of the (c) indicates the SINtheta approximation curve. The direction of the bending stress of the SINtheta curve approximated with the measured values matches the direction of the actual bending stress and measurements are taken from a part where the bend ing stress is small to a part where the being stress is large.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば橋台に架管されたパイプラインのよう
な管の応力分布を磁歪センサによりapt定する場合、
管に初期の磁気異方性分布が有っても、この影響を除去
して小さな曲げ応力も推定できる管の曲げ応力方向の固
定による応力推定方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applicable to apt determination of the stress distribution of a pipe such as a pipeline installed on an abutment using a magnetostrictive sensor.
This invention relates to a stress estimation method by fixing the bending stress direction of a tube, which can remove the influence of an initial magnetic anisotropy distribution in the tube and estimate small bending stress.

[従来の技術] パイプラインの橋台架管部のような場所においては、管
の橋台貫通部は固定され不動部となっているため、地盤
性下等により応力が発生した場合、管の貫通部近傍では
大きな曲げ応力が発生し、貫通部から離れるにつれて曲
げ応力は次第に減衰する。管全体のあらゆる場所につい
て曲げ応力分布を求める場合には、曲げ応力の大きいと
ころから小さなところまでをすべて計A11lする必要
がある。
[Prior art] In places such as pipeline abutment piping, the abutment penetration part of the pipe is fixed and immovable, so if stress occurs due to ground conditions, etc., the pipe penetration part A large bending stress occurs in the vicinity, and the bending stress gradually attenuates as you move away from the penetration part. In order to obtain the bending stress distribution for all locations of the entire pipe, it is necessary to calculate the total A11l for all locations, from locations with large bending stresses to locations with small bending stresses.

従来鋼材又は鋼製構造物等の応力及び残留応力を測定す
る方法として、X線や超音波のほかに磁歪センサによる
方法がある。この磁歪センサを用いて磁化可能な丸棒、
パイプ等円柱材料の応力を測定する方法としては先に出
願した特願昭63−153622号公報に示された磁歪
応力測定法がある。
Conventional methods for measuring stress and residual stress in steel materials or steel structures include methods using magnetostrictive sensors in addition to X-rays and ultrasonic waves. A round bar that can be magnetized using this magnetostrictive sensor,
As a method for measuring stress in a cylindrical material such as a pipe, there is a magnetostrictive stress measuring method disclosed in Japanese Patent Application No. 153622/1988, which was previously filed.

磁歪応力測定法は、磁性材料に荷重が作用すると透磁率
に異方性が生じ、荷重方向の透磁率が大きくなり、反対
に荷重方向と直角方向の透磁率が小さくなるので、両送
磁率の差を励磁コイルと検出コイルを持つ磁歪センサ(
磁気異方性センサともいう)によって検出することによ
り、主応力の方向および大きさを測定する方法である。
In the magnetostrictive stress measurement method, when a load is applied to a magnetic material, anisotropy occurs in the magnetic permeability, and the permeability in the direction of the load increases, while the permeability in the direction perpendicular to the load direction decreases. A magnetostrictive sensor with an excitation coil and a detection coil (
This method measures the direction and magnitude of principal stress by detecting it with a magnetic anisotropy sensor (also called a magnetic anisotropy sensor).

この測定方法によると、−点の測定時間が10−100
m5ecですみ、取扱いもきわめて便宜である。
According to this measurement method, the measurement time for the - point is 10-100
It only requires m5ec and is extremely convenient to handle.

ところが、従来の磁歪応力測定法は、一般に磁歪センサ
を被all定面に接触させて行うものであるため、被測
定面の状態によって接触面における磁気抵抗が大きく異
なる。そのため、測定誤差が大きくなるという欠点があ
った。
However, since conventional magnetostrictive stress measurement methods are generally performed by bringing a magnetostrictive sensor into contact with all fixed surfaces, the magnetic resistance at the contact surface varies greatly depending on the state of the surface to be measured. Therefore, there was a drawback that the measurement error became large.

そこで、非接触状態、すなわち磁歪センサを被AP1定
而から一定の距離だけ離した状態で測定するという考え
方が出てくるわけであるが、この場合は磁歪感度が低下
するため、磁歪センサの設定にありきわめて微妙な調整
が必要であるという別の問題があった。
Therefore, the idea of measuring in a non-contact state, that is, with the magnetostrictive sensor a certain distance away from the target AP1, has come up, but in this case, the magnetostrictive sensitivity decreases, so the setting of the magnetostrictive sensor Another problem was that the system required extremely delicate adjustments.

前記先願の発明においては、前記非接触計測における問
題点を解決し、磁化可能な丸棒、パイプ等の円柱材料に
対する磁歪応力測定法を非接触方式で実施できる装置を
開発し、その測定装置を使用して円柱材料の円周方向の
応力分布を従来よりも精度良く測定できる方法を提供し
た。
The invention of the earlier application solves the problems in the non-contact measurement and develops a device that can perform magnetostrictive stress measurement on magnetizable cylindrical materials such as round bars and pipes in a non-contact manner, and provides the measurement device. We have provided a method that can measure the stress distribution in the circumferential direction of a cylindrical material with higher accuracy than before.

第1図は先の出願に係る磁歪応力測定法を説明する図で
あり、同図(a)は円柱材料1に曲げ荷重を加えて、円
柱材料1の上側に引張り応力十σ、下側に圧縮応力−σ
が働いている状態を示す。また同図(b)は円柱材料1
の中心軸に対して垂直に、且つその外周面と一定の距M
hのリフト・オフ(ギャップのこと)を保ちながら、磁
歪センサ2を円柱材料lの最上点即ちOoの角度位置よ
り時計廻り方向に円周方向に沿って1回転させて、磁歪
センサ2が0″〜360°間のそれぞれの角度位置にお
いて検出する磁歪信号を連続的にallj定する方法を
示している。
FIG. 1 is a diagram explaining the magnetostrictive stress measurement method according to the previous application, and FIG. Compressive stress - σ
Indicates the state in which the is working. In addition, the same figure (b) shows the cylindrical material 1.
perpendicular to the central axis of and a constant distance M from the outer peripheral surface of
While maintaining the lift-off (gap) of h, the magnetostrictive sensor 2 is rotated once along the circumferential direction in a clockwise direction from the top point of the cylindrical material l, that is, the angular position Oo, until the magnetostrictive sensor 2 is 0. 3 shows a method for continuously determining magnetostrictive signals detected at each angular position between 360° and 360°.

第2図は第1図の磁歪応力測定法によるSIN近似法を
説明する図であり、同図(a)は磁歪センサ2が円柱材
料1の外周上の方位を示す角度とその応力分布を示し、
角度0″ (即ち円柱材料1の真上)において最大引張
り応力が、角度180@(即ち円柱材料1の真下)にお
いて最大圧縮応力が発生することから、応力分布は51
80曲線に近似して分布する。
FIG. 2 is a diagram for explaining the SIN approximation method using the magnetostrictive stress measurement method shown in FIG. ,
Since the maximum tensile stress occurs at an angle of 0'' (i.e. directly above the cylindrical material 1) and the maximum compressive stress occurs at an angle of 180@ (i.e. directly below the cylindrical material 1), the stress distribution is 51
The distribution approximates the 80 curve.

第2図(b)は−20kg /−の荷重を円柱材料に加
えたときの、歪ゲージによる応力の実測値と31Nθ近
似値とを示している。この図から実際の応力分布と51
80曲線とはかなり近似していることが判る。
FIG. 2(b) shows the actual value of stress measured by the strain gauge and the approximate value of 31Nθ when a load of -20 kg/- is applied to the cylindrical material. From this figure, the actual stress distribution and 51
It can be seen that the curve is quite similar to the 80 curve.

[発明が解決しようとする課題] 上記の特願昭83−153622号公報に示された磁歪
応力測定法によるSINθ近似法により、前記橋台架管
部付近の管曲げ応力を測定すると、曲げ応力の小さい場
所でSINθ近似曲線の振幅値を求める場合に、応力無
負荷時の残留応力による振幅値と曲げ応力による振幅値
とが相乗され、磁歪センサ出力から近似した5180曲
線に示された曲げの方向と実際の管の曲げ軸とが異なる
ため、応力計測値の計測精度が悪くなるという問題点か
あった。
[Problems to be Solved by the Invention] When the pipe bending stress near the abutment pipe section is measured by the SINθ approximation method using the magnetostrictive stress measurement method disclosed in the above-mentioned Japanese Patent Application No. 83-153622, the bending stress When determining the amplitude value of the SINθ approximate curve in a small place, the amplitude value due to residual stress when no stress is loaded and the amplitude value due to bending stress are multiplied, and the bending direction shown in the 5180 curve approximated from the magnetostrictive sensor output is calculated. Since the bending axis of the pipe and the actual bending axis of the pipe were different, there was a problem that the measurement accuracy of the stress measurement value deteriorated.

本発明はかかる問題を解決するためになされたもので、
管材の管周方向に初切の磁気異方性分布が有っても、こ
れに影響されずに管材の実際の曲げ応力の方向に一致す
るようにSIN近似曲線により示される曲げ応力の方向
を固定した、管の曲げ応力方向の固定による応力推定方
法を得ることを目的とする。
The present invention was made to solve such problems,
Even if there is a magnetic anisotropy distribution at the initial cut in the circumferential direction of the pipe material, the direction of the bending stress indicated by the SIN approximate curve is adjusted so as to match the direction of the actual bending stress of the pipe material without being affected by this. The purpose of this study is to obtain a method for estimating stress by fixing the direction of bending stress in a pipe.

〔課題を解決するための手段] この発明に係る管の曲げ応力方向の固定による応力推定
方法は、磁歪センサが管材の外周面上または内周面上を
非接触状態で相対移動する7nJ定装置を用いて、前記
管材の管周方向の曲げ応力分布をSIN曲線で近似して
推定する方法において、前記管材が管周方向に初期の磁
気異方性分布を有する場合に、管材の実際の曲げ応力の
方向に一致するようにSIN近似曲線により示される曲
げ応力の方向を固定して、前記磁歪センサから得られる
計測値を近似するSIN近似曲線を算出し、該算出され
たSIN近似曲線の信号振幅値より対応する曲げ応力値
を推定する管の曲げ応力方向の固定による応力推定手段
を備えたものである。
[Means for Solving the Problem] The stress estimation method by fixing the bending stress direction of a pipe according to the present invention is a 7nJ constant device in which a magnetostrictive sensor moves relatively on the outer peripheral surface or inner peripheral surface of the pipe material in a non-contact state. In the method of estimating the bending stress distribution in the circumferential direction of the pipe material by approximating it with a SIN curve, when the pipe material has an initial magnetic anisotropy distribution in the circumferential direction, A SIN approximate curve that approximates the measurement value obtained from the magnetostrictive sensor is calculated by fixing the direction of bending stress indicated by the SIN approximate curve so as to match the direction of the stress, and a signal of the calculated SIN approximate curve. It is equipped with stress estimating means by fixing the bending stress direction of the pipe, which estimates the corresponding bending stress value from the amplitude value.

[作用] この発明においては、磁歪センサが管材の外周面上また
は内周面上を非接触状態で相対移動する71111定装
置を用いて、前記管材の管周方向の曲げ応力分布をSI
N曲線で近似して推定する方法において、管の曲げ応力
方向の固定による応力推定手段により、前記管材が管周
方向に初期の磁気異方性分布を有する場合に、管材の実
際の曲げ応力の方向に一致するようにSIN近似曲線に
より示されるIHIげ応力の方向を固定して、前記磁歪
センサから得られる計測値を近似するSIN近似曲線を
算出し、該算出されたSIN近似曲線の信号振幅値より
対応する曲げ応力値を推定する。
[Operation] In this invention, a 71111 fixed device in which a magnetostrictive sensor moves relatively on the outer circumferential surface or inner circumferential surface of the tube material in a non-contact state is used to measure the bending stress distribution in the circumferential direction of the tube material using the SI.
In the method of estimation by approximation using an N curve, when the pipe material has an initial magnetic anisotropy distribution in the pipe circumferential direction, the actual bending stress of the pipe material is estimated using a stress estimation means that fixes the bending stress direction of the pipe material. A SIN approximate curve that approximates the measured value obtained from the magnetostrictive sensor is calculated by fixing the direction of the IHI stress indicated by the SIN approximate curve so as to match the direction, and calculating the signal amplitude of the calculated SIN approximate curve. Estimate the corresponding bending stress value from the value.

[実施例] 第3図は本発明の管の曲げ応力方向の固定による応力推
定方法を適用する管の応力測定装置のブロック図である
。図において(0は走行装置部であり、磁気異方性セン
サ11及び走行台車12を内蔵する。磁気異方性センサ
11は非接触により管材の円周方向の磁気異方性を検出
するためのセンサであり、例えば直交する励磁コイルと
検出コイルとを備え、励磁コイルに一定の励振電流を流
して、応力の作用によって生じる磁気異方性を検出コイ
ルから得られる電圧信号として検出するものである。
[Example] FIG. 3 is a block diagram of a pipe stress measuring device to which the stress estimation method by fixing the bending stress direction of a pipe according to the present invention is applied. In the figure (0 is the traveling device section, which includes a magnetic anisotropy sensor 11 and a traveling trolley 12. The magnetic anisotropy sensor 11 is a non-contact sensor for detecting the magnetic anisotropy of the pipe material in the circumferential direction. A sensor, for example, that is equipped with an excitation coil and a detection coil that are orthogonal to each other, and a constant excitation current is passed through the excitation coil to detect magnetic anisotropy caused by the action of stress as a voltage signal obtained from the detection coil. .

走行台車12は例えば管外周上に設けられたレール又は
/及びギヤ上を走行し、磁気異方性センサILを管の円
周方向に移動させ計測を行わせるための走行機構である
。13は磁歪7111定部であり、磁気異方性センサ1
1の励磁コイルに定電流を供給し、詞時に該センサti
の検出コイルより得られる検出信号を増幅し、磁気異方
性に比例した電圧信号として出力する磁歪測定部である
。14はモータ・ドライバであり、走行台車12に走行
駆動信号を供給し走行させ、その走行結果の位置情報と
してエンコーダ信号が帰還される。i5はA/D変換器
、1Bは例えばR5232C等のインタフェース、17
はパーソナル・コンピュータ(以下パソコンという)、
18はCRT又は液晶等を用いたデータ表示部である。
The traveling trolley 12 is a traveling mechanism that travels, for example, on rails and/or gears provided on the outer periphery of the tube, and moves the magnetic anisotropy sensor IL in the circumferential direction of the tube to perform measurements. 13 is the magnetostrictive 7111 constant part, and the magnetic anisotropy sensor 1
A constant current is supplied to the excitation coil of 1, and the sensor ti
This is a magnetostriction measurement unit that amplifies the detection signal obtained from the detection coil and outputs it as a voltage signal proportional to magnetic anisotropy. Reference numeral 14 denotes a motor driver which supplies a driving signal to the traveling trolley 12 to cause it to travel, and returns an encoder signal as position information as a result of the traveling. i5 is an A/D converter, 1B is an interface such as R5232C, 17
is a personal computer (hereinafter referred to as a personal computer),
18 is a data display section using a CRT or liquid crystal or the like.

第3図の動作を説明する。管材の円周方向の応力を測定
するには、例えば管材の中心軸に対する垂直面上の管材
外周面に、図示されないレール又は/及びギヤを取付け
、このレール又は/及びギヤ上にホルダを介して走行装
置部toを走行可能に取付ける。次にパソコン17はイ
ンタフェース16を介してモータ・ドライバ14に1回
転の走行指令を与え、モータ・ドライバ14は前記レー
ル又は/及びギヤ上の走行装置10を管周に沿って1回
転走行させる。この走行中に、磁気異方性センサ11(
磁歪センサ2と同一のもの)が第1図(b)に示される
管材外周面上の0°〜360 ’間の各角度位置におい
て、該センサi1からそれぞれ検出された各検出信号は
磁歪測定部13により信号増幅後出力され、さらに該出
力はA/D変換器15により量子化され、パソコンI7
に供給される。パソコン17は磁気異方性センサ11の
管材外周上の方位を示す各角度に対するセンサ出力値を
データ表示部18に表示させ、必要の場合図示されない
プリンタによりハードコピーを出力する。本7111定
装置のデータ表示部18に表示されたデータ又はプリン
タにより出力されたハードコピーデータに基づき、本発
明に係る管の、曲げ応力方向の固定による応力推定処理
を行うことができる。
The operation shown in FIG. 3 will be explained. To measure the stress in the circumferential direction of a tube, for example, a rail or/and gear (not shown) is attached to the outer peripheral surface of the tube on a plane perpendicular to the central axis of the tube, and a holder is placed on the rail or/and gear. Attach the traveling device part to so that it can travel. Next, the personal computer 17 gives a traveling command for one rotation to the motor driver 14 via the interface 16, and the motor driver 14 causes the traveling device 10 on the rail or/and gear to travel one rotation along the tube circumference. During this traveling, the magnetic anisotropy sensor 11 (
Each detection signal detected by the sensor i1 at each angular position between 0° and 360' on the outer circumferential surface of the tube shown in FIG. The signal is amplified and outputted by the A/D converter 13, and the output is quantized by the A/D converter 15 and sent to the personal computer I7.
is supplied to The personal computer 17 causes the data display section 18 to display the sensor output value for each angle indicating the direction on the outer circumference of the tube material of the magnetic anisotropy sensor 11, and outputs a hard copy using a printer (not shown) if necessary. Based on the data displayed on the data display unit 18 of the present 7111 determination device or the hard copy data output by the printer, stress estimation processing can be performed by fixing the bending stress direction of the pipe according to the present invention.

以下本発明の管の曲げ応力方向の固定による応力推定方
法を説明する。
Hereinafter, a method of estimating stress by fixing the bending stress direction of a pipe according to the present invention will be explained.

第4図(a)〜(C)は管の初期磁気異方性分布と、こ
れに大きな曲げ応力又は小さな曲げ応力が付加された場
合の近似結果をそれぞれ示す図であり、それぞれ横軸は
磁歪センサの管周上の方位を示す角度を、縦軸は磁歪セ
ンサ出力(単位はボルト)を示す。また図中の+−は計
測値で、実線は計/l1ll値に近似するSINθ近似
曲線である。
Figures 4 (a) to (C) are diagrams showing the initial magnetic anisotropy distribution of the tube and the approximate results when a large bending stress or a small bending stress is added to this, respectively, and the horizontal axis is the magnetostriction. The vertical axis shows the angle indicating the orientation of the sensor on the tube circumference, and the magnetostrictive sensor output (in volts). Further, + and - in the figure are measured values, and the solid line is a SINθ approximate curve that approximates the total/l1ll value.

いま第4図(a)に示すような初期の磁気異方性分布を
もつ管があったとする。この管に大きな曲げ応力が付加
された場合に、磁歪センサ出力は第4図(b)に示され
たようになり、はぼSINθ近似曲線に近い計測値とな
る。これは初期の磁気異方性分布が後に付加された応力
に比べ相対的に小さいため、測定値より算出されたSI
Nθ近似曲線の曲げ応力の方向(最大引張応力が0°の
方向、最大圧縮応力は180°の方向)と実際の曲げ応
力の方向とは一致している。しかし小さな曲げ応力が付
加された状態では、磁歪センサ出力は第4図(C)に示
されるようになり、測定値より算出されたSINθ近似
曲線の曲げ応力の方向(最大引張応力が約67″の方向
、最大圧縮応力が約247°の方向)は実際の曲げ応力
の方向(最大引張応力は0°の方向、最大圧縮応力は1
80°の方向)と−致しない。また応力の大きさを示す
SINθ近似曲線の振幅も初期の磁気異方性分布の影響
を大きく受けている。
Assume that there is a tube with an initial magnetic anisotropy distribution as shown in FIG. 4(a). When a large bending stress is applied to this tube, the magnetostrictive sensor output becomes as shown in FIG. 4(b), and becomes a measured value close to the SINθ approximate curve. This is because the initial magnetic anisotropy distribution is relatively small compared to the stress added later, so the SI calculated from the measured values is
The direction of the bending stress in the Nθ approximate curve (the direction where the maximum tensile stress is 0° and the maximum compressive stress is 180°) matches the direction of the actual bending stress. However, when a small bending stress is applied, the magnetostrictive sensor output becomes as shown in FIG. direction, the maximum compressive stress is about 247°) is the direction of the actual bending stress (the maximum tensile stress is the 0° direction, the maximum compressive stress is 1
80° direction). Further, the amplitude of the SINθ approximate curve indicating the magnitude of stress is also greatly influenced by the initial magnetic anisotropy distribution.

本発明においては、管に初期の磁気異方性分布が有ると
きは、曲げ応力が小さい場合にも曲げ応力か大きく働い
ている場合と同じようにSINθ近似曲線で表示される
曲げ応力の方向を実際の曲げ応力の方向と一致するよう
に固定するものである。
In the present invention, when the tube has an initial magnetic anisotropy distribution, the direction of the bending stress expressed by the SINθ approximate curve is determined in the same way as when the bending stress is small and when the bending stress is large. It is fixed so that it matches the direction of the actual bending stress.

第5図(a)は管の初期磁気異方性分布とそのSINθ
近似曲線を示す図であり、第5図(b)は小さな曲げ応
力付加によるセンサ出力変化分とそのSINθ近似曲線
を示す図である。各図の横軸は第4図と同じ角度を、同
図(a)の士印は磁歪センサの計測値を、同図(b)の
十印はセンサ出力変化分(小さな応力の付加されたとき
の磁歪センサの出力値から応力無負荷時の初期値を減算
した値が出力変化分である。)を、実線はSINθ近似
曲線をそれぞれ示している。
Figure 5(a) shows the initial magnetic anisotropy distribution of the tube and its SINθ
FIG. 5B is a diagram showing an approximate curve, and FIG. 5(b) is a diagram showing a change in sensor output due to the addition of a small bending stress and its SINθ approximate curve. The horizontal axis of each figure is the same angle as in Figure 4, the cross mark in figure (a) is the measured value of the magnetostrictive sensor, and the cross mark in figure (b) is the sensor output change (the change in the sensor output due to the addition of small stress). The output change is the value obtained by subtracting the initial value at no stress load from the output value of the magnetostrictive sensor at that time.), and the solid lines indicate the SINθ approximate curve.

第6図(a)は第5図(a)の管の初期磁気異方性と同
図(b)の小さな曲げ応力付加による変化分の加算され
た磁歪センサ出力の71111定値を示す図である。
FIG. 6(a) is a diagram showing the initial magnetic anisotropy of the tube in FIG. 5(a) and the 71111 constant value of the magnetostrictive sensor output obtained by adding the change due to the addition of a small bending stress in FIG. 5(b). .

第6図(b)は、同図(a)の測定値を通常の方法で近
似した結果を示す図である。ここで通常の方法とは、例
えば、測定値から最小2乗法を用いてSINθ近似曲線
を得る方法であり、管の実際の曲げ応力の方向を考慮し
ない方法である。同図(b)の実線がこの通常のSIN
θ近似曲線を示している。
FIG. 6(b) is a diagram showing the result of approximating the measured values in FIG. 6(a) using a normal method. Here, the normal method is, for example, a method of obtaining a SINθ approximate curve from the measured values using the least squares method, and is a method that does not take into account the direction of the actual bending stress of the pipe. The solid line in figure (b) is this normal SIN.
The θ approximate curve is shown.

第6図(c)は、同図(a)の測定値を本発明の方法で
近似した結果を示す図である。ここで本発明による方法
とは、測定値より5INo近似曲線を算出する場合に、
管の2つの支持間では曲げの方向はどの場所でも同一で
あるので、管の実際の曲げ応力の方向を見極め、この方
向に曲げ応力の方向を固定して近似するものである。第
6図(C)の例においては、5INo近似曲線の最大振
幅値を最大引張応力が発生する0″の方向に、またその
最小振幅値を最大圧縮応力が発生する180°の方向に
それぞれ固定して、測定値よりSINθ近似曲線を算出
するものである。同図(e)の実線がこの本発明のSI
Nθ近似曲線を示している。この本発明の方法により測
定値より近似されたSINθ曲線の曲げ応力の方向と実
際の曲げ応力の方向は一致して、曲げ応力の小さいとこ
ろから大きいところまで計測が可能となる。実際の応力
測定に際しては、あらかじめ歪ゲージ等により実測した
応力値と本発明の方法により磁歪センサ計測値より近似
したSINθ近似値とにより較正曲線を作成しておく。
FIG. 6(c) is a diagram showing the result of approximating the measured values in FIG. 6(a) using the method of the present invention. Here, the method according to the present invention means that when calculating the 5INo approximate curve from the measured values,
Since the direction of bending is the same everywhere between the two supports of the tube, the direction of the actual bending stress on the tube is determined, and the direction of the bending stress is fixed and approximated to this direction. In the example of Fig. 6(C), the maximum amplitude value of the 5INo approximate curve is fixed in the 0'' direction where the maximum tensile stress occurs, and the minimum amplitude value is fixed in the 180° direction where the maximum compressive stress occurs. Then, the SINθ approximate curve is calculated from the measured values.The solid line in FIG.
The Nθ approximate curve is shown. By the method of the present invention, the direction of the bending stress of the SINθ curve approximated from the measured value coincides with the direction of the actual bending stress, making it possible to measure the bending stress from a small area to a large area. In actual stress measurement, a calibration curve is created in advance from stress values actually measured using a strain gauge or the like and SINθ approximate values approximated by the magnetostrictive sensor measurement values using the method of the present invention.

そしてこの較正曲線を用いて、磁歪センサ出力より管の
曲げ応力方向を固定して算出されたSINθ近似曲線の
信号振幅値より対応する曲げ応力の推定を行うものであ
る。
Then, using this calibration curve, the corresponding bending stress is estimated from the signal amplitude value of the SINθ approximate curve calculated from the output of the magnetostrictive sensor while fixing the bending stress direction of the pipe.

また上記実施例においては、磁歪センサを管材の外周面
上を非接触で走行させる例を示したが、同様に磁歪セン
サを管材の内周面上を非接触で走行させるようにしても
よい。またこの場合に磁歪センサを走行させずに、管材
をその中心軸に対して回転させ、磁歪センサを固定する
ようにしてもよい。いずれの場合も磁歪センサと管材と
が相対移動をすればよく、一方を固定し他方を移動させ
ることにより同一効果を得ることができる。
Further, in the above embodiment, an example was shown in which the magnetostrictive sensor runs on the outer circumferential surface of the tube without contact, but the magnetostrictive sensor may similarly run on the inner circumference of the tube in a non-contact manner. Further, in this case, the magnetostrictive sensor may be fixed by rotating the tube material about its central axis without causing the magnetostrictive sensor to travel. In either case, the magnetostrictive sensor and the tube only need to move relative to each other, and the same effect can be obtained by fixing one and moving the other.

[発明の効果] 以上のように本発明によれば、磁歪センサが管材の外周
面上または内周面上を非接触状態で相対移動する測定装
置を用いて、前記管材の管周方向の曲げ応力分布をSI
N曲線で近似して推定する方法において、前記管材が管
周方向に初期の磁気異方性分布を有する場合に、管材の
実際の曲げ応力の方向に一致するようにSIN近似曲線
により示される曲げ応力の方向を固定して、前記磁歪セ
ンサから得られる計7ipj値を近似するSIN近似曲
線を算出し、該算出されたSIN近似曲線の信号振幅値
より対応する曲げ応力値を精度良く推定することができ
るようにしたので、磁歪センサを用いた管の曲げ応力計
測法の計測精度向上の効果が得られる。
[Effects of the Invention] As described above, according to the present invention, bending of the pipe material in the circumferential direction is performed using a measuring device in which the magnetostrictive sensor moves relatively on the outer peripheral surface or the inner peripheral surface of the pipe material in a non-contact state. SI stress distribution
In the method of estimation by approximation using an N curve, when the pipe material has an initial magnetic anisotropy distribution in the circumferential direction, the bending indicated by the SIN approximate curve corresponds to the direction of the actual bending stress of the pipe material. Fixing the direction of stress, calculating a SIN approximate curve that approximates a total of 7 ipj values obtained from the magnetostrictive sensor, and accurately estimating the corresponding bending stress value from the signal amplitude value of the calculated SIN approximate curve. As a result, it is possible to improve the measurement accuracy of the tube bending stress measurement method using a magnetostrictive sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は先願に係る磁歪応力測定法を
説明する図、第2図(a)及び(b)は第1図の磁歪応
力測定法によるSIN近似法を説明する図、第3図は本
発明の管の曲げ応力方向の固定による応力推定方法を適
用する管の応力推定装置のブロック図、第4図(a)〜
(c)は管の初期磁気異方性分布と、これに大きな曲げ
応力又は小さな曲げ応力が付加された場合の近似結果を
それぞれ示す図、第5図(a)は管の初期磁気異方性分
布とそのSINθ近似曲線を示す図、第5図(b)は小
さな曲げ応力付加によるセンサ出力変化分とそのSIN
θ近似曲線を示す図、第6図(a)は第5図(a)と第
5図(b)の信号が加算された磁歪センサ出力の測定値
を示す図、第6図(b)は同図(a)の測定値を通常の
方法で近似した結果を示す図、第6図(C)は同図(a
)の測定値を本発明の方法で近似した結果を示す図であ
る。 図において、1は円柱材料、2は磁歪センサ、10は走
行装置部、11は磁気異方性センサ、12は走行台車、
13は磁歪測定部、14はモータ・ドライバ15はA/
D変換器、16はインタフェース、17はパソコン、1
8はデータ表示部である。
Figures 1 (a) and (b) are diagrams explaining the magnetostrictive stress measurement method according to the prior application, and Figures 2 (a) and (b) are diagrams explaining the SIN approximation method using the magnetostriction stress measurement method of Figure 1. Figure 3 is a block diagram of a pipe stress estimating device to which the stress estimation method of the present invention is applied by fixing the bending stress direction of the pipe, and Figures 4(a) to 4 are
(c) is a diagram showing the initial magnetic anisotropy distribution of the tube and the approximate results when a large bending stress or a small bending stress is added to it, and Figure 5 (a) is the initial magnetic anisotropy distribution of the tube. A diagram showing the distribution and its SINθ approximate curve, Figure 5 (b) shows the change in sensor output due to the addition of small bending stress and its SIN
Figure 6(a) is a diagram showing the θ approximate curve, Figure 6(a) is a diagram showing the measured value of the magnetostrictive sensor output obtained by adding the signals of Figures 5(a) and 5(b), and Figure 6(b) is a diagram showing the measured value of the magnetostrictive sensor output. Figure 6(C) is a diagram showing the results of approximating the measured values in Figure 6(a) using a normal method.
) is a diagram showing the results of approximating the measured values of 1.) using the method of the present invention. In the figure, 1 is a cylindrical material, 2 is a magnetostrictive sensor, 10 is a traveling device section, 11 is a magnetic anisotropy sensor, 12 is a traveling trolley,
13 is a magnetostriction measuring section, 14 is a motor driver 15 is an A/
D converter, 16 is interface, 17 is personal computer, 1
8 is a data display section.

Claims (1)

【特許請求の範囲】  磁歪センサが管材の外周面上または内周面上を非接触
状態で相対移動する測定装置を用いて、前記管材の管周
方向の曲げ応力分布をSIN曲線で近似して推定する方
法において、 前記管材が管周方向に初期の磁気異方性分布を有する場
合に、管材の実際の曲げ応力の方向に一致するようにS
IN近似曲線により示される曲げ応力の方向を固定して
、前記磁歪センサから得られる計測値を近似するSIN
近似曲線を算出し、該算出されたSIN近似曲線の信号
振幅値より対応する曲げ応力値を推定することを特徴と
する管の曲げ応力方向の固定による応力推定方法。
[Claims] The bending stress distribution in the circumferential direction of the tube is approximated by a SIN curve using a measuring device in which a magnetostrictive sensor moves relatively on the outer circumferential surface or the inner circumferential surface of the tube in a non-contact state. In the estimation method, when the pipe material has an initial magnetic anisotropy distribution in the circumferential direction, S is adjusted so as to match the direction of the actual bending stress of the pipe material.
SIN approximating the measured value obtained from the magnetostrictive sensor by fixing the direction of bending stress indicated by the IN approximate curve
A method for estimating stress by fixing a direction of bending stress in a pipe, characterized by calculating an approximate curve and estimating a corresponding bending stress value from a signal amplitude value of the calculated SIN approximate curve.
JP31417489A 1989-12-05 1989-12-05 Stress estimation method by fixing bending stress direction of pipe Expired - Lifetime JPH0769227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31417489A JPH0769227B2 (en) 1989-12-05 1989-12-05 Stress estimation method by fixing bending stress direction of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31417489A JPH0769227B2 (en) 1989-12-05 1989-12-05 Stress estimation method by fixing bending stress direction of pipe

Publications (2)

Publication Number Publication Date
JPH03176628A true JPH03176628A (en) 1991-07-31
JPH0769227B2 JPH0769227B2 (en) 1995-07-26

Family

ID=18050143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31417489A Expired - Lifetime JPH0769227B2 (en) 1989-12-05 1989-12-05 Stress estimation method by fixing bending stress direction of pipe

Country Status (1)

Country Link
JP (1) JPH0769227B2 (en)

Also Published As

Publication number Publication date
JPH0769227B2 (en) 1995-07-26

Similar Documents

Publication Publication Date Title
US6593737B2 (en) Method for measuring the wall thickness of an electrically conductive object
GB2088059A (en) Pig monitors internal surface of pipeline
AU2002216205B2 (en) Measurement of stress in a ferromagnetic material
US4438754A (en) Method for sensing and remotely controlling a tool to workpiece spatial relationship
EP0554958B1 (en) Apparatus and method for pipe or tube inspection
JPH03176628A (en) Stress estimating method by fixation of bending stress direction of tube
JPH03176627A (en) Estimating method for stress of depressed pipe
JP2800056B2 (en) Non-destructive stress estimation method for buried piping system
JPH03176629A (en) Calibrating and measuring method for bending stress of pipe
KR102326685B1 (en) Apparatus and Method for Sensing Quality of Steel Plate Surface
JP3130106B2 (en) Stress measurement method using magnetostrictive sensor
JPH03176625A (en) Bending stress estimating method for tube
JP3080418B2 (en) Method for estimating stress or strain in curved pipe section
Ricken et al. Determining of the concrete cover thickness and the bar diameter in reinforced concrete with a method of eddy current testing
JP4128297B2 (en) Steel pipe stress diagnosis method
JPH03176630A (en) Stress releasing method for tube
JPH03176626A (en) Estimating method for bending stress of pipe
JP2018009862A (en) Iron based material position detector
JPH0356834A (en) Pig for measuring magnetostrictive stress of cylindrical material
JP3159132B2 (en) Method for measuring stress in steel pipes
JPH03185323A (en) Method for estimating stress in pipe at underground part based on measurement of stress in pipe at mounting part
JP4262609B2 (en) Magnetostrictive sensitivity calibration method and apparatus
Nikolaev et al. Estimate of the Ratio of the Data and Background Signals in Detecting the Magnetic Fields of Surface Defects by Magnetic Measurement Transducers
WO2005095921A1 (en) Testing apparatus
Hermann et al. Ultrasonic Measurements of Inhomogenous Stress Fields