JPH03174404A - Removal of solvent from polymer solution - Google Patents

Removal of solvent from polymer solution

Info

Publication number
JPH03174404A
JPH03174404A JP31328689A JP31328689A JPH03174404A JP H03174404 A JPH03174404 A JP H03174404A JP 31328689 A JP31328689 A JP 31328689A JP 31328689 A JP31328689 A JP 31328689A JP H03174404 A JPH03174404 A JP H03174404A
Authority
JP
Japan
Prior art keywords
solvent
polymer
heat exchanger
polymer solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31328689A
Other languages
Japanese (ja)
Other versions
JP2810166B2 (en
Inventor
Noriyuki Hisanishi
律行 久西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18039388&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03174404(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1313286A priority Critical patent/JP2810166B2/en
Publication of JPH03174404A publication Critical patent/JPH03174404A/en
Application granted granted Critical
Publication of JP2810166B2 publication Critical patent/JP2810166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polymer having a low content of a residual solvent and an improved hue by removing the solvent from the solution of polymer in an inert solvent with a solvent removal apparatus equipped with a heat exchanger under conditions in which the vapor pressure of the solvent at the head partition section of the heat exchanger is specified. CONSTITUTION:A polymer solution obtained in a process for producing a polymer such as polycarbonate, PS, polyester, polysulfonate, polyamide, polyphenylene oxide or polyphenylene sulfide and containing 5-90wt.% polymer in an inert solvent is fed to a solvent removal apparatus equipped with a heat exchanger. The solvent is removed from the polymer solution under conditions which satisfy the relationship: P1-P2<=1.5kg/cm<2>, wherein P1 is the vapor pressure of the solvent at the inlet partition section of the heat exchanger and P2 is the pressure inside the inlet partition section.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポリマー溶液の溶媒除去方法に関し、詳しくは
、熱交換器を備えた溶媒除去装置を用いて効率よく不活
性溶媒を蒸発除去し、ポリマーの濃縮あるいは溶融処理
を行う方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing a solvent from a polymer solution. Specifically, the present invention relates to a method for removing a solvent from a polymer solution. This invention relates to a method for concentrating or melting a polymer.

[従来の技術及び発明が解決しようとする課題]ポリマ
ー溶液からポリマーを回収する方法としては、従来から
数多くの提案がなされている。その一つに、ポリマー溶
液を加熱して溶媒を蒸発除去すると同時にポリマーを溶
融する方法が知られている。例えば、特開昭61−97
302号公報同62−203103号公報、特公昭60
44323号公報、特開昭55−15645号公報等に
は、ポリマー溶液の加熱方法として、プレートフィン型
熱交換器や多管式熱交換器を使用した直接加熱方法が示
されている。この方法は、ポリマーの回収効率が良いた
め、幅広く用いられている。
[Prior Art and Problems to be Solved by the Invention] Many proposals have been made in the past as methods for recovering polymers from polymer solutions. One known method is to heat a polymer solution to remove the solvent by evaporation and simultaneously melt the polymer. For example, JP-A-61-97
Publication No. 302, Publication No. 62-203103, Special Publication No. 1983
44323, Japanese Patent Application Laid-open No. 15645/1984, etc., disclose a direct heating method using a plate-fin heat exchanger or a shell-and-tube heat exchanger as a method for heating a polymer solution. This method is widely used because of its high polymer recovery efficiency.

しかしながら、これらの構造を有する熱交換器を用いて
ポリマー溶液を処理する場合、その入口部での熱交換器
の各流路へのポリマー溶液の分散が均一に行われず、ポ
リマー溶液が流路内に止まって品質劣化を引き起こした
り、あるいは急激に流路を通過して充分溶媒が蒸発除去
されないなどの問題が生じていた。
However, when processing a polymer solution using a heat exchanger having these structures, the polymer solution is not uniformly dispersed into each flow path of the heat exchanger at the inlet part, and the polymer solution is not dispersed in the flow paths. Problems have arisen, such as the solvent remaining in the solvent and causing quality deterioration, or the solvent passing through the channel rapidly and not being sufficiently removed by evaporation.

また、特にポリマー濃度の低い溶液や、流動性を充分に
保っていながらも熱交換器の温度に比較してかなり低い
温度のポリマー溶液を処理する場合には、熱交換器への
供給圧力が変動したり、最悪の場合には閉塞したりして
安定運転が困難になることがあった。
In addition, the supply pressure to the heat exchanger may fluctuate, especially when processing a solution with a low polymer concentration or a polymer solution that maintains sufficient fluidity but whose temperature is considerably lower than that of the heat exchanger. In the worst case scenario, it could become blocked, making stable operation difficult.

このような運転上の変動や不均一性はポリマーの品質に
対し、色相の悪化や残留溶媒の増加等に起因する数々の
問題を引き起こしていた。例えば、ポリカーボネートは
、ホスゲン法にしたがえば、ビスフェノールAとホスゲ
ンをメチレンクロライド等の不活性溶媒中で第三級アミ
ン(トリエチルアミンなど)触媒の存在下に反応させる
ことにより得られる。したがって、生成したポリカーボ
ネートは、メチレンクロライド等の不活性溶媒中に存在
することとなり、製品としてのポリカーボネートを得る
ためには、メチレンクロライド等の不活性溶媒を除去す
る必要がある。周知の如く、ポリカーボネートは、特に
その透明性を特徴としているため、この溶媒除去工程に
おける熱劣化による着色と回収ポリカーボネート中の残
留溶媒は重大な問題となる。
Such operational fluctuations and non-uniformity have caused a number of problems with respect to polymer quality, such as deterioration of hue and increase in residual solvent. For example, polycarbonate is obtained according to the phosgene method by reacting bisphenol A and phosgene in an inert solvent such as methylene chloride in the presence of a tertiary amine (such as triethylamine) catalyst. Therefore, the produced polycarbonate exists in an inert solvent such as methylene chloride, and in order to obtain polycarbonate as a product, it is necessary to remove the inert solvent such as methylene chloride. As is well known, since polycarbonate is particularly characterized by its transparency, coloring due to thermal deterioration in this solvent removal step and residual solvent in the recovered polycarbonate pose serious problems.

〔課題を解決するための手段〕[Means to solve the problem]

そこで本発明者は、上記従来技術の欠点を解消して安定
した運転を行うことができ、回収ポリマーの色相改善や
残留溶媒の低減が可能な溶媒除去方法を開発すべく鋭意
研究を重ねた。特に熱交換器内でのポリマー溶液の状態
や温度分布について観察したところ、熱交換器上流側の
入口配管部や分散部に加熱部の熱が伝わり、この部分に
流入したポリマー溶液の溶媒が蒸発する温度になり、溶
媒は蒸発するが残留するポリマーが充分な流動性を保て
る温度までは上昇しないため、上述の流路の閉塞や供給
圧力の変動を引き起こしていることを見出した。本発明
はかかる知見に基いて完成したものである。
Therefore, the present inventor conducted extensive research in order to develop a solvent removal method that eliminates the drawbacks of the above-mentioned conventional techniques, allows stable operation, improves the hue of the recovered polymer, and reduces residual solvent. In particular, when we observed the state and temperature distribution of the polymer solution inside the heat exchanger, we found that the heat from the heating section was transferred to the inlet piping section and dispersion section on the upstream side of the heat exchanger, and the solvent of the polymer solution that entered this section evaporated. It has been found that the solvent does not rise to a temperature at which the solvent evaporates, but the remaining polymer maintains sufficient fluidity, which causes the above-mentioned flow path clogging and fluctuations in the supply pressure. The present invention was completed based on this knowledge.

すなわち本発明は、不活性溶媒にポリマーを5〜90重
量%含有してなるポリマー溶液を、熱交換器を備えた溶
媒除去装置に導入し、前記不活性溶媒を蒸発除去するに
あたり、熱交換器の人口分散部における不活性溶媒の蒸
気圧P1を、該人口分散部の内部圧力P2に対して、P
、−P、≦1.5kg/dの範囲に維持することを特徴
とするポリマー溶液の溶媒除去方法を提供するものであ
る。
That is, in the present invention, a polymer solution containing 5 to 90% by weight of a polymer in an inert solvent is introduced into a solvent removal device equipped with a heat exchanger, and when the inert solvent is evaporated and removed, the heat exchanger is removed. The vapor pressure P1 of the inert solvent in the population dispersion section is expressed as P with respect to the internal pressure P2 of the population dispersion section.
, -P is maintained in the range of ≦1.5 kg/d.

本発明の対象となるポリマー溶液は、上述の如く不活性
溶媒中にポリマーを5〜90重量%含有してなるもので
ある。対象となるポリマーは、特に限定されるものでは
ないが、その製造工程において不活性溶媒中に生成され
るもの、例えば上記ポリカーボネートやポリスチレンの
他、ポリエステル、ポリスルホネート、ポリアミド、ポ
リフェニレンオキシド、ポリフェニレンスルフィドなど
の重合体の製造工程に本発明を適用すると、製造効率の
向上やポリマーの品質の向上を図ることができ好ましい
The polymer solution to which the present invention is applied contains 5 to 90% by weight of a polymer in an inert solvent, as described above. Target polymers are not particularly limited, but include those produced in inert solvents during the manufacturing process, such as the above-mentioned polycarbonate and polystyrene, as well as polyester, polysulfonate, polyamide, polyphenylene oxide, polyphenylene sulfide, etc. It is preferable to apply the present invention to the manufacturing process of the polymer, since it is possible to improve the manufacturing efficiency and the quality of the polymer.

また不活性溶媒は、上記ポリマーに対して実質的に不活
性であり、さらに使用温度範囲で充分に安定であって、
ポリマーを溶解するものであればよい。しかし、沸点の
高いものは溶媒の脱揮を効率よく行うためにポリマー溶
液の加熱温度を高くする必要があるため、200°C以
下の沸点を有する溶媒を用いることが好ましい。例えば
前記ポリカーボネートの溶媒として用いられるものは、
通常好ましく使用されるメチレンクロライドのほか、テ
トラクロロエタン、トリクロロエタン、ジクロロエタン
、トリクロロエチレン、ジクロロエチレン、クロロホル
ム、チオフェン、ジオキサン、テトラヒドロフラン、ク
ロロベンゼン、  o −、m −あるいはP−ジクロ
ロベンゼン及びこれらの二種以上の混合物及びこれらを
主成分とする混合物等が挙げられる。またポリスチレン
の?容媒としては、通常使用されるエチルベンゼンのほ
か、トルエン。
The inert solvent is also substantially inert to the polymer and is sufficiently stable over the temperature range of use.
Any material that dissolves the polymer may be used. However, since it is necessary to increase the heating temperature of the polymer solution in order to efficiently devolatilize the solvent with a high boiling point, it is preferable to use a solvent with a boiling point of 200° C. or lower. For example, the solvent used for the polycarbonate is
In addition to methylene chloride, which is usually preferably used, tetrachloroethane, trichloroethane, dichloroethane, trichloroethylene, dichloroethylene, chloroform, thiophene, dioxane, tetrahydrofuran, chlorobenzene, o-, m- or p-dichlorobenzene, and mixtures of two or more of these. Examples include mixtures containing these as main components. Also polystyrene? In addition to the commonly used ethylbenzene, toluene can be used as a vehicle.

o−、m−あるいはp−キシレン等の芳香族炭化水素類
及びこれらの二種以上の混合物及びこれらを主成分とす
る混合物等が挙げられる。
Examples include aromatic hydrocarbons such as o-, m- or p-xylene, mixtures of two or more thereof, and mixtures containing these as main components.

これらの溶媒に溶解されるポリマーの濃度は、5〜90
重量%が適当である。この濃度が5重量%未満では回収
する溶媒量が多くなるために大型の溶媒除去装置が必要
となり、建設コストが上界するなどの理由から経済的に
有効ではない。逆に90重重量を超えるものでは、熱交
換器人口部(分散部)で蒸発する溶媒量が少ないため、
本発明の方法に依らなくとも前述の如き問題はほとんど
生じない。ただし対象となるポリマーと溶媒の種類によ
り、好ましい濃度範囲は異なる。例えば、ポリカーボネ
ートの場合の濃度は、5〜35重量%が好適である。こ
の濃度が5重量%未満では前記同様回収する溶媒量が多
くなるために好ましくなく、逆に35重重量を超えると
ポリカーボネートが析出してしまい、ゲル化状態、すな
わち半固体状態となり、流動状態が保持できずに溶媒除
去装置への供給や運転が困難となる。
The concentration of polymer dissolved in these solvents ranges from 5 to 90
Weight % is appropriate. If this concentration is less than 5% by weight, the amount of solvent to be recovered will be large, requiring a large-sized solvent removal device, which is not economically effective for reasons such as increased construction costs. On the other hand, if the weight exceeds 90%, the amount of solvent that evaporates in the heat exchanger population section (dispersion section) is small, so
Even if the method of the present invention is not used, the above-mentioned problems hardly occur. However, the preferred concentration range differs depending on the type of polymer and solvent to be used. For example, in the case of polycarbonate, the concentration is preferably 5 to 35% by weight. If this concentration is less than 5% by weight, the amount of solvent to be recovered increases as described above, which is undesirable.On the other hand, if it exceeds 35% by weight, polycarbonate will precipitate, resulting in a gelatinous state, that is, a semi-solid state, and the fluidity will deteriorate. The solvent cannot be retained, making it difficult to supply and operate the solvent removal equipment.

次に本発明に用いる溶媒除去装置としては、溶媒の除去
効率に優れた前述のプレートフィン型熱交換器や多管式
熱交換器が好ましい。
Next, as the solvent removal device used in the present invention, the above-mentioned plate-fin type heat exchanger or shell-and-tube type heat exchanger is preferable because of its excellent solvent removal efficiency.

以下、本発明の方法を、図面に示す溶媒除去装置の一例
に基いてさらに具体的に説明する。
Hereinafter, the method of the present invention will be explained in more detail based on an example of the solvent removal apparatus shown in the drawings.

第1図に示すように、溶媒除去装置10は、本体11の
内部上方に熱交換器12を配設し、下部に排出口13を
形成している。この本体11は、ジャケット14で覆わ
れており、該ジャケット14内に供給される熱媒体によ
り所定の温度に加熱される。また本体11の上部には、
真空ポンプ等に接続された排気口15が設けられており
、本体11内を所定の減圧状態にするとともに、蒸発し
た溶媒を排出している。
As shown in FIG. 1, the solvent removal device 10 has a heat exchanger 12 disposed above the interior of a main body 11, and a discharge port 13 formed in the lower part. This main body 11 is covered with a jacket 14, and is heated to a predetermined temperature by a heat medium supplied into the jacket 14. Also, on the top of the main body 11,
An exhaust port 15 connected to a vacuum pump or the like is provided to bring the inside of the main body 11 into a predetermined reduced pressure state and to discharge the evaporated solvent.

第2図及び第3図は、前記熱交換器12として用いるの
に好適なプレートフィン型を示している。
2 and 3 show a plate-fin type suitable for use as the heat exchanger 12. FIG.

このプレートフィン型は、仕切板(プレート)16を垂
直方向に平行に多数枚設け、各仕切Fi16間に凹凸状
あるいは波状の金属板(フィン)17を交互に方向を変
えて直交するように設けて横方向の流路を加熱室18と
し、縦方向の流路を溶液室19としたものである。加熱
室18の人口側及び出口側には、加熱室1日の各流路に
均一に熱媒体を分配するためのヘッダーが設けられてお
り、溶液室19の入口側には、同様にポリマー溶液を各
流路に均一に分配するための分散部としてのヘッダー2
0が設けられている。また溶液室19の出口側は、各流
路から溶液が抵抗なく流下するように解放されている。
In this plate fin type, a large number of partition plates (plates) 16 are provided in parallel in the vertical direction, and uneven or corrugated metal plates (fins) 17 are provided between each partition Fi 16 in alternating directions so as to be orthogonal to each other. The horizontal flow path is used as a heating chamber 18, and the vertical flow path is used as a solution chamber 19. The heating chamber 18 is provided with headers on the intake side and the outlet side for uniformly distributing the heat medium to each flow path of the heating chamber during the day, and on the inlet side of the solution chamber 19, the polymer solution is similarly distributed. header 2 as a dispersion section to uniformly distribute the
0 is set. Further, the outlet side of the solution chamber 19 is open so that the solution can flow down from each channel without resistance.

加熱室18を流れる熱媒体の熱は仕切板16及び金属板
17を伝わって速やかに溶液室19の溶液に伝えられ、
溶液を加熱する。
The heat of the heat medium flowing through the heating chamber 18 is quickly transmitted to the solution in the solution chamber 19 through the partition plate 16 and the metal plate 17.
Heat the solution.

この熱交換器12におけるポリマー溶液の加熱温度は、
ポリマー及び溶媒の種類、溶液の粘度。
The heating temperature of the polymer solution in this heat exchanger 12 is:
Type of polymer and solvent, viscosity of solution.

熱交換器12に送給するポリマー溶液の単位流量、さら
には本体工1内の圧力、溶媒の除去率などにより適宜設
定すべきものであるが、例えばポリカーボネート溶液の
場合の加熱温度は、240〜350°C5好ましくは2
40〜320°Cの範囲である。この加熱温度が240
 ’C未満ではポリカーボネートが熱交換器12内に析
出し、ポリカーボネート流路が閉塞されて運転不能とな
ることがある。逆に350℃を超える高温にするとポリ
カーボネートの劣化を生じるなどの不都合がある。また
このときの本体ll内の圧力は、−760〜−10順H
g、特に−760〜−50皿Hgの範囲とすることが好
ましい。この本体11内の圧力が一30mm1g以上、
特に−IQ+nmHg以上、すなわち本体11内の真空
度が低いと、熱交換器12を出た後の溶融ポリカーボネ
ートからの溶媒除去が効率よく行えず、残存溶媒量が増
加することがある。
It should be set appropriately depending on the unit flow rate of the polymer solution fed to the heat exchanger 12, the pressure inside the main body 1, the solvent removal rate, etc. For example, in the case of a polycarbonate solution, the heating temperature is 240 to 350. °C5 preferably 2
It is in the range of 40-320°C. This heating temperature is 240
If it is less than 'C, polycarbonate may precipitate in the heat exchanger 12, and the polycarbonate flow path may be blocked, making operation impossible. On the other hand, if the temperature exceeds 350° C., there are disadvantages such as deterioration of the polycarbonate. Also, the pressure inside the main body at this time is -760 to -10 H
g, particularly preferably in the range of -760 to -50 plates Hg. The pressure inside this main body 11 is 130 mm 1 g or more,
In particular, if the degree of vacuum in the main body 11 is low, that is -IQ+nmHg or more, the solvent may not be efficiently removed from the molten polycarbonate after leaving the heat exchanger 12, and the amount of residual solvent may increase.

さらに本発明では、前記溶液室19及び加熱室18とヘ
ッダー20との間に断熱部21を設けて、溶液室19及
び加熱室18の熱がヘッダー20内に伝わるのを防止乃
至低減するとともに、必要に応じてヘッダー20の周囲
などに冷却ジャケット22を設けてヘッダー20の部分
を冷却し、ポリマー溶液の温度を制御する。上記断熱部
2Iとしては、熱伝導率が低く、かつ耐圧性を有するセ
ラミックスなどにより形成することが好ましい。またヘ
ッダー20には、温度検出器23が設けられている。
Furthermore, in the present invention, a heat insulating section 21 is provided between the solution chamber 19 and the heating chamber 18 and the header 20 to prevent or reduce heat from the solution chamber 19 and the heating chamber 18 from being transmitted into the header 20. If necessary, a cooling jacket 22 is provided around the header 20 to cool the header 20 and control the temperature of the polymer solution. The heat insulating portion 2I is preferably formed of ceramics or the like having low thermal conductivity and pressure resistance. The header 20 is also provided with a temperature detector 23 .

このヘッダー20におけるポリマー溶液の温度は、該ポ
リマー溶液の溶媒蒸気圧がヘッダー20内の圧力より高
くなり、ヘッダー20内を流れているポリマー溶液中の
溶媒が蒸発してポリマーが固化しない範囲に制御する。
The temperature of the polymer solution in the header 20 is controlled within a range where the solvent vapor pressure of the polymer solution is higher than the pressure inside the header 20 and the solvent in the polymer solution flowing inside the header 20 does not evaporate and the polymer does not solidify. do.

この温度は、処理するポリマーと溶媒の系に固有の平衡
関係によって決まり、処理するポリマー溶液の不活性溶
媒の蒸気圧が、ヘッダー20の内部圧力より1.5kg
/cm2高い圧力より低い圧力、すなわち、ポリマー溶
液の溶媒蒸気圧をP 1%溶液室19の内部圧力をP2
としたときに、PI Pg≦1.5kg/cr!、好ま
しくはP+  Pg≦Okg/ciとなるように制御す
る。
This temperature is determined by the equilibrium relationship inherent in the polymer and solvent system to be treated, and the vapor pressure of the inert solvent of the polymer solution to be treated is 1.5 kg below the internal pressure of the header 20.
/cm2 The pressure lower than the higher pressure, that is, the solvent vapor pressure of the polymer solution is P2 The internal pressure of the 1% solution chamber 19 is P2
When PI Pg≦1.5kg/cr! , preferably P+ Pg≦Okg/ci.

ここで示す圧力は、ヘッダー20内の任意の部分の圧力
であって、該部分の圧力が上記条件下にあり、ポリマー
溶液が実質的に流動状態を保っているならば、どの部分
でも等しいと考えることができる。
The pressure shown here is the pressure at any part within the header 20, and if the pressure at that part is under the above conditions and the polymer solution remains in a substantially fluid state, it will be equal at any part. I can think.

また、上記断熱部21は、完全な断熱を行う必要はなく
、溶液室19からの伝熱によりヘッダー20内に温度分
布を生じても、ヘッダー20内の平均温度が上記条件を
満足していれば特に問題はない。
Further, the heat insulating section 21 does not need to provide complete heat insulation, and even if a temperature distribution occurs in the header 20 due to heat transfer from the solution chamber 19, the average temperature in the header 20 must satisfy the above conditions. There is no particular problem.

ここで、ポリマー溶液の温度の下限は、溶液室工9に供
給するのに支障の無いポリマー溶液の流動性が得られる
温度であればよく、ポリマーや溶媒の種類や濃度等によ
り異なり特に制限は無いが、通常は常温以上とすればよ
い。
Here, the lower limit of the temperature of the polymer solution may be any temperature at which fluidity of the polymer solution is obtained without any problem in supplying it to the solution chamber 9, and it varies depending on the type and concentration of the polymer and solvent, and there is no particular limit. There is no such thing, but the temperature should usually be above room temperature.

また、前記断熱部21の構造やヘッダー20の冷却手段
、あるいは断熱と冷却のいずれを行うか、または両者を
併用するかは、熱交換器12における加熱温度とヘッダ
ー20内のポリマー溶液の制御温度との差などに応じて
適宜に決定することができる。
Furthermore, the structure of the heat insulating section 21, the cooling means of the header 20, whether heat insulation and cooling are performed, or whether both are used together are determined by the heating temperature in the heat exchanger 12 and the control temperature of the polymer solution in the header 20. It can be determined as appropriate depending on the difference between the two.

なお、溶媒除去装置は、上記構成に限らず、様々な構成
のものを使用することができる。例えば熱交換器に多管
式を用いたり、ポリマー溶液や本体の加熱に電気ヒータ
ーを用いても良く、加熱により蒸発した溶媒の排出を圧
力差で行うこともできる。また排出口にギアポンプなど
の排出装置を設けたりすることができる。
Note that the solvent removal device is not limited to the above configuration, and various configurations can be used. For example, a multi-tube type heat exchanger may be used, an electric heater may be used to heat the polymer solution and the main body, and the solvent evaporated by heating may be discharged using a pressure difference. Further, a discharge device such as a gear pump may be provided at the discharge port.

このように構成した溶媒除去装置に連続的にポリマー溶
液を供給することにより、熱交換器部での前述の各種問
題点を生じることなく、高品質のポリマーを効率良く得
ることができる。
By continuously supplying the polymer solution to the solvent removal device configured in this manner, a high quality polymer can be efficiently obtained without causing the various problems described above in the heat exchanger section.

〔実施例〕〔Example〕

次に、本発明を実施例及び比較例により更に詳しく説明
する。なお以下に示す圧力は全てゲージ圧である。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Note that all pressures shown below are gauge pressures.

実施例1 溶媒除去装置として、前記第1図に示した構造のものを
使用した。本体は上部の最大径が500肋、高さが10
00+++n+、内容積が約0.07 rrrの円錐型
容器であり、本体下部にはギアポンプを設けて内容物が
連続的に排出されるようにした。また熱交換器は、縦i
oo關×横150aunx高さ70印、流路が5×5肋
のプレートフィン型のもので、加熱には熱媒を使用した
。熱交換器の入口分散部(ヘッダー)は、この熱交換器
上面に高さ10mmのセラミックス製プレートを介して
断熱した状態で半円状に高さ50I!Ifl+のものを
設けた。ポリマー溶液は、この人口分散部の中央部に設
けた導入管より連続して供給した。
Example 1 A solvent removal device having the structure shown in FIG. 1 was used. The main body has a maximum diameter of 500 ribs at the top and a height of 10
It was a conical container with an internal volume of about 0.07 rrr, and a gear pump was installed at the bottom of the main body so that the contents could be continuously discharged. In addition, the heat exchanger is
It was a plate fin type with 5 x 5 ribs, measuring 150 cm wide x 70 cm high, and used a heating medium for heating. The inlet distribution part (header) of the heat exchanger is insulated in a semicircular shape with a height of 50 mm on the top surface of the heat exchanger via a ceramic plate with a height of 10 mm! Ifl+ was installed. The polymer solution was continuously supplied from an inlet pipe provided at the center of this population dispersion section.

このように構成した溶媒除去装置の熱交換器加熱部と本
体とを300°Cに加熱し、かつ本体内を〜600mm
Hgの減圧度に調整した。そして、この装置にメチレン
クロライドを溶媒としてポリカーボネート(出光石油化
学■製、商品名:タフロンA2500)を溶解し、20
重量%に調整したポリカーボネート溶液を毎時41で供
給した。
The heat exchanger heating part and the main body of the solvent removal apparatus configured in this way were heated to 300°C, and the inside of the main body was heated by ~600 mm.
The degree of vacuum was adjusted to Hg. Then, polycarbonate (manufactured by Idemitsu Petrochemical ■, trade name: Taflon A2500) was dissolved in this device using methylene chloride as a solvent.
Polycarbonate solution adjusted to % by weight was fed at 41/hr.

このポリカーボネート溶液供給後、はどなく下部のギア
ポンプ出口より溶融したポリカーボネートを得ることが
できた。運転を開始して10分後にポリマー溶液の供給
圧力の変動を観察したところ、はぼ2.5 kg/dで
安定していた。また、セラミックスを使用して断熱した
熱交換器入口の溶液分散部の圧力(P2)は約2.5k
g/c+fl、その外面温度は約35°Cであり、良好
に断熱されていることが確認された。この時の入口分散
部のポリマー溶液の蒸気圧(PI)は、0.5kg/c
wtであった。また、得られたポリマーを20分毎にサ
ンプリングし、その残留溶媒量を測定したところ、はぼ
110重量ppmで一定していた。また8時間の連続運
転も特に問題無〈実施できた。また黒色異物等は観察さ
れなかった。
After supplying this polycarbonate solution, we were able to obtain molten polycarbonate from the gear pump outlet at the bottom. When the fluctuation in the supply pressure of the polymer solution was observed 10 minutes after the start of operation, it was found to be stable at about 2.5 kg/d. In addition, the pressure (P2) of the solution dispersion section at the inlet of the heat exchanger, which is insulated using ceramics, is approximately 2.5 k.
g/c+fl, and its outer surface temperature was approximately 35°C, confirming that it was well insulated. At this time, the vapor pressure (PI) of the polymer solution in the inlet dispersion section is 0.5 kg/c
It was wt. Further, when the obtained polymer was sampled every 20 minutes and the amount of residual solvent was measured, it was found to be constant at about 110 ppm by weight. Continuous operation for 8 hours was also possible without any problems. Further, no black foreign matter was observed.

比較例1 実施例1で使用した溶媒除去装置の熱交換器人口分散部
のセラミック製断熱材を取り外した以外は、実施例1と
全く同様な条件で運転を実施した。
Comparative Example 1 Operation was carried out under exactly the same conditions as in Example 1, except that the ceramic heat insulating material of the population dispersion section of the heat exchanger of the solvent removal apparatus used in Example 1 was removed.

その結果、ポリカーボネート溶液供給後、はどなく下部
のギアポンプ出口より溶融したポリカーボネートを得る
ことができたが、運転を開始して10分後にポリマー溶
液の供給圧力の変動を観察したところ、1.5〜6kg
/ciの範囲で周期的に圧力が変動していた。また、本
体上部に取り付けた観測窓から熱交換器出口においてポ
リマーが排出されたり止まったりしている様子が観測さ
れ、入口分散部の圧力も同様に変動していた。熱交換器
の入口分散部の外面温度を測定したところ、約180°
Cまで上昇していた。この時の入口分散部のポリマー溶
液の蒸気圧(PI)は、29kg/c4であった。また
、得られたポリマーを20分毎にサンプリングし、その
残留溶媒量を測定したところ、150〜800重量pp
mの範囲で変動していた。
As a result, after supplying the polycarbonate solution, we were able to obtain molten polycarbonate from the gear pump outlet at the bottom, but when we observed fluctuations in the supply pressure of the polymer solution 10 minutes after starting the operation, we found that it was 1.5 ~6kg
The pressure fluctuated periodically within the range of /ci. Additionally, polymer was observed to be discharged and stopped at the heat exchanger outlet through the observation window attached to the top of the main body, and the pressure at the inlet dispersion section was also fluctuating in the same way. When we measured the outer surface temperature of the inlet distribution part of the heat exchanger, it was approximately 180°.
It had risen to C. The vapor pressure (PI) of the polymer solution in the inlet dispersion section at this time was 29 kg/c4. In addition, when the obtained polymer was sampled every 20 minutes and the amount of residual solvent was measured, it was found to be 150 to 800 ppp by weight.
It varied within a range of m.

さらに、得られたポリマー中には時折、黒色異物が観測
された。
Furthermore, black foreign matter was occasionally observed in the obtained polymer.

比較例2 比較例1において、ポリマー溶液の供給量のみを毎時1
1とした以外は同様の条件で運転を実施した。その結果
、圧力変動は1.5〜10kg/c1aの範囲であり、
また得られたポリマー中の残留溶媒量は120〜500
重量pp+nの範囲で変動していた。約1時間程の連続
運転後、供給圧が30kg/ crf1以上となって、
ポンプの能力上運転継続が不可能となった。
Comparative Example 2 In Comparative Example 1, only the supply amount of the polymer solution was changed to 1/hour.
The operation was carried out under the same conditions except that it was set to 1. As a result, the pressure fluctuation is in the range of 1.5 to 10 kg/c1a,
The amount of residual solvent in the obtained polymer was 120 to 500.
The weight varied within the range of pp+n. After about 1 hour of continuous operation, the supply pressure became 30 kg/crf1 or more,
It became impossible to continue operation due to pump capacity.

実施例2 熱交換器の入口分散部の断熱材としてテフロンシート(
厚さ30nu++)を使用するとともに、熱交換器の入
口分散部を冷媒で冷却できるジャケット型とし、水(温
度28°C)を流して冷却した以外は、実施例1と同様
の条件で運転した。運転を開始して10分後、ポリマー
溶液の供給圧力の変動を観測したところほぼ2.7 )
cg/cillで安定していた。
Example 2 Teflon sheet (
The heat exchanger was operated under the same conditions as in Example 1, except that a heat exchanger with a thickness of 30 nu++ was used, the inlet dispersion part of the heat exchanger was a jacket type that could be cooled with a refrigerant, and water (temperature 28 °C) was flowed to cool it. . 10 minutes after starting the operation, the fluctuation in the supply pressure of the polymer solution was observed and it was approximately 2.7)
It was stable at cg/cil.

また、得られたポリマーを20分毎にサンプリングし、
その残留溶媒量を測定したところ、はぼ120重lpp
mで一定していた。また8時間の連続運転も特に問題無
〈実施できた。
In addition, the obtained polymer was sampled every 20 minutes,
When the amount of residual solvent was measured, it was found to be 120 weight lpp.
It remained constant at m. Continuous operation for 8 hours was also possible without any problems.

実施例3及び比較例3 熱交換器の人口分散部のジャケットに流す冷媒または熱
媒を第1表に示す温度とした以外は実施例2と同様の条
件で運転した。その結果を第1表に示す。
Example 3 and Comparative Example 3 Operation was carried out under the same conditions as in Example 2, except that the temperature of the refrigerant or heat medium flowing into the jacket of the population distribution section of the heat exchanger was set to the temperature shown in Table 1. The results are shown in Table 1.

比較例4 実施例2において、熱交換器の入口分散部のジャケット
に冷却水を流さなかった以外は、同様の条件で運転した
。運転を開始して10分後、ポリマー溶液の供給圧力の
変動を観察したところ、1.2〜5.0kg/c−の範
囲で周期的に圧力が変動し、本体上部に取り付けた観測
窓から熱交換器出口においてポリマーが排出されたり止
まったりしている様子が観測された。また、熱交換器の
人口分散部の外面温度を測定したところ、約120″C
まで上昇していた。また、得られたポリマーを20分毎
にサンプリングし、その残留溶媒量を測定したところ、
130〜830重量ppmの範囲で変動していた。
Comparative Example 4 The operation was carried out under the same conditions as in Example 2, except that the cooling water was not flowed through the jacket of the inlet dispersion section of the heat exchanger. 10 minutes after starting the operation, we observed fluctuations in the supply pressure of the polymer solution, and found that the pressure fluctuated periodically in the range of 1.2 to 5.0 kg/c-. It was observed that the polymer was discharged or stopped at the heat exchanger outlet. In addition, when we measured the outer surface temperature of the population distribution part of the heat exchanger, it was found to be approximately 120"C.
It had risen to. In addition, when the obtained polymer was sampled every 20 minutes and the amount of residual solvent was measured,
It varied in the range of 130 to 830 ppm by weight.

実施例4 ポリマー溶液として溶媒にエチルベ、ンゼン、ポリマー
にポリスチレン(出光石油化学■製、商品名:出光スチ
ロールHH30)を使用し、60重量%の溶液とした。
Example 4 A 60% by weight solution was prepared by using ethylbene and zene as the solvent and polystyrene (manufactured by Idemitsu Petrochemical Co., Ltd., trade name: Idemitsu Styrol HH30) as the polymer.

これを100 ’Cに余熱して、本体と熱交換器温度を
220°C1本体圧カーフ0ms+)Ig、流量毎時8
1とした以外は、実施例1と同様の構造の溶媒除去装置
を使用して同様に運転した。なお、配管部も100 ’
Cに調整した。
Preheat this to 100'C, and set the temperature of the main body and heat exchanger to 220°C1 body pressure calf 0ms+)Ig, flow rate 8/hour
A solvent removal device having the same structure as in Example 1 was used and operated in the same manner as in Example 1, except that the temperature was set to 1. In addition, the piping part is also 100'
Adjusted to C.

その結果、供給圧力2.1kg/crAで安定して運転
することができた。また残留溶媒量は470重量pρm
であった。
As a result, stable operation was possible at a supply pressure of 2.1 kg/crA. Also, the amount of residual solvent is 470 ppm by weight.
Met.

比較例5 熱交換器におけるセラミック製の断熱材を取り外し、実
施例4と同様の条件で運転を実施した。
Comparative Example 5 The ceramic heat insulating material in the heat exchanger was removed, and operation was carried out under the same conditions as in Example 4.

運転を開始して10分後、ポリマー溶液の供給圧力の変
動を観察したところ、1.3〜4.5kg/cnlの範
囲で周期的に圧力が変動していた。また、熱交換器の入
口分散部の外面温度を測定したところ約170°Cまで
上昇していた。また、得られたポリマーを20分毎にサ
ンプリングし、その残留溶媒量を測定したところ、65
0〜12oo重量ppmの範囲で変動していた。
10 minutes after the start of operation, fluctuations in the supply pressure of the polymer solution were observed, and it was found that the pressure fluctuated periodically in the range of 1.3 to 4.5 kg/cnl. Furthermore, when the outer surface temperature of the inlet distribution section of the heat exchanger was measured, it was found to have risen to about 170°C. In addition, when the obtained polymer was sampled every 20 minutes and the amount of residual solvent was measured, it was found that 65
It varied in the range of 0 to 12 oo ppm by weight.

以上の各実施例及び比較例の結果を、 まとめて 第1表に示す。The results of the above examples and comparative examples are as follows: collect Shown in Table 1.

(以下余白) 〔発明の効果〕 以上説明した如く、本発明によれば、ポリマー溶液の溶
媒を蒸発除去する工程における熱交換器部でのポリマー
溶液の供給不良などを防止して、残留溶媒量の少ない高
品質のポリマーを効率よく得ることができる。特にポリ
カーボネート製造工程に用いることにより、色相の悪化
を低減することができ、ポリカーボネートの特性である
透明性を充分に発揮させることができる。
(The following is a blank space) [Effects of the Invention] As explained above, according to the present invention, it is possible to prevent insufficient supply of the polymer solution in the heat exchanger section in the step of evaporating and removing the solvent of the polymer solution, and to reduce the amount of residual solvent. It is possible to efficiently obtain high-quality polymers with less oxidation. In particular, by using it in the polycarbonate production process, deterioration in hue can be reduced and the transparency, which is a characteristic of polycarbonate, can be fully exhibited.

したがって、本発明は高品質のポリカーボネートの製造
に、またさらに他のポリ′マーの製造に有効かつ幅広く
利用することができる。
Therefore, the present invention can be effectively and widely used in the production of high quality polycarbonate and also in the production of other polymers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶媒除去装置の一例を示す説明図、第2図はプ
レートフィン型熱交換器の熱交換器ユニットを示す要部
の拡大斜視図、第3図は同じく熱交換器の人口分散部の
断面図である。 10:溶媒除去装置、11:本体。 12:熱交換器、13:排出口。 14:ジャケット、15:排気口。 16:仕切板。 18:加熱室。 20:ヘッダ− 22=冷却ジヤケツト 17:金属板。 19:溶液室。 21:断熱部。 23:温度検出器 第 図 第 図
Fig. 1 is an explanatory diagram showing an example of a solvent removal device, Fig. 2 is an enlarged perspective view of the main parts showing a heat exchanger unit of a plate-fin type heat exchanger, and Fig. 3 is a population distribution section of the heat exchanger. FIG. 10: Solvent removal device, 11: Main body. 12: Heat exchanger, 13: Discharge port. 14: Jacket, 15: Exhaust port. 16: Partition plate. 18: Heating chamber. 20: Header 22 = Cooling jacket 17: Metal plate. 19: Solution chamber. 21: Heat insulation part. 23: Temperature detector diagram

Claims (2)

【特許請求の範囲】[Claims] (1)不活性溶媒にポリマーを5〜90重量%含有して
なるポリマー溶液を、熱交換器を備えた溶媒除去装置に
導入し、前記不活性溶媒を蒸発除去するにあたり、熱交
換器の入口分散部における不活性溶媒の蒸気圧P_1を
、該入口分散部の内部圧力P_2に対して、P_1−P
_2≦1.5kg/cm^2の範囲に維持することを特
徴とするポリマー溶液の溶媒除去方法。
(1) A polymer solution containing 5 to 90% by weight of a polymer in an inert solvent is introduced into a solvent removal device equipped with a heat exchanger, and when the inert solvent is evaporated and removed, the inlet of the heat exchanger is The vapor pressure P_1 of the inert solvent in the dispersion section is expressed as P_1-P with respect to the internal pressure P_2 of the inlet dispersion section.
A method for removing a solvent from a polymer solution, characterized by maintaining the solvent in a range of _2≦1.5 kg/cm^2.
(2)ポリマーが、ポリカーボネートあるいはポリスチ
レンである請求項1記載の方法。
(2) The method according to claim 1, wherein the polymer is polycarbonate or polystyrene.
JP1313286A 1989-12-04 1989-12-04 Method for removing solvent from polymer solution Expired - Lifetime JP2810166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1313286A JP2810166B2 (en) 1989-12-04 1989-12-04 Method for removing solvent from polymer solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313286A JP2810166B2 (en) 1989-12-04 1989-12-04 Method for removing solvent from polymer solution

Publications (2)

Publication Number Publication Date
JPH03174404A true JPH03174404A (en) 1991-07-29
JP2810166B2 JP2810166B2 (en) 1998-10-15

Family

ID=18039388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313286A Expired - Lifetime JP2810166B2 (en) 1989-12-04 1989-12-04 Method for removing solvent from polymer solution

Country Status (1)

Country Link
JP (1) JP2810166B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295102A (en) * 1992-04-21 1993-11-09 Teijin Chem Ltd Method of condensing polycarbonate solution
US7393895B2 (en) 2001-06-28 2008-07-01 Sabic Innovative Plastics Ip B.V. Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer
JP2012136629A (en) * 2010-12-27 2012-07-19 Toray Ind Inc Method for producing polyarylene sulfide resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295102A (en) * 1992-04-21 1993-11-09 Teijin Chem Ltd Method of condensing polycarbonate solution
US7393895B2 (en) 2001-06-28 2008-07-01 Sabic Innovative Plastics Ip B.V. Forming concentrate of poly(arylene ether), thermosetting resin and compatibilizer
JP2012136629A (en) * 2010-12-27 2012-07-19 Toray Ind Inc Method for producing polyarylene sulfide resin

Also Published As

Publication number Publication date
JP2810166B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
CN101528678B (en) Process for preparing isocyanates
US6534619B1 (en) Method for evaporating polymer solutions of thermoplastic polymers
EP0037665B1 (en) Improved acetylene recovery process and apparatus
US6627040B1 (en) Device and method for removing volatile components from polymer solutions
JP2004123745A (en) Method for quenching gaseous reaction mixture in gaseous phase phosgenation of diamine
US20050092444A1 (en) Process and apparatus for removing volatile substances from highly viscous media
JPH11503778A (en) Process for producing polyamide based on dicarboxylic acid and diamine
RU2238128C2 (en) Method and device for boiling-down solutions of thermoplastic polymers and polycarbonate obtained at boiling-down process
CN109790242B (en) Solvent separation apparatus and solvent separation method
JPH03174404A (en) Removal of solvent from polymer solution
JP4212556B2 (en) Post-treatment of the reaction effluent from the phosgenation reactor
JPS5952882B2 (en) Continuous bulk polymerization method for styrenic resins
US7959766B2 (en) Method for obtaining cyclododecatriene by evaporation
US5256707A (en) Continuous process for concentrating polymer solutions up to a required specification level of residual solvents
JPH02185530A (en) Preparation of polycarbonate
KR101918233B1 (en) Continuous sublimator
CA2335577A1 (en) Method for isolating polymers from solutions
EP0167401A2 (en) Procedure and means for separating or purifying organic substances
CN211486557U (en) Organic solvent and water continuous removal recovery system in macromolecular compound production
KR20010042858A (en) Methods for Removing Volatile Components from Polymer Solutions
KR100958530B1 (en) Reaction apparatus for melting crystallization capable of continuous processing and the system comprising the same
KR101456719B1 (en) Tube bundle heat exchanger and method for removing dissolved substances from a polymer solution
JPH05255424A (en) Continuous process for eliminating monomer from aqueous latex of synthetic polymer, and apparatus for carrying out the same process
TWI707876B (en) Equipment for preparing styrene-acrylonitrile copolymer
JPH01249829A (en) Production of polycarbonate