JPH03170614A - Combustion method in heating furnace - Google Patents

Combustion method in heating furnace

Info

Publication number
JPH03170614A
JPH03170614A JP30715889A JP30715889A JPH03170614A JP H03170614 A JPH03170614 A JP H03170614A JP 30715889 A JP30715889 A JP 30715889A JP 30715889 A JP30715889 A JP 30715889A JP H03170614 A JPH03170614 A JP H03170614A
Authority
JP
Japan
Prior art keywords
combustion
heating furnace
atmosphere
skelp
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30715889A
Other languages
Japanese (ja)
Other versions
JP2669082B2 (en
Inventor
Shunichi Akiyama
俊一 秋山
Takeshi Tada
健 多田
Toshiyuki Kurosawa
黒沢 利幸
Tsutomu Shibuta
渋田 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1307158A priority Critical patent/JP2669082B2/en
Publication of JPH03170614A publication Critical patent/JPH03170614A/en
Application granted granted Critical
Publication of JP2669082B2 publication Critical patent/JP2669082B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To restrain the development of scale to low at any part in a heating furnace by burning unburnt content at the outside of incomplete combustion atmosphere surrounding a material to be heated and reducing secondary air quantity for burning the unburnt content at a part widening interval of burners. CONSTITUTION:In the heating furnace 1 for executing heat treatment to butt- welded pipe skelp 5 conveyed with a skid 8, fuel is burnt with the burners in primary combustion parts 3 arranged on furnace walls 2 in both sides at <1.0 air ratio. By this method, non-oxydizing atmosphere with the incomplete combustion is resulted in the range 6 surrounding the skelp 5 and also the skelp 5 is heated. Further, the air for secondary combustion is supplied to the range 7 at outside of the above range 6 from slit-like secondary combustion ports 4 set near upper and lower parts of the primary combustion ports 3 to completely burn the unburnt content. Then, supplying quantity of the secondary combustion air is reduced for upstream side of the part where interval of burners is widen i.e., the skid 8 setting part and the atmosphere in the range 6 of the part is maintained to bean incomplete combustion atmosphere. By this method, the skelp 5 is efficiently heated and also the quantity of scale generated is restrained to min. at any position in the heating furnace 1.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、二層雰囲気燃焼バーナーを備えた加熱炉の
燃焼方法に関する. [従来技術] 一般の加熱炉におけるバーナーの燃焼は、空気比1.L
〜1.2で燃焼させいる.そのため、燃焼ガスの雰囲気
は過剰酸素を含む酸化性雰囲気となっている.その結果
被加熱材は酸化性雰囲気にさらされながら加熱されるこ
とになり、スクールの発生量が多くなり、これによる歩
留低下が多きかった. また、一般的な直火式無酸化燃焼方式は、水性ガス化反
応理論に基づく無酸化雰囲気が得られる空気比で燃焼さ
せ,ている.水性ガス化反応理論に基づく無酸化雰囲気
は、燃料を空気比1.0以下の不完全燃焼により得られ
る燃焼ガス中のCo/C02およびH./H20の値で
決定され、これらの値は第4図に示すように加熱温度に
よって異なる.すなわち、第4図から分かるように加熱
温度が高くなればなるほど、無酸化雰囲気を得るために
は、C O / C O *の値を大きくする必要があ
り、一般の加熱炉(加熱温度l200〜1300℃)で
はCo/CO2 =3.1〜3.3を確保する必要があ
る.この無酸化雰囲気を得るための設定空気比は燃料組
成により若干異なり、コークス炉ガスの場合は第5図に
示すように0.5である. このように従来行なわれている直火式の無酸化加熱方式
では、燃料を極端に不完全燃焼させるので、火炎温度が
低下し、その結果加熱能率が低下する.また、多Iの未
燃分が発生するので、燃料原単位が非常に低下するとい
う欠点があった.このような従来の直火式無酸化燃焼方
式の欠点を改善してスケールの発生を抑制し、しかも加
熱能率が低下せず燃料原単位が悪化しない直火式無酸化
燃焼方式として特開昭60−2 1 57 1 6号公
報に開示された技術がある.この技術においては第6図
のように加熱する被加熱材21を囲む領域22を空気比
1.0未満で燃焼させ、この領域22の燃焼で発生、4
シた未燃分を領域22の外側の領域23で燃焼させるよ
うにしている.この加熱炉の燃焼方法により,スケール
発生率が低下し、しかも加熱に要する時間および燃料原
単位も従来とほとんど変わらないという効果が得られて
いる. [発明が解決しようとする課題] しかしながら、従来の二層雰囲気による加熱炉の燃焼方
法においては、次のような問題点があった.すなわち、
例えば鍛接管スケルプ加熱炉の例で説明すると、スケル
プの進行方向に添って加熱炉の両側壁からバーナーが2
00〜3 0 0 am間隔で配置されているが、炉壁
にはスケルブを受けるためのスキッドが固定されている
箇所があるので、そのような場所ではバーナーの間隔は
広がらざるをえない.そして、炉内のスキッド後方のス
ケルプを囲む領域の雰囲気は燃料の供給が途切れるので
、無酸化雰囲気を維持できず、この区間ではスケルプが
酸化されスケールが発生するという問題点があった. この発明は、上記したような従来技術の問題点を解消し
、加熱炉のどの部分においてもスケールの発生を低く抑
えることができる加熱炉の燃焼方法を提供することを目
的としている. [課題を解決するための手段] この発明に係る加熱炉の燃焼方法は、被加熱材を囲む領
域を空気比1.0未満で燃焼させ、この領域の燃焼で発
生した未燃分を該領域の外側で燃焼させる加熱炉の燃焼
方法において、炉のバーナー間隔の広がる部分の燃焼排
ガス上流側の1本以上のバーナーは前記未燃分を燃焼さ
せるための2次空気の供給量を絞り、バーナー間隔の広
がる部分の被加熱材を囲む領域の雰囲気が不完全燃焼雰
囲気となるように燃焼させる加熱炉の燃焼方法である. [作用] この発明に係る加熱炉の燃焼方法は、被加熱材を囲む領
域を空気比1.0未満で燃焼させ、この領域の燃焼で発
生した未燃分を該領域の外側で燃焼させる加熱炉の燃焼
方法において、炉のバーナー間隔の広がる部分の燃焼排
ガス上流側の1本以上のバーナーは前記未燃分を燃焼さ
せるための2次空気の供給量を絞るようにして燃焼させ
ている.この理由は、バーナー間隔の広がっている部分
の燃焼排ガス上流側で、バーナー間隔の狭まっている部
分と同じ量の2次空気を供給すると、バーナー間隔の広
がっている部分では燃料の噴射が行なわれていないため
、必然的に被加熱材を囲む領域の雰囲気が、排ガス上流
側から流れてくる2次燃焼後の排ガスにより、無酸化雰
囲気から酸化雰囲気へと移行し、被加熱材が酸化されて
スケールが発生するからである.したがって、バーナー
間隔の広がっている部分の燃焼排ガス上流側では、2次
空気の供給量を絞り、バーナー間隔の広がっている部分
の被加熱材を囲む領域の雰囲気が無酸化雰囲気を保つよ
うにしている.[実施例] 本発明の1実施例の加熱炉の燃焼方法を鍛接管スケルプ
加熱炉の場合において説明する.第1図は鍛接管スケル
プ加熱炉の断面図であり、第2図は第1図のA−A矢視
である.この鍛接管スケルプ加熱炉1は、両側の炉壁2
に1次燃焼ボート3と、1次燃焼ポート3の近傍上下に
スリット状2次燃焼ボート4を設けている.そして、1
次燃焼ボート3には燃焼バーナーを配置して、燃料を空
気比0.45で燃焼させてスケルブ5を囲む領域6に無
酸化雰囲気を形戒させてスケルブ5を加熱するとともに
、2次燃焼ボート4からは2次燃焼用空気を炉内の領j
!li6の外側の領域7に吹き込んで、1次燃焼で生じ
た未燃分を完全燃焼させるようにしている. 第2図で分かるように、1次燃焼ボート3および2次燃
焼ボート4は、鍛接管スケルプ加熱炉1の炉壁2に添っ
て200〜3 0 0 am間隔で、しかも両炉壁2間
では千鳥状になるように配置されているが、ところどこ
ろにスゲルプ5を支えるスキッド8があり、その部分で
は1次m焼ボート3および2次燃焼ボート4の間隔は広
くなっている. このような、1次燃焼ボート3および2次燃焼ボート4
の間隔が広くなっている燃焼排ガスの流れの上流側(第
2図の■〜■〉の2次燃焼ボート4から、2次燃焼用空
気を間隔が狭い部分と同じ量吹き込むとスキッド部分で
は燃料が燃焼されない結果として、スケルプ5を囲む領
域に排ガス上流側から流れてくる2次燃焼後の排ガス(
酸化性雰囲気ガス)が侵入し、スケルプ5を囲む領域の
雰囲気が無酸化雰囲気から酸化雰囲気へと移行する.そ
の結果スケルプ5が酸化されスケールが発生する. そこで、本発明の1実施例の加熱炉の燃焼方法において
は、1次燃焼ボート3および2次燃焼ボート4の間隔が
広くなっている燃焼排ガスの流れの上流側(第2図の■
〜■〉の2次燃焼ボート4から供給する2次燃焼空気の
供給量を、第3図の2次空気弁9を絞って間隔が狭いと
ころよりも少なくするようにしている.なお第3図の1
0は1次空気弁である. 第1表は第2図の■〜■の位置の2次空気弁の開度を全
開の1/4に絞り、他の位置では全開にした場合のスキ
ッド直後の位置のCO濃度(%〉を、■〜■の位置の2
次空気弁の開度を全開とした場合と比較して示したもの
である.第1表から明らかなように、■〜■の位置の2
次空気弁の開度を全開の1/4に絞った場合には、全開
の場合よりも大幅にCO濃度(%〉の向上が認められ、
理想的な無酸化雰囲気となっているが分かる.第  1
  表         (%〉備考:2OA.32A
は鍛接管の呼称径本発明の1実施例の加熱炉の燃焼方法
においては、従来技術と比較して少なくとも0.3%の
スケールロスの低減が確認されており、月間数万トンを
生産する鍛接管工場の場合にはその経済的な効果は大き
い. [発明の効果] この発明により,加熱炉のどの位Iにおいても被加熱材
に生成されるスケールの発生を最小限に抑えることがで
きる.
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a combustion method in a heating furnace equipped with a two-layer atmosphere combustion burner. [Prior Art] Burner combustion in a general heating furnace is performed at an air ratio of 1. L
Burn it at ~1.2. Therefore, the combustion gas atmosphere is an oxidizing atmosphere containing excess oxygen. As a result, the material to be heated was heated while being exposed to an oxidizing atmosphere, resulting in a large amount of schooling, which led to a significant drop in yield. In addition, the general direct-fire non-oxidizing combustion method uses combustion at an air-to-air ratio that provides a non-oxidizing atmosphere based on the theory of water gasification reactions. The non-oxidizing atmosphere based on the water gasification reaction theory is based on Co/C02 and H. /H20, and these values vary depending on the heating temperature, as shown in Figure 4. That is, as can be seen from Fig. 4, the higher the heating temperature, the larger the value of C O / C O * needs to be in order to obtain a non-oxidizing atmosphere. 1300℃), it is necessary to ensure Co/CO2 = 3.1 to 3.3. The air ratio set to obtain this non-oxidizing atmosphere varies slightly depending on the fuel composition, and in the case of coke oven gas, it is 0.5 as shown in Figure 5. In the conventional direct-fire non-oxidation heating method, the fuel is burned extremely incompletely, resulting in a decrease in flame temperature and, as a result, a decrease in heating efficiency. In addition, since unburned matter containing a large amount of I is generated, there is a drawback that the fuel consumption rate is greatly reduced. Unexamined Japanese Patent Application Publication No. 1988 (1982) was developed as a direct-fired non-oxidative combustion method which improves the drawbacks of the conventional direct-fired non-oxidative combustion method and suppresses the formation of scale, and which does not reduce the heating efficiency or worsen the fuel consumption rate. There is a technique disclosed in Publication No.-215716. In this technique, as shown in FIG. 6, a region 22 surrounding a material to be heated 21 to be heated is combusted at an air ratio of less than 1.0, and the combustion of this region 22 generates 4
The unburned content is burned in a region 23 outside the region 22. This heating furnace combustion method has the effect of reducing the scale generation rate, and also keeping the time and fuel consumption required for heating almost the same as before. [Problems to be Solved by the Invention] However, the conventional combustion method in a heating furnace using a two-layer atmosphere has the following problems. That is,
For example, in the case of a forged-welded pipe skelp heating furnace, two burners are installed from both side walls of the heating furnace along the direction of progress of the skelp.
The burners are spaced at intervals of 0.00 to 3.00 am, but there are places on the furnace wall where skids are fixed to receive the squirrels, so the spacing between the burners has to be widened in such places. In addition, the atmosphere in the area surrounding the skelp at the rear of the skid in the furnace was not able to maintain a non-oxidizing atmosphere because the fuel supply was interrupted, and there was a problem in that the skelp was oxidized and scale formed in this area. The present invention aims to solve the problems of the prior art as described above and to provide a combustion method for a heating furnace that can suppress the generation of scale in any part of the heating furnace. [Means for Solving the Problems] A heating furnace combustion method according to the present invention involves burning an area surrounding a material to be heated at an air ratio of less than 1.0, and discharging unburned matter generated by combustion in this area. In a heating furnace combustion method in which combustion is performed outside of the furnace, one or more burners on the upstream side of the combustion exhaust gas in the part where the burner spacing is widened restricts the supply amount of secondary air for burning the unburned matter, and This is a heating furnace combustion method in which combustion is performed so that the atmosphere in the region surrounding the material to be heated at the widening interval becomes an incomplete combustion atmosphere. [Operation] The heating furnace combustion method according to the present invention is a heating method in which a region surrounding a material to be heated is combusted at an air ratio of less than 1.0, and unburned matter generated by combustion in this region is combusted outside the region. In the furnace combustion method, one or more burners on the upstream side of the combustion exhaust gas in the part of the furnace where the burner spacing is widened are used to perform combustion by restricting the amount of secondary air supplied to burn the unburned components. The reason for this is that if the same amount of secondary air is supplied upstream of the combustion exhaust gas in the area where the burner spacing is wide as in the area where the burner spacing is narrow, fuel injection will not occur in the area where the burner spacing is wide. Therefore, the atmosphere in the area surrounding the heated material inevitably shifts from a non-oxidizing atmosphere to an oxidizing atmosphere due to the exhaust gas flowing from the upstream side of the exhaust gas after secondary combustion, and the heated material is oxidized. This is because scale occurs. Therefore, on the upstream side of the combustion exhaust gas where the burner spacing is wide, the amount of secondary air supplied is restricted to maintain a non-oxidizing atmosphere in the area surrounding the heated material where the burner spacing is wide. There is. [Example] A combustion method of a heating furnace according to an embodiment of the present invention will be explained in the case of a forge-welded pipe squelp heating furnace. Fig. 1 is a sectional view of a forge-welded pipe skelp heating furnace, and Fig. 2 is a view taken along the line A-A in Fig. 1. This forged welded pipe squelp heating furnace 1 has furnace walls 2 on both sides.
A primary combustion boat 3 and a slit-shaped secondary combustion boat 4 are provided above and below the primary combustion port 3. And 1
A combustion burner is arranged in the secondary combustion boat 3 to burn fuel at an air ratio of 0.45 to create a non-oxidizing atmosphere in the area 6 surrounding the squelve 5 to heat the squelve 5. From 4 onwards, the air for secondary combustion is transferred to the area inside the furnace.
! It is blown into the outer region 7 of the li 6 to completely burn the unburned matter produced in the primary combustion. As can be seen in FIG. 2, the primary combustion boats 3 and the secondary combustion boats 4 are spaced along the furnace wall 2 of the forged-welded tube skelp heating furnace 1 at intervals of 200 to 300 am, and between both furnace walls 2. Although they are arranged in a staggered manner, there are skids 8 that support the Sgelp 5 in some places, and the distance between the primary combustion boats 3 and the secondary combustion boats 4 is wide in these areas. Such a primary combustion boat 3 and a secondary combustion boat 4
If the same amount of secondary combustion air is blown from the secondary combustion boat 4 on the upstream side of the flue gas flow where the gaps are wide (■ to ■ in Figure 2) as in the areas where the gaps are narrow, the fuel will be absorbed in the skid area. As a result, the exhaust gas after secondary combustion (
(oxidizing atmospheric gas) enters, and the atmosphere in the area surrounding the squelp 5 changes from a non-oxidizing atmosphere to an oxidizing atmosphere. As a result, Skelp 5 is oxidized and scale is generated. Therefore, in the heating furnace combustion method according to one embodiment of the present invention, the interval between the primary combustion boat 3 and the secondary combustion boat 4 is widened on the upstream side of the flow of combustion exhaust gas (
The amount of secondary combustion air supplied from the secondary combustion boat 4 in ~■> is made smaller than that in the case where the interval is narrow by throttling the secondary air valve 9 in Fig. 3. Note that 1 in Figure 3
0 is the primary air valve. Table 1 shows the CO concentration (%) at the position immediately after the skid when the opening degree of the secondary air valve at positions ■ to ■ in Figure 2 is reduced to 1/4 of the fully open position, and the other positions are fully open. , ■~■ position 2
The figure below shows a comparison with the case where the air valve opening is fully open. As is clear from Table 1, 2 in positions ■~■
Next, when the opening degree of the air valve was reduced to 1/4 of the fully open position, the CO concentration (%) was significantly improved compared to when it was fully open.
It can be seen that the atmosphere is an ideal non-oxidizing atmosphere. 1st
Table (%) Notes: 2OA.32A
is the nominal diameter of the forge-welded pipe.In the heating furnace combustion method of one embodiment of the present invention, it has been confirmed that scale loss is reduced by at least 0.3% compared to the conventional technology, and tens of thousands of tons can be produced per month. In the case of forge-welded pipe factories, the economic effects are significant. [Effects of the Invention] According to the present invention, it is possible to minimize the scale generated on the heated material at any point I in the heating furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例の加熱炉の燃焼方法を実施し
た鍛接管スケルブ加熱炉の横断面図、第2図は第1図の
A−A矢視図、第3図は1,2次燃焼空気用配管を示す
説明図、第4図は鉄の酸化・還元平衡図、第5図はコー
クスガスの空気比とCo/Co2,H2 /}Ia O
f)関係を示すグラフ図、第6図は加熱炉の二層雰囲気
燃焼法を示す説明図である.
Fig. 1 is a cross-sectional view of a forged pipe squelve heating furnace in which the heating furnace combustion method of one embodiment of the present invention is implemented, Fig. 2 is a view taken along the line A-A in Fig. 1, and Fig. 3 is a 1, An explanatory diagram showing the secondary combustion air piping, Figure 4 is an oxidation/reduction equilibrium diagram of iron, and Figure 5 is the coke gas air ratio and Co/Co2, H2 /}Ia O
f) Graph diagram showing the relationship, Figure 6 is an explanatory diagram showing the two-layer atmosphere combustion method in the heating furnace.

Claims (1)

【特許請求の範囲】[Claims]  被加熱材を囲む領域を空気比1.0未満で燃焼させ、
この領域の燃焼で発生した未燃分を該領域の外側で燃焼
させる加熱炉の燃焼方法において、炉のバーナー間隔の
広がる部分の燃焼排ガス上流側の1本以上のバーナーは
前記未燃分を燃焼させるための2次空気の供給量を絞り
、バーナー間隔の広がる部分の被加熱材を囲む領域の雰
囲気が不完全燃焼雰囲気となるように燃焼させることを
特徴とする加熱炉の燃焼方法。
Burning the area surrounding the material to be heated at an air ratio of less than 1.0,
In a heating furnace combustion method in which unburned matter generated by combustion in this region is combusted outside this region, one or more burners on the upstream side of the combustion exhaust gas in the part where the burner interval of the furnace is widened burns the unburned matter. A combustion method for a heating furnace, characterized in that the amount of secondary air supplied for heating is reduced, and combustion is performed so that the atmosphere in the area surrounding the heated material in the part where the burner interval is widened becomes an incomplete combustion atmosphere.
JP1307158A 1989-11-27 1989-11-27 Combustion method of heating furnace Expired - Fee Related JP2669082B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307158A JP2669082B2 (en) 1989-11-27 1989-11-27 Combustion method of heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307158A JP2669082B2 (en) 1989-11-27 1989-11-27 Combustion method of heating furnace

Publications (2)

Publication Number Publication Date
JPH03170614A true JPH03170614A (en) 1991-07-24
JP2669082B2 JP2669082B2 (en) 1997-10-27

Family

ID=17965726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307158A Expired - Fee Related JP2669082B2 (en) 1989-11-27 1989-11-27 Combustion method of heating furnace

Country Status (1)

Country Link
JP (1) JP2669082B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133317A (en) * 1983-01-19 1984-07-31 Sumitomo Metal Ind Ltd Operating method of direct firing type clean heating furnace
JPS62228430A (en) * 1986-03-31 1987-10-07 Nippon Kokan Kk <Nkk> Method for heating steel material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133317A (en) * 1983-01-19 1984-07-31 Sumitomo Metal Ind Ltd Operating method of direct firing type clean heating furnace
JPS62228430A (en) * 1986-03-31 1987-10-07 Nippon Kokan Kk <Nkk> Method for heating steel material

Also Published As

Publication number Publication date
JP2669082B2 (en) 1997-10-27

Similar Documents

Publication Publication Date Title
US4496306A (en) Multi-stage combustion method for inhibiting formation of nitrogen oxides
US4395223A (en) Multi-stage combustion method for inhibiting formation of nitrogen oxides
JPH0526410A (en) Combustion in isolated region
JPH05340505A (en) Method for reducing amount of production of nitrogen oxide produced during combustion
JPH07324704A (en) Fire tube system combustion
JP2007271188A (en) Combustion method of burner
Teng et al. Control of NOx emissions through combustion modifications for reheating furnaces in steel plants
JPH064171Y2 (en) Radiant chives
JPH03170614A (en) Combustion method in heating furnace
JPS60126508A (en) Finely powdered coal burning device
JPH07145916A (en) Oxygen burner
JPS62169907A (en) Pulverized coal combustion boiler
JPS6360094B2 (en)
JP3893677B2 (en) Furnace with regenerative burner
CN208952074U (en) A kind of low nitrogen burning gas boiler
TW201908682A (en) Method for reducing nitrogen oxides in a strip processing furnace
JPH01167502A (en) Burner with low nox
CN109196278A (en) Heat-storage type burner device and its method of operation
JPS605645B2 (en) Low NOx type heat treatment furnace
JPH0668369B2 (en) Carbon black manufacturing equipment Tail gas combustion method
KR20010065375A (en) Three step combustion type burner of an oxide rare combustion type
JPS6026923B2 (en) Low NOx combustion equipment
JPS6183805A (en) Method of burning pulverized solid fuel and the like
SU1133457A1 (en) Method of heating industrial furnaces
JP2755089B2 (en) Combustion method for continuous heating furnace with regenerative burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees