JPH03169350A - Production of catalyst carrier made of ceramic paper - Google Patents

Production of catalyst carrier made of ceramic paper

Info

Publication number
JPH03169350A
JPH03169350A JP1308391A JP30839189A JPH03169350A JP H03169350 A JPH03169350 A JP H03169350A JP 1308391 A JP1308391 A JP 1308391A JP 30839189 A JP30839189 A JP 30839189A JP H03169350 A JPH03169350 A JP H03169350A
Authority
JP
Japan
Prior art keywords
ceramic
paper
ceramic paper
catalyst
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1308391A
Other languages
Japanese (ja)
Inventor
Toyohiko Yuki
幸 豊彦
Masayoshi Ichiki
正義 市来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1308391A priority Critical patent/JPH03169350A/en
Publication of JPH03169350A publication Critical patent/JPH03169350A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the rigidity of a catalyst base material made of ceramic paper to a large extent by impregnating the ceramic paper with an organosilane compound before impregnating the same with a titania sol to heat-treating the impregnated one. CONSTITUTION:Ceramic fibers are formed into ceramic paper by a papermaking process and this ceramic paper is impregnated with a titania sol to be dried and baked to prepare a ceramic catalyst carrier. At this time, the ceramic paper before the impregnation with the titania sol is impregnated with an organosilane compound such as methyl silicate or ethyl silicate and subsequently heat-treated. By this method, the catalyst carrier made of the ceramic paper having sufficient rigidity is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、排ガス中の窒素酸化物のアンモ方法に関し
、さらに詳しくはシリカ・アルミナ系またはアルミナ系
のセラミックスファイバーの抄紙によって製造されるい
わゆるセラミックスペーパーを基材とする触媒担体の製
造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for removing nitrogen oxides from exhaust gas, and more specifically to a method for removing nitrogen oxides from exhaust gas. The present invention relates to a method for producing a catalyst carrier using paper as a base material.

[従来技術および発明の課題] 従来、基材としてグラスファイバーの集合体や、セラミ
ックスファイバーを抄紙して製造したセラミックスペー
パーを用い、この基材にゾル含浸法でチタニア微粉を分
散状に保持させて担体を得、ついでこの担体にバナジウ
ム酸化物を担持させて脱硝触媒を製造する方法が知られ
ている。こうして得られた触媒の剛性は、グラスファイ
バーやセラミックスファイバーの抄紙時に添加される接
着剤の接着力とゲル化したチタニアのバインダー効果と
によってもたらされる。
[Prior art and problems to be solved by the invention] Conventionally, an aggregate of glass fibers or a ceramic paper produced by paper-making ceramic fibers was used as a base material, and titania fine powder was held in a dispersed state in this base material by a sol impregnation method. A method is known in which a denitration catalyst is produced by obtaining a carrier and then supporting vanadium oxide on the carrier. The rigidity of the catalyst thus obtained is brought about by the adhesive force of the adhesive added to the glass fiber or ceramic fiber during paper making and the binder effect of gelled titania.

しかし、グラスファイバーの集合体を基材とする場合に
は、触媒基材の剛性が十分でないため、剛性補強用の金
属支持板を基材に添わせる必要がある。他方、セラミッ
クスペーパーを基材とする場合には、接着剤の添加量は
セラミックスペーパーが紙としての機能を損わない程度
に制限されているため、接着剤による剛性効果はほとん
ど生じておらず、剛性はもっぱらチタニアのバインダー
効果に依存している。しかし、ゲル化チタニアの機械的
強度は比較的低いので、これだけでは十分な触媒剛性は
得られない。
However, when an aggregate of glass fibers is used as a base material, since the rigidity of the catalyst base material is insufficient, it is necessary to attach a metal support plate to the base material for reinforcement of rigidity. On the other hand, when ceramic paper is used as a base material, the amount of adhesive added is limited to an extent that does not impair the function of the ceramic paper as paper, so the adhesive has almost no stiffening effect. Stiffness relies solely on the binder effect of titania. However, since the mechanical strength of gelled titania is relatively low, this alone cannot provide sufficient catalyst rigidity.

この発明は、上記の如き実情に鑑み、十分な剛性を有す
るセラミックスペーパー製触媒担体の製造方法を提供す
ることを目的とする。
In view of the above-mentioned circumstances, it is an object of the present invention to provide a method for manufacturing a ceramic paper catalyst carrier having sufficient rigidity.

[課題の解決手段] この発明による方法は、セラミックスファイバーの抄紙
によって製造されるセラミックスペーパーにチタニアゾ
ルを.含浸させて乾燥ないし焼威して担体を得るに当た
り、チタニアゾルの含浸乾燥前に同ペーパーに有機シラ
ン化合物を含浸させて加熱処理することを特徴とする、
セラミックスペーパー製触媒担体の製造方法である。
[Means for Solving the Problems] The method according to the present invention involves applying titania sol to ceramic paper produced by paper making using ceramic fibers. When impregnating and drying or baking to obtain a carrier, the paper is impregnated with an organic silane compound and heat treated before impregnating and drying with titania sol,
This is a method for manufacturing a catalyst carrier made of ceramic paper.

セラミックスファイバーの代表例は、シリカ・アルミナ
系ファイバー、アルミナ系ファイバーなどである。
Typical examples of ceramic fibers include silica/alumina fibers and alumina fibers.

有機シラン化合物としては、メチルシリケート、エチル
シリケートなどのアルキルシリケ−?や、これらアルキ
ルシリケートのボリマーボリ力ルボシランなどが使用さ
れる。アルキルシリケートは一般式S i (OR)4
で示され(式中、Rはメチル、エチルなどのアルキル基
を意味する)、加熱処理により耐熱性に優れたSiO■
またはSiCに分解される。
Examples of organic silane compounds include alkyl silicates such as methyl silicate and ethyl silicate. and polymers of these alkyl silicates, polysilanes, etc. are used. Alkyl silicate has the general formula S i (OR)4
(in the formula, R means an alkyl group such as methyl or ethyl), and has excellent heat resistance through heat treatment.
Or decomposed into SiC.

また、アルキルシリケートのボリマーは一般式    
    OR (RO)3 S i {− O−S i −+ n O
ROR で示され、加熱処理によってやはりシリカになる。 ま
た、ポリ力ルボシランは下記一般式のモノマー   R HOOC−S  i  −OH (Rはアルキル) R を触媒の存在下に重合したものであって、一般式   
 R     OR 1I HOOC  −イ S  i  −0−C  +llS
  i  OHR                R
で示される。
In addition, the polymer of alkyl silicate has the general formula
OR (RO)3 S i {- O-S i −+ n O
It is represented by ROR and also becomes silica upon heat treatment. In addition, polycarbosilane is obtained by polymerizing the monomer R HOOC-S i -OH (R is alkyl) R of the following general formula in the presence of a catalyst, and has the general formula
R OR 1I HOOC -i S i -0-C +llS
i OHR R
It is indicated by.

有機シラン化合物の含浸後の加熱処理は、好ましくは約
400〜450℃の温度で1〜3時間程度行なわれる。
The heat treatment after impregnation with the organic silane compound is preferably carried out at a temperature of about 400 to 450°C for about 1 to 3 hours.

有機セラミックスペーパーに有機シラン化合物を含浸さ
せると、セラミックスペーパーの空隙率が低下し、チタ
ニアの吸着保持量が減少する。その結果、活性金属の担
持量が減少し、触媒の脱硝活性が低下する(後述する実
施例2参照)。したがって、有機シラン化合物の保持量
は、チタニアの保持量の減少が無視でき、触媒活性の低
下が認められない程度である必要があり、セラミックス
ペーパーm2当り好ましくは約30g以下(Sin2と
して)である。
When organic ceramic paper is impregnated with an organic silane compound, the porosity of the ceramic paper decreases, and the amount of adsorption and retention of titania decreases. As a result, the amount of active metal supported decreases, and the denitrification activity of the catalyst decreases (see Example 2 described below). Therefore, the amount of the organic silane compound retained must be such that the decrease in the amount of titania retained is negligible and no decrease in catalytic activity is observed, and is preferably about 30 g or less (as Sin2) per m2 of ceramic paper. .

活性金属の代表例は、バナジウム、タングステン、これ
ら金属の酸化物などである。ただし、これらは限定的な
ものではない。
Typical examples of active metals include vanadium, tungsten, and oxides of these metals. However, these are not limited.

C作 用コ この発明の触媒担体の製造方法によれば、セラミックス
ペーパーにチタニアゾルを含浸させて乾燥させる前に、
予め同ペーパーに有機シラン化合物を含浸させて加熱処
理するので、添付の第1図に示すように、有機シラン化
合物の加熱処理生戊物(1)のバインダー効果によって
、セラミックスペーパーのファイバー(2)どうしが強
固に固着される。
According to the method for producing a catalyst carrier of the present invention, before impregnating ceramic paper with titania sol and drying it,
Since the paper is impregnated with an organic silane compound and heat-treated in advance, the fibers of the ceramic paper (2) are formed by the binder effect of the heat-treated raw material (1) of the organic silane compound, as shown in the attached Figure 1. They are firmly attached to each other.

その結果、セラミックスペーパー製触媒基材の剛性が大
幅に向上せられる。
As a result, the rigidity of the ceramic paper catalyst base material is significantly improved.

[実 施 例] つぎに、この発明の触媒製造方法を以下の実施例によっ
て具体的に説明する。
[Examples] Next, the method for producing a catalyst of the present invention will be specifically explained with reference to the following examples.

実施例I Sin2含有量が異なる複数のエチルシリヶート溶液に
それぞれセラミックスペーパーを浸漬し、各ペーパーを
溶液から取り出した後、温?400℃で3時間加熱した
Example I Ceramic paper was immersed in a plurality of ethyl silicate solutions having different Sin2 contents, and after each paper was taken out from the solution, it was heated to a warm temperature. It was heated at 400°C for 3 hours.

ついで、TiO2含有m35vt%のチタニアゾルに各
ベーバーをそれぞれ浸漬し、ゾルから取り出したペーパ
ーを温度150℃で1時間乾燥した後、温度300℃で
1時間焼成した。こうして得られた担体の剛性を引張り
試験によって調べた。
Next, each barber was immersed in a titania sol containing m35 vt% of TiO2, and the paper taken out from the sol was dried at a temperature of 150°C for 1 hour, and then fired at a temperature of 300°C for 1 hour. The rigidity of the carrier thus obtained was examined by a tensile test.

引張り強度(kgf/an’) − (破断強度)/(
セラミックスベーバーの断面積) また、エチルシリケート溶液の代わりに、ポリ力ルボシ
ラン粉末のキシレン溶液を用い、その他の工程を上記と
同様にして、得られた担体の引張り強度を求めた。
Tensile strength (kgf/an') - (breaking strength)/(
(Cross-sectional Area of Ceramic Barber) In addition, a xylene solution of polycarbosilane powder was used instead of the ethyl silicate solution, and the other steps were the same as above, and the tensile strength of the obtained carrier was determined.

さらに、エチルシリケート溶液を用いる含浸工程を省き
、その他の工程を上記と同じく・し、得られた担体の引
張り強度を求めた。
Furthermore, the tensile strength of the obtained carrier was determined by omitting the impregnation step using an ethyl silicate solution and performing the other steps in the same manner as above.

こうして得られた各担体について、SiO■およびTi
O2保持量と引張り強度との関係を第2図のグラフに示
す。同グラフから明らかなように、チタニアゾルの含漫
の前に有機シラン化合物を含浸し加熱処理した場合、引
張り強度が大幅に向上する。
For each support thus obtained, SiO■ and Ti
The graph in FIG. 2 shows the relationship between O2 retention and tensile strength. As is clear from the graph, when impregnated with an organic silane compound and heat-treated before impregnation with titania sol, the tensile strength is significantly improved.

実施例2 S i O2含有量が異なる複数のエチルシリケート溶
液にそれぞれセラミックスベーバーを浸漬し、各ペーパ
ーを溶液から取り出した後、温度110℃で1時間乾燥
した。
Example 2 A ceramic barber was immersed in a plurality of ethyl silicate solutions having different S i O 2 contents, each paper was taken out from the solution, and then dried at a temperature of 110° C. for 1 hour.

ツイで、TiO2含有ffi35wt%のチタニアゾル
に各ペーパーをそれぞれ浸漬し、ゾルから取り出したペ
ーパーを温度110℃で1時間焼成した。こうして得ら
れた各担体のTio2保持量を調べた。
Each paper was immersed in a titania sol containing TiO2 and ffi 35 wt%, and the paper taken out from the sol was fired at a temperature of 110° C. for 1 hour. The amount of Tio2 retained in each of the carriers thus obtained was investigated.

また、エチルシリケート溶液の代わりに、ポリカルボシ
ラン粉末のキシレン溶液を用い、その他の工程を上記と
同じくし、得られた担体のT i O2保持量を調べた
Further, a xylene solution of polycarbosilane powder was used instead of the ethylsilicate solution, and the other steps were the same as above, and the amount of TiO2 retained in the obtained carrier was investigated.

こうして得られた各担体についてSiO2保持量とT 
i 02保持量との関係を第3図のグラフに示す。同グ
ラフから明らかなように、StO2保持量が増大すると
、Tie2保持量が低下する。
The amount of SiO2 retained and T of each support obtained in this way
The relationship with the amount of i02 retained is shown in the graph of FIG. As is clear from the graph, as the StO2 retention increases, the Tie2 retention decreases.

実施例3 SiO2含有量が異なる複数のエチルシリケート溶液に
それぞれセラミックスベーバーを浸漬し、各ペーパーを
溶液から取り出した後、温度400℃で3時間加熱した
Example 3 A ceramic barber was immersed in a plurality of ethyl silicate solutions having different SiO2 contents, and after each paper was taken out from the solution, it was heated at a temperature of 400° C. for 3 hours.

ついで、Tie2含有jl35wt%のチタニアゾルに
各ペーパーをそれぞれ浸漬し、ゾルから取り出したペー
パーを温度150℃で1時間乾燥した後、温度300℃
で1時間焼成した。
Next, each paper was immersed in a 35 wt% titania sol containing Tie2, and the paper taken out from the sol was dried at a temperature of 150°C for 1 hour, and then dried at a temperature of 300°C.
Baked for 1 hour.

こうして得られた担体を30℃のメタバナジン酸アンモ
ニウム飽和水溶液に3時間浸漬し、担体にバナジウム分
を吸着担持させた。ついで、溶液から取り出した担体を
、温度110℃で1時間乾燥しさらに温度300℃で1
時間焼成した。 こうして得られた触媒について、下記
の試験条件で、ガス温度150℃、200℃および30
0℃における脱硝率を求めた。
The carrier thus obtained was immersed in a saturated aqueous solution of ammonium metavanadate at 30° C. for 3 hours to adsorb and carry vanadium on the carrier. Next, the carrier taken out from the solution was dried at a temperature of 110°C for 1 hour, and further dried at a temperature of 300°C for 1 hour.
Baked for an hour. The catalyst thus obtained was tested under the following test conditions at gas temperatures of 150°C, 200°C and 30°C.
The denitrification rate at 0°C was determined.

試験条件:触媒の表面積当たりの通過ガス量−43m/
時 ?口NOx−50ppm 入口N H i = 6 0 p pmO■ − 1 
5% H2 0−10% 測定した結果を第4図のグラフに示す。同グラフから明
らかなように、この発明によって得られた触媒は、特に
ガス温度300℃において高い脱硝活性を示す。
Test conditions: Passing gas amount per surface area of catalyst - 43 m/
Time? Inlet NOx - 50ppm Inlet N H i = 6 0 ppmO - 1
5% H2 0-10% The measured results are shown in the graph of FIG. As is clear from the graph, the catalyst obtained by the present invention exhibits high denitrification activity particularly at a gas temperature of 300°C.

[発明の効果] この発明の触媒担体の製造方法によれば、セラミックス
ペーパーにチタニアゾルを含浸させて乾燥させる前に、
予め同ペーパーに有機シラン化合物を含浸させて加熱処
理するので、有機シラン化合物の加熱処理生成物のバイ
ンダー効果によって、セラミックスベーバーのファイバ
ーどうしを強固に固着させることができ、その結果セラ
ミックスペーパー製触媒基材の剛性を大幅に向上させる
ことができる。
[Effects of the Invention] According to the method for producing a catalyst carrier of the present invention, before impregnating ceramic paper with titania sol and drying it,
Since the paper is impregnated with an organic silane compound and heat-treated in advance, the binder effect of the heat-treated product of the organic silane compound makes it possible to firmly bond the fibers of the ceramic paper to each other, resulting in a ceramic paper catalyst. The rigidity of the base material can be significantly improved.

そのため、波形・平片コンポジットボードのような実用
形態において使用中の触媒の収縮を防止することができ
、また高流速のガス流中に触媒を曝しても触媒のフラッ
タリングが生じるのを防止することができる上に、ガス
中に存在するダストによる触媒の破損ないし摩耗も防止
することができる。
This prevents shrinkage of the catalyst during use in practical configurations such as corrugated and flat composite boards, and also prevents catalyst flutter when exposed to high-velocity gas streams. In addition, it is possible to prevent damage or wear of the catalyst due to dust present in the gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はセラミックスファイバーの固着状態を示す概略
図であり、第2図はSin2およびTiO2の保持量と
引張り強度との関係を示すグラフであり、第3図はSi
n.保持量とTiO2保持量の関係を示すグラフであり
、第4図はSin2保持量と脱硝率の関係を示すグラフ
である。
FIG. 1 is a schematic diagram showing the fixed state of ceramic fibers, FIG. 2 is a graph showing the relationship between the retained amounts of Sin2 and TiO2 and tensile strength, and FIG.
n. FIG. 4 is a graph showing the relationship between the retained amount and the TiO2 retained amount, and FIG. 4 is a graph showing the relationship between the Sin2 retained amount and the denitrification rate.

Claims (1)

【特許請求の範囲】[Claims] セラミックスファイバーの抄紙によって製造されるセラ
ミックスペーパーにチタニアゾルを含浸させて乾燥ない
し焼成して担体を得るに当たり、チタニアゾルの含浸乾
燥前に同ペーパーに有機シラン化合物を含浸させて加熱
処理することを特徴とする、セラミックスペーパー製触
媒担体の製造方法。
Ceramic paper produced by ceramic fiber papermaking is impregnated with titania sol and dried or fired to obtain a carrier, and the paper is characterized by being impregnated with an organic silane compound and heat treated before being impregnated with titania sol and dried. , a method for producing a catalyst carrier made of ceramic paper.
JP1308391A 1989-11-27 1989-11-27 Production of catalyst carrier made of ceramic paper Pending JPH03169350A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308391A JPH03169350A (en) 1989-11-27 1989-11-27 Production of catalyst carrier made of ceramic paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308391A JPH03169350A (en) 1989-11-27 1989-11-27 Production of catalyst carrier made of ceramic paper

Publications (1)

Publication Number Publication Date
JPH03169350A true JPH03169350A (en) 1991-07-23

Family

ID=17980498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308391A Pending JPH03169350A (en) 1989-11-27 1989-11-27 Production of catalyst carrier made of ceramic paper

Country Status (1)

Country Link
JP (1) JPH03169350A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683146B2 (en) 1999-07-05 2004-01-27 Fuji Xerox Co., Ltd. Heterogeneous polymerization catalyst, process for producing acrylic polymer, and acrylic polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683146B2 (en) 1999-07-05 2004-01-27 Fuji Xerox Co., Ltd. Heterogeneous polymerization catalyst, process for producing acrylic polymer, and acrylic polymer

Similar Documents

Publication Publication Date Title
US4532228A (en) Treatment of monolithic catalyst supports
JPH0564745A (en) Production of honeycomb-shaped gas adsorbing element and catalyst carrier
RU2011130424A (en) DIESEL OXIDIZING CATALYST WITH HIGH LOW TEMPERATURE ACTIVITY
US6524680B1 (en) Honeycomb structure
KR100294428B1 (en) Catalyst and process for the production thereof
JPH03169350A (en) Production of catalyst carrier made of ceramic paper
US6319877B1 (en) Catalyzed hardware
JP5081420B2 (en) Catalyst production method and catalyst produced by the method
JP3691619B2 (en) Filler for liquid chromatography and processing method thereof
CN108290151A (en) The method for preparing the monolithic catalyst for selective catalyst reduction of nitrogen oxides
JPH02227139A (en) Denitrification catalyst
JPH02187147A (en) Denitration catalyst with ceramic paper utilized therefor
KR102000216B1 (en) COMPOSITTE INCLUDING CARBON NANOFIBER UNIFORMLY GROWN ON SURFACE OF SiC AND METHOD FOR FABRICATING THE SAME
JP3091240B2 (en) Heat- and acid-resistant glass fiber, method for producing the same, and method for producing glass fiber plate catalyst
CN1330608C (en) Method for processing organic foam pattern plate for the preparation of porous ceramic
JP2794432B2 (en) Exhaust gas pretreatment agent
JPH04281068A (en) Antioxidative inorganic fiber woven fabric, inorganic fiber plate-like catalyst and production thereof
JPS6045123B2 (en) Manufacturing method of fibrous activated carbon
JPH05279958A (en) Production of inorganic material-coated fiber material
JPH04108538A (en) Denitrification catalyst
JPH05285399A (en) Production of catalyst for purification of exhaust gas and inorganic fibrous base material for the same
JPH1119511A (en) Method and apparatus for preparation of catalyst carrier
JPS6147575B2 (en)
JPS62141122A (en) Production of alumina yarn
JP2003010612A (en) Harmful substance removing filter