JPH03167919A - Superconducting logic circuit - Google Patents

Superconducting logic circuit

Info

Publication number
JPH03167919A
JPH03167919A JP30739989A JP30739989A JPH03167919A JP H03167919 A JPH03167919 A JP H03167919A JP 30739989 A JP30739989 A JP 30739989A JP 30739989 A JP30739989 A JP 30739989A JP H03167919 A JPH03167919 A JP H03167919A
Authority
JP
Japan
Prior art keywords
qfp
excitation
exciting
variable
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30739989A
Other languages
Japanese (ja)
Other versions
JP2802446B2 (en
Inventor
Hidekazu Goto
英一 後藤
Yutaka Harada
豊 原田
Hiyuu Uirii
ウィリー・ヒュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP30739989A priority Critical patent/JP2802446B2/en
Publication of JPH03167919A publication Critical patent/JPH03167919A/en
Application granted granted Critical
Publication of JP2802446B2 publication Critical patent/JP2802446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To improve the stability against the dispersion in an exciting signal and the state of manufacture by providing a means using a quantization magnetic flux parametron circuit (QFP) depending on 2 kinds of a periodic exciting circuit QFP and a variable exciting circuit QFP. CONSTITUTION:The two kinds of variable exciting QFP are combined. Two exciting input signals of the same value enter the variable exciting circuit QFP, and the direction of magnetic coupling between an exciting input line and an exciting input inductor is provided so that the one variable exciting QFP is excited by the sum of the exciting input signals and the other variable exciting QFP is excited by the difference of the exciting input signals. The variable exciting QFP 200a outputs a logic function z1 and the variable exciting QFP 200b outputs a logic function z2. Since only one of the two variable exciting circuits QFP is excited simultaneously, output lines of the two variable exciting circuits QFP are connected in series and connected directly to the input line of the frequency exciting QFP 100 to obtain an OR logic function between the functions z1, z2.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は極低温下で動作する超電導回路に関わり、特に
ジョセフソン素子を使ったパラメトロン型の超電導論理
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to superconducting circuits that operate at extremely low temperatures, and particularly to parametron type superconducting logic circuits using Josephson elements.

「従来の技術」 ジョセフソン効果を示す超電導素子(以下、ジョセフソ
ン素子と称す)を使ったパラメトロン型のスイッチング
回路である量子磁束パラメトロン回路(Quantum
 Flux Parametron:以下QFPと略称
する〉は当技術分野ではすでに公知である。
"Prior Art" A quantum flux parametron circuit (Quantum Flux Parametron Circuit) is a parametron-type switching circuit using a superconducting element exhibiting the Josephson effect (hereinafter referred to as a Josephson element).
Flux Parametron (hereinafter abbreviated as QFP) is already known in the art.

QFPは量子化された直流磁束を信号媒体として使う新
しい動作原理に基づくスイッチング回路で、極めて小さ
な消費電力で超高速の動作を行えるため計算機の素子と
しては極めて優れている。また、微弱な磁束を高い利得
で増幅できるため磁東センサの様なアナログ回路として
も極めて優れた特性を持っている。
QFP is a switching circuit based on a new operating principle that uses quantized DC magnetic flux as a signal medium, and is extremely excellent as a computer element because it can operate at extremely high speed with extremely low power consumption. Furthermore, since it can amplify weak magnetic flux with high gain, it has extremely excellent characteristics as an analog circuit such as a magnetic east sensor.

このQFPの原理的な回路構成を第1図に示す。FIG. 1 shows the basic circuit configuration of this QFP.

QFPは第1のジョセフソン素子1と第■の励振インダ
クタ3及び第2のジョセフソン素子2と第2のインダク
タ4からなる回路対を接続して構成された超電導ルーブ
5からなる。超電導ループ5には入力線7及び負荷イン
ダクタ8が直接接続されている。また、超電導ループ5
の近傍には励振線6が配置され、この励振線6は第l、
第2の励振インダタト3、4と磁気的に結合している。
The QFP consists of a superconducting loop 5 configured by connecting a circuit pair consisting of a first Josephson element 1 and a second excitation inductor 3, and a second Josephson element 2 and a second inductor 4. An input line 7 and a load inductor 8 are directly connected to the superconducting loop 5. In addition, superconducting loop 5
An excitation line 6 is arranged near the l-th,
It is magnetically coupled to the second excitation inductors 3 and 4.

励振線6には励振電流源9から励振電流が流れることに
よって励振磁東が供給される。以下にこのように構成さ
れたQFPの動作を簡単に磁束を使って説明する。励振
磁東を印加した励振状態では、QFPから負荷に供給さ
れる出力磁束は、絶対値が同じで向きが正反対の2通り
しかない。QFPではこの磁束の向きをデジタル信号の
“1”“0”信号を対応させる。動作は以下の様である
An excitation magnetic field is supplied to the excitation line 6 by an excitation current flowing from an excitation current source 9 . The operation of the QFP configured in this way will be briefly explained below using magnetic flux. In the excitation state in which the excitation magnetic field is applied, there are only two output magnetic fluxes supplied from the QFP to the load: those having the same absolute value and opposite directions. In QFP, the direction of this magnetic flux is made to correspond to the "1" and "0" signals of the digital signal. The operation is as follows.

先ず、励振磁東を印加しない状態で微弱な入力磁束を入
力線7を介して直接超電導ループ5と負荷インダクタ8
に注入する。この後励振線6に励振磁東を供給すると、
超電導ループ5から負荷インダクタ8に入力磁束と同じ
向きの出力磁束が供給され、出力磁束が増幅される。
First, a weak input magnetic flux is directly connected to the superconducting loop 5 and the load inductor 8 via the input line 7 without applying an excitation magnetic field.
Inject into. After this, when the excitation magnetic east is supplied to the excitation line 6,
Output magnetic flux in the same direction as the input magnetic flux is supplied from the superconducting loop 5 to the load inductor 8, and the output magnetic flux is amplified.

QFPを使った論理回路(以下、QFP回路と略称する
)では、従来、多数決の論理に基づいて論理演算を行な
う。基本のQFP多数決論理回路を第2図に示し、それ
について説明する。QFP100a,100bと−1 
0 0 cは同一の励振信号で励振される。まず、それ
ぞれにx1、x2、x3の2値論理信号を入れて励振信
号を印加すると、増幅された磁束は出力線を経て次段の
QFP100dに供給される。増幅された磁束は絶対値
は同じで向きは入力信号によって正方向と逆方向とがあ
るが、多数である向きの信号が次段のQFP100dの
入力になる。QFP100dの入力信号を2値論理変数
yとすると、yはx1、x2、x3の多数決関数y=x
lx2+x2x3+x3xl.となる。増幅された磁束
が十分に安定した後、QFP100dに励振信号を印加
して入力を増幅し、次の段のqFprこ2値論理信号を
送る。QFP回路ではこの様に同じ段のQFPの間の接
線で論理演算を行なう。また、一つの段から次の段に論
理信号を送るために後段のQFPには遅れた励振信号を
供給することにより複数のQFPに意図しーた順序で論
理動作を行なわせるが、通常、励振信号は周期的に変化
信号を使うので相次ぐ励振信号が位相的に遅れるように
設ける。
Logic circuits using QFP (hereinafter abbreviated as QFP circuits) conventionally perform logical operations based on majority logic. A basic QFP majority logic circuit is shown in FIG. 2 and will be described. QFP100a, 100b and -1
0 0 c is excited with the same excitation signal. First, when binary logic signals x1, x2, and x3 are input to each of them and an excitation signal is applied, the amplified magnetic flux is supplied to the next stage QFP 100d via the output line. The amplified magnetic flux has the same absolute value and its direction can be positive or reverse depending on the input signal, but the signals in the majority direction become input to the next stage QFP 100d. When the input signal of QFP100d is a binary logic variable y, y is a majority function of x1, x2, x3 y=x
lx2+x2x3+x3xl. becomes. After the amplified magnetic flux becomes sufficiently stable, an excitation signal is applied to the QFP 100d to amplify the input, and a binary logic signal is sent to the next stage qFpr. In the QFP circuit, logical operations are performed on tangents between QFPs in the same stage in this way. In addition, in order to send a logic signal from one stage to the next, a delayed excitation signal is supplied to the QFPs in the subsequent stage, causing multiple QFPs to perform logic operations in the intended order. Since a periodically changing signal is used, successive excitation signals are provided so as to be delayed in phase.

「発明が解決しようとする問題点」 上述された多数決論理回路では励振信号のばらつき、製
造状態によるばらつき等の原因で前段のQFPの出力が
同じ絶対値を持っていなければ演算結果が間違える恐れ
があり、QFPの出力磁束のばらつきに対する安定度は
あまりよくない。3入力の場合には前段のQFPの出力
磁束の許されるばらつきは最大33%しかない。例えば
、3入力の中に二つが同じ方向の磁束でもう一つが逆方
向の磁束の場合、同方向の2個の入力が33%減って逆
方向の入力が33%増えるとQFP100dの入力磁束
は0になって出力信号が“0″になるか“1”になるか
不確定である。このように多数論理演算の安定度は入力
の数が多くなるほど悪くなる。故に、設計幅が狭くなる
。本発明はこの間題点を解決した新しいQFP論理回路
を提供することにある。
"Problem to be Solved by the Invention" In the above-mentioned majority logic circuit, if the outputs of the QFP in the previous stage do not have the same absolute value due to variations in excitation signals, variations due to manufacturing conditions, etc., there is a risk of incorrect calculation results. However, the stability against variations in the output magnetic flux of the QFP is not very good. In the case of three inputs, the maximum variation allowed in the output magnetic flux of the QFP in the previous stage is only 33%. For example, if two of the three inputs have magnetic flux in the same direction and the other has magnetic flux in the opposite direction, if the two inputs in the same direction decrease by 33% and the input in the opposite direction increases by 33%, the input magnetic flux of QFP100d will be 0, and it is uncertain whether the output signal will become "0" or "1". In this way, the stability of multiple logic operations worsens as the number of inputs increases. Therefore, the design width becomes narrow. The object of the present invention is to provide a new QFP logic circuit that solves this problem.

「問題点を解決するための手段」 この目的を達成するために、本発明ではQFPを2種類
:周期励振QFPと可変励振QFPに分けて使用する手
段を特長とするQFP論理回路を提供する。周期励振Q
FPとは従来のQFPと同じように周期的に変化する励
振磁束(以下、クロック信号と称す)を外部から供給し
て励振するQFPであって、但し、2値磁束を増幅する
だけに使用する。可変励振QFPとは前段のQFPの出
力磁束で励振するという新しい励振方法を特長とするQ
FPであって、2値論理演算に使用する。
"Means for Solving the Problem" In order to achieve this object, the present invention provides a QFP logic circuit characterized by means for using QFPs divided into two types: periodic excitation QFPs and variable excitation QFPs. Periodic excitation Q
FP is a QFP that excites by supplying periodically changing excitation magnetic flux (hereinafter referred to as a clock signal) from the outside like a conventional QFP, but it is used only to amplify binary magnetic flux. . Variable excitation QFP is a QFP that features a new excitation method in which it is excited by the output magnetic flux of the QFP in the previous stage.
It is an FP and is used for binary logic operations.

「実施例」 周期励振QFPの回路構成と操作は従来のQFPと同じ
で既に述べられたので可変励振QFPについて詳しく説
明する。
"Embodiment" Since the circuit configuration and operation of the periodic excitation QFP are the same as those of the conventional QFP and have already been described, the variable excitation QFP will be explained in detail.

第3図に示すように可変励振QFPは回路の構成は励振
の部分を除いて従来のQFPと同じである。励振回路は
励振線6と2個の励振人カインダクタ10、11が直列
に接続されて構成したルーブ■4からなる。各々の励振
入力インダクタの近傍には入力線12、13が配置され
、対応する励振入力インダクタと磁気的に結合されてい
る。この二つの磁気結合の向きによって励振入力磁束の
和或は差が励振磁東として可変励振QFPに供給される
。まず、和の場合について説明する。直接入力信号をX
、励振入力信号をs,  tとし、出力信号を2とする
と、2は3入力x,  sとtの論理関数z=x s 
t+x s’t’ になる。但し、s’とt′はSとt
の逆信号であって、また、二つの励振入力線と励振人カ
インダクタとの磁気結合が同方向の場合であるとする。
As shown in FIG. 3, the circuit configuration of the variable excitation QFP is the same as the conventional QFP except for the excitation part. The excitation circuit consists of an excitation line 6 and two excitation inductors 10 and 11 connected in series. Input lines 12 and 13 are arranged near each excitation input inductor and are magnetically coupled to the corresponding excitation input inductor. Depending on the direction of these two magnetic couplings, the sum or difference of the excitation input magnetic fluxes is supplied to the variable excitation QFP as an excitation magnetic east. First, the case of sum will be explained. Direct input signal
, the excitation input signals are s, t, and the output signal is 2, then 2 is the logical function of 3 inputs x, s and t, z=x s
It becomes t+x s't'. However, s' and t' are S and t
It is assumed that the magnetic coupling between the two excitation input lines and the excitation inductor is in the same direction.

Sとtとが等しければ可変励振QFPに励振磁東が供給
され、入力信号Xは増幅されて出力される。等しくなけ
ればSとtがお互いに消し会うので、可変励振QFPは
励振磁東が0で励振されない。この時、可変励振QFP
の出力磁束はほとんど0に近いかないとみなす。
If S and t are equal, the excitation magnetic field is supplied to the variable excitation QFP, and the input signal X is amplified and output. If they are not equal, S and t cancel each other out, so the variable excitation QFP has an excitation magnetic east of 0 and is not excited. At this time, variable excitation QFP
It is assumed that the output magnetic flux of is almost close to zero.

励振入力磁束の差が励振磁東になる場合は、出力信号2
は3入力論理関数z=xs’t+xst’になって、可
変励振QFPはSとtとが等しいときに励振されず、s
(!:tとが等しくなければ励振されるように操作する
。この様に2種類の可変励振QFPがある。
If the difference in the excitation input magnetic flux becomes the excitation magnetic east, the output signal 2
becomes a three-input logic function z=xs't+xst', and the variable excitation QFP is not excited when S and t are equal, and s
(!: If t and t are not equal, it is operated so that it is excited. In this way, there are two types of variable excitation QFPs.

可変励振QFPは励振されない場合には出力がないので
単独で論理演算素子として使えない。2種類の可変励振
QFPを組み合わせると非常に便利な論理演算回路が出
来る。第4図に本発明が提供するQFP論理回路の基本
論理演算回路を表わす。回路を大きく分けると2つの可
変励振QFPと1つの周期励振QFPから出来ることが
わかる。
Since the variable excitation QFP has no output when not excited, it cannot be used alone as a logical operation element. Combining two types of variable excitation QFPs creates a very convenient logic operation circuit. FIG. 4 shows the basic logic operation circuit of the QFP logic circuit provided by the present invention. Broadly dividing the circuit, it can be seen that it is made up of two variable excitation QFPs and one periodic excitation QFP.

可変励振QFPには同じ励振入力信号が二つ入れられる
が、一方の可変励振QFPは励振入力信号の和で、もう
一方の可変励振QFPは励振入力信号の差で励振される
ように励振入力線と励振入力インダクタとの磁気結合の
向きを設ける。可変励振QFP200aは論理関数z 
1 =xst +xs’t’を出力し、可変励振QFP
200bは論理関数z 2 =ys’ t +y st
’を出力する。同時に2つの可変励振QFPの中のどち
らか1つしか励振されないので、2つの可変励振QFP
の出力線を直列に繋ぎ直接に周期励振QFPIOOの入
力線に繋ぐことによって21と22との○R論理関数が
えられる。QFPIOOは出力が十分取られるために可
変励振QFPの出力を増幅する。ここではこの基本論理
演算回路をDゲートと称す。Dゲートの出力は4変数の
関数D (x, y, s, t)となるが、論理回路
設計に必要なANDと○Rは下で示すように入力信号を
適当に取ればできる。
Two of the same excitation input signals are input to the variable excitation QFP, but the excitation input lines are connected so that one variable excitation QFP is excited by the sum of the excitation input signals, and the other variable excitation QFP is excited by the difference between the excitation input signals. The direction of magnetic coupling between the input inductor and the excitation input inductor is determined. Variable excitation QFP200a has logic function z
1 =xst +xs't' output, variable excitation QFP
200b is a logical function z 2 =ys' t +y st
' is output. Since only one of the two variable excitation QFPs is excited at the same time, the two variable excitation QFPs
By connecting the output lines of QFPIOO in series and directly connecting them to the input line of the periodic excitation QFPIOO, the ○R logic functions of 21 and 22 can be obtained. The QFPIOO amplifies the output of the variable excitation QFP in order to obtain a sufficient output. Here, this basic logic operation circuit is referred to as a D gate. The output of the D gate is a four-variable function D (x, y, s, t), but the AND and ○R necessary for logic circuit design can be done by appropriately selecting the input signals as shown below.

AND (x.  y) =D (x, ”0”,x.
y)○R (x,  y) =D (x, ”1”.x
,  y)また、算術演算に必要な3入力Majori
ty演算及び3入力parity演算も次式に示される
ように1つのDゲートでできるので非常に有力な論理回
路であることが分かる。
AND (x. y) = D (x, “0”, x.
y)○R (x, y) =D (x, “1”.x
, y) Also, the 3-input Majori required for arithmetic operations
It can be seen that the ty operation and the 3-input parity operation can be performed with one D gate as shown in the following equation, so it is a very powerful logic circuit.

M (x,y,z)=D (x,y,x,z)P (x
,  y,  z) =D (x, x’,  y, 
 z)「発明の効果」 本発明によって、励振信号、製作状態のばらつきにたい
して安定度の優れたQFP論理回路が実現できるので高
度の集積化することが可能となる。
M (x, y, z)=D (x, y, x, z)P (x
, y, z) = D (x, x', y,
z) "Effects of the Invention" According to the present invention, it is possible to realize a QFP logic circuit with excellent stability against variations in excitation signals and manufacturing conditions, thus making it possible to achieve a high degree of integration.

また、Dゲートという非常に有力な論理演算回路が出来
ることによって回路設計が簡単にできる。
In addition, circuit design can be simplified by creating a very powerful logic operation circuit called a D gate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のQFPの回路構戒図、第2図は従来のQ
FPで構成した多数決論理回路構成図、第3図は本発明
で提供する可変励振QFPの実施回路構成図、第4図は
本発明で提供する基本論理演算回路の実施回路構戒図で
ある。 1、2・・・・ジョセフソン素子 3、4・・・・励振インダクタ 5・・・・超電導ループ 6・・・・励振線 7・・・・入力線 8・・・・負荷インダクタ 9・・・・励振電流源 1 0、1 1・・・・励振入力インダクタ1 2、1
 3・・・・励振入力線 14・・・・励振回路ループ 100・・・・周期励振QFP 2 0 0・・・・可変励振QFP 第1図 第3図
Figure 1 is a circuit diagram of a conventional QFP, Figure 2 is a diagram of a conventional QFP.
FIG. 3 is a block diagram of a majority logic circuit configured with FPs, FIG. 3 is a block diagram of an implementation circuit of a variable excitation QFP provided by the present invention, and FIG. 4 is a block diagram of an implementation circuit of a basic logic operation circuit provided by the present invention. 1, 2...Josephson element 3, 4...Excitation inductor 5...Superconducting loop 6...Excitation line 7...Input line 8...Load inductor 9... ...Excitation current source 1 0, 1 1...Excitation input inductor 1 2, 1
3...Excitation input line 14...Excitation circuit loop 100...Periodic excitation QFP 2 0 0...Variable excitation QFP Fig. 1 Fig. 3

Claims (3)

【特許請求の範囲】[Claims] (1)第1のジョセフソン素子と第1の励振インダクタ
及び第2のジョセフソン素子と第2の励振インダクタか
らなる回路対を接続して構成された超電導ループ、この
超電導ループに接続された入力線及び負荷インダクタ、
及び前記第1及び第2の励振インダクタと磁気的に結合
する励振線から成る量子磁束パラメトロン回路として、
周期的に変化する磁束で励振され、2値磁束の増幅に使
用される周期励振量子磁束パラメトロン回路と、量子磁
束パラメトロンの出力信号磁束によって励振され、2値
磁束に対する論理演算操作に使用される可変励振量子磁
束パラメトロン回路とを用いて構成される超電導論理回
路。
(1) A superconducting loop configured by connecting a circuit pair consisting of a first Josephson element and a first excitation inductor, and a second Josephson element and a second excitation inductor, and an input connected to this superconducting loop. line and load inductors,
and a quantum magnetic flux parametron circuit comprising an excitation line magnetically coupled to the first and second excitation inductors,
A periodically excitation quantum flux parametron circuit excited by periodically changing magnetic flux and used to amplify binary magnetic flux, and a variable excited by the output signal magnetic flux of the quantum flux parametron and used for logic operation on binary magnetic flux. A superconducting logic circuit constructed using an excited quantum flux parametron circuit.
(2)前記可変励振量子磁束パラメトロン回路が、互い
に異なる量子磁束パラメトロン回路の出力信号磁束の和
又は差によって励振されることを特徴とする請求項1記
載の超電導論理回路。
(2) The superconducting logic circuit according to claim 1, wherein the variable excitation quantum flux parametron circuit is excited by the sum or difference of output signal fluxes of mutually different quantum flux parametron circuits.
(3)2つの前記可変励振量子磁束パラメトロン回路が
用いられ、一方が互いに異なる量子磁束パラメトロン回
路の出力磁束の和、他方が前記互いに異なる量子磁束パ
ラメトロン回路の出力信号磁束の差によって励振され、
前記可変励振両磁束パラメトロン回路の各出力信号の和
が次段の量子磁束パラメトロン回路の入力磁束として用
いられることを特徴とする請求項1記載の超電導論理回
路。
(3) the two variable excitation quantum flux parametron circuits are used, one of which is excited by the sum of the output magnetic fluxes of the different quantum flux parametron circuits, and the other excited by the difference in the output signal magnetic flux of the different quantum flux parametron circuits;
2. The superconducting logic circuit according to claim 1, wherein the sum of the output signals of both said variable excitation magnetic flux parametron circuits is used as the input magnetic flux of the next-stage quantum magnetic flux parametron circuit.
JP30739989A 1989-11-27 1989-11-27 Superconducting logic circuit Expired - Fee Related JP2802446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30739989A JP2802446B2 (en) 1989-11-27 1989-11-27 Superconducting logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30739989A JP2802446B2 (en) 1989-11-27 1989-11-27 Superconducting logic circuit

Publications (2)

Publication Number Publication Date
JPH03167919A true JPH03167919A (en) 1991-07-19
JP2802446B2 JP2802446B2 (en) 1998-09-24

Family

ID=17968585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30739989A Expired - Fee Related JP2802446B2 (en) 1989-11-27 1989-11-27 Superconducting logic circuit

Country Status (1)

Country Link
JP (1) JP2802446B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020536440A (en) * 2017-11-13 2020-12-10 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Inverted phase mode logic gate
JP2020536436A (en) * 2017-11-13 2020-12-10 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Large-scale fan-in RQL gate
US11010686B2 (en) 2015-02-06 2021-05-18 Northrop Grumman Systems Corporation Flux control of qubit under resonant excitation
JP2021513236A (en) * 2018-02-01 2021-05-20 ノースロップ グラマン システムズ コーポレーション RQL majority gate, AND gate, and OR gate
US11159168B2 (en) 2018-07-31 2021-10-26 Northrop Grumman Systems Corporation Superconducting non-destructive readout circuits
US11201608B2 (en) 2020-04-24 2021-12-14 Northrop Grumman Systems Corporation Superconducting latch system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11010686B2 (en) 2015-02-06 2021-05-18 Northrop Grumman Systems Corporation Flux control of qubit under resonant excitation
JP2020536440A (en) * 2017-11-13 2020-12-10 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Inverted phase mode logic gate
JP2020536436A (en) * 2017-11-13 2020-12-10 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Large-scale fan-in RQL gate
JP2021513236A (en) * 2018-02-01 2021-05-20 ノースロップ グラマン システムズ コーポレーション RQL majority gate, AND gate, and OR gate
US11159168B2 (en) 2018-07-31 2021-10-26 Northrop Grumman Systems Corporation Superconducting non-destructive readout circuits
US11201608B2 (en) 2020-04-24 2021-12-14 Northrop Grumman Systems Corporation Superconducting latch system

Also Published As

Publication number Publication date
JP2802446B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
CA3088259C (en) Four-input josephson gates
JP2838596B2 (en) Superconducting toggle flip-flop circuit and counter circuit
CN107251435B (en) Josephson junction-based circulators and related systems and methods
JP2700649B2 (en) Superconducting analog / digital converter
JP2002344307A (en) Single flux quantum logic circuit and single flux quantum output converter circuit
KR19990028555A (en) DEVICE AND METHOD FOR DIGITAL INFORMATION
US20230225224A1 (en) Superconducting qubit and resonator system based on the josephson ring modulator
JPH03167919A (en) Superconducting logic circuit
WO2020083618A1 (en) High-saturation power josephson ring modulators
JP2645267B2 (en) Superconducting logic circuit
US4678945A (en) Unidirectional single-flux-quantum logic circuit
US3356960A (en) Superconducting amplifier
US11533032B2 (en) Superconducting output amplifiers with interstage filters
US11668769B2 (en) Superconducting output amplifier having return to zero to non-return to zero converters
JPS62102573A (en) Superconducting switching circuit
JPS59167124A (en) Superconductive exclusive or circuit
JPS622732B2 (en)
JP2021505075A (en) Selective Amplification of Frequency Multiplexed Microwave Signals Using Cascading Multipath Interfering Josephson Directional Amplifiers with Non-Overlapping Bandwidths
JPS5995722A (en) Bistable circuit using superconduction element
JPS58111382A (en) Direct current power supply driven josephson circuit
JPH0279481A (en) Fluxoid quantum logic element
JPS5810876A (en) Josephson logic device
JPH0234492B2 (en)
JPH08327713A (en) Superconducting magnetic sensor
JPS60247311A (en) Amplifier using dc superconduction quantum interference device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees