JPH03165469A - Manufacture of alkaline storage battery having nickel electrode - Google Patents

Manufacture of alkaline storage battery having nickel electrode

Info

Publication number
JPH03165469A
JPH03165469A JP1305460A JP30546089A JPH03165469A JP H03165469 A JPH03165469 A JP H03165469A JP 1305460 A JP1305460 A JP 1305460A JP 30546089 A JP30546089 A JP 30546089A JP H03165469 A JPH03165469 A JP H03165469A
Authority
JP
Japan
Prior art keywords
nickel
electrode
active material
alkaline storage
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1305460A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Yoshio Moriwaki
良夫 森脇
Akiyoshi Shintani
新谷 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1305460A priority Critical patent/JPH03165469A/en
Publication of JPH03165469A publication Critical patent/JPH03165469A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To obtain a battery in which drop in the utilization of an active material is small and its life is long by applying a pasty material comprising nickel hydroxide, a conductive material, and a thermoplastic binder to a two-dimensional conductive porous body to prepare a nickel electrode and heat- pressing a separator to the nickel electrode to unite them. CONSTITUTION:A pasty material comprising nickel hydroxide, a conductive material, and a thermoplastic binder is applied to a two-dimensional conductive porous body such as screen, expanded metal, and punched metal. Polypropylene nonwoven fabrics hydrophilic-treated with concentrated sulfuric acid are placed on both sides of the nickel electrode, and they are heat-pressed to unite them. A sintered cadmium electrode is used as a negative electrode and a sealed nickelcadmium battery is assembled. The active material inside the nickel electrode is fixed with the conductive porous body and that on the surface is fixed with the separator. Expansion and shrinkage of the active material caused by discharge and charge are restrained and drop in the utilization of the active material is decreased, and the battery having long life is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニッケルーカドミウム電池 ニッケル亜鉛電池
 ニッケルー水素電池などのニッケル極を用いるアルカ
リ蓄電池の製造法に関すも従来の技術 各種の電源として使われる蓄電池として鉛電池とアルカ
リ電池がある。このうちアルカリ蓄電池は高信頼性が期
待でき、小形軽量化も可能などの理由で小型電池は各種
ポータプル機器用圏 大型は産業用として広く使われて
き九 このアルカリ蓄電池において負極の活物質としてはカド
ミウムの他に亜舷 鉄、水素などが対象となっている。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to a method for manufacturing alkaline storage batteries using nickel electrodes, such as nickel-cadmium batteries, nickel-zinc batteries, and nickel-metal hydride batteries. There are lead batteries and alkaline batteries. Among these, alkaline storage batteries are expected to have high reliability and can be made smaller and lighter, so small batteries are used for various portable devices, while large ones are widely used for industrial purposes.In these alkaline storage batteries, cadmium is used as the active material for the negative electrode. In addition to these, other areas include ship iron and hydrogen.

しかし正極としては一部空気極や酸化銀極なども取り上
げられているがほとんどの場合ニッケル極である。ポケ
ット式から焼結式に代わって特性が向上し さらに密閉
化が可能になるとともに用途も広がりk 焼結式の他に
高容量の発泡式それにフェルト式などが取り上げられ実
層化されてきている。
However, although some air electrodes and silver oxide electrodes are used as positive electrodes, in most cases nickel electrodes are used. The pocket type has been replaced by the sintered type, which improves its properties, makes it possible to seal it, and expands its uses.In addition to the sintered type, high-capacity foamed types and felt types are being taken up and put into practical use. .

しかし 一方ではこれら電極の課題が低廉化であるとこ
ろから水酸化ニッケルに導電剤と結着剤を加えてシート
状に加工して得られる非焼結式おもにペースト式が広く
研究され多くの製法上の提案がされている。
However, on the other hand, since the problem with these electrodes is to reduce their cost, non-sintered types, mainly paste types, which are obtained by adding conductive agents and binders to nickel hydroxide and processing them into a sheet form, have been widely studied, and many manufacturing methods are used. has been proposed.

発明が解決しようとする課題 ニッケル極の活物質である水酸化ニッケルは充電 放電
いずれの状態でも電子伝導性がほとんどないことと充放
電の繰り返しで電極が膨潤する傾向があるので充分特性
が優れ長寿命の非焼結式ニッケル極は出現していなl、
%  すなわち導電性を高め活物質の利用率を向上させ
るために他の電子伝導性に優れた導電剤を多量に加える
と活物質の絶対量が減ってしまし\ また膨潤や活物質
の脱落を抑えるために有効な結着剤の量を増すと電極の
電子伝導性が低下限 電解液の電極中への浸透性も低下
して電圧が低下し容量が減少する。
Problems to be Solved by the Invention Nickel hydroxide, the active material of the nickel electrode, has almost no electronic conductivity in either charging or discharging states, and the electrode tends to swell with repeated charging and discharging, so it has sufficient characteristics and is long-lasting. Long-life non-sintered nickel electrodes have not yet appeared.
% In other words, if a large amount of other conductive agent with excellent electronic conductivity is added in order to increase the conductivity and improve the utilization rate of the active material, the absolute amount of the active material will decrease\ Also, swelling and falling off of the active material will occur. Increasing the amount of binder that is effective in suppressing this decreases the electron conductivity of the electrode.The permeability of the electrolyte into the electrode also decreases, resulting in a decrease in voltage and capacity.

課題を解決するための手段 スクリーン、エキスパンドメタ/L(パンチングメタル
など安価で二次元的構造の導電性多孔体に水酸化ニッケ
ルに導電剤と熱可塑性結着剤を加えて塗着後シートとし
て、セパレータとくに親液処理したセパレータと加熱下
で加圧一体化す私 なおこの場合熱可塑性結着剤として
たとえばスチレン共重合体ゴム系樹脂それに親液性セパ
レータとしてポリアミドか親液処理したポリオレフィン
の織布や不織布さらに導電剤さしては少なくともコバル
トそれに炭素やニッケルの粉末や繊維を含むことが好ま
しい。もっともこれらの材料に限定されるものではない
Means to solve the problem Screen, Expanded Meta/L (punched metal or other inexpensive conductive porous material with a two-dimensional structure is coated with nickel hydroxide, a conductive agent and a thermoplastic binder, and then made into a sheet. In this case, the thermoplastic binder is a styrene copolymer rubber resin, and the lyophilic separator is a woven fabric of polyamide or lyophilically treated polyolefin. It is preferable that the nonwoven fabric and the conductive agent contain at least cobalt, carbon, and nickel powders and fibers, but are not limited to these materials.

作用 非焼結式ニッケル極に結着剤として熱可塑性樹脂を用い
るとシートの強度や可撓性に優れていて取扱が容易であ
り、また熱可塑性であるので加熱下で加圧すると強度が
向上する。しかし充放電特性の上からは当然樹脂の添加
量は少ない方がよい。
Function: When thermoplastic resin is used as a binder for non-sintered nickel electrodes, the sheet has excellent strength and flexibility and is easy to handle.Also, since it is thermoplastic, its strength increases when pressed under heat. do. However, from the viewpoint of charge/discharge characteristics, it is naturally better to add a smaller amount of resin.

ところが少なくすると支持体である多孔体が二次元的構
造であることが主な原因で充放電中に活物質層が膨張な
どにより変形した際に支持体との密着性が低下して特性
が劣化する。
However, when the amount is decreased, the adhesion with the support decreases and the characteristics deteriorate when the active material layer deforms due to expansion during charging and discharging, mainly due to the two-dimensional structure of the porous material that is the support. do.

そこで結着剤として熱可塑性樹脂を用いセパレータと加
熱化で加圧一体化するとニッケル極の内部の活物質は支
持体で、また表面はセパレータで固定されるので充放電
による膨張収縮は抑制され特性の低下は大幅に減少する
。なお親液性セバレタを用いると熱可塑性結着剤の電解
液とのなじみの悪さに基づく活物質の利用率低下も解決
できも 実施例 市販の水酸化ニッケル粉末75皿 コバルト粉末6部そ
れに導電体としてリン状黒鉛8舐 ニッケル粉末6服 
補強剤としてアクリロニトリル系単鐵維0. 8部これ
にスチレン−エチレン−ブチレン共重合体の3 (重量
)%のトルエン溶液をこの樹脂が水酸化ニッケルに対し
て4、5部になるように加えてペーストとする。このペ
ーストを厚さ0.17mm、  孔径1.8mrrx 
 開口度53%の鉄製でニッケルメッキを施したパンチ
ングメタル板に塗着しく155mmのスリットを通して
平滑化した その後120℃で1時間乾燥し九このよう
にして得られたペースト式ニッケル極を幅38mrrb
  長さ210mmに裁断しリード板をスポット溶接に
より取り付は九  一方濃硫酸で親液処理した厚さ0.
2mmのポリプロピレン製不織布をニッケル極の両面に
配り、、  160t’に加熱したローラ加圧機を通し
てサンドウィッチ状に一体化し九 相手極として公知の焼結式カドミウム極を用いて密閉形
ニッケルーカドミウム電池を構成した電解液として比重
1.25の苛性カリ水溶液に20g/lの水酸化リチウ
ムを溶解して用い九 電池は単2型であり、 この電池
をAとする。
Therefore, by using thermoplastic resin as a binder and integrating it with a separator by heating and pressurizing, the active material inside the nickel electrode is fixed as a support and the surface is fixed by the separator, so expansion and contraction due to charging and discharging is suppressed and the characteristics decrease is significantly reduced. Note that using a lyophilic sebaleta can also solve the problem of a decrease in the utilization rate of the active material due to poor compatibility of the thermoplastic binder with the electrolyte. 8 doses of phosphorous graphite 6 doses of nickel powder
Acrylonitrile single iron fiber 0.0 as a reinforcing agent. To 8 parts of this, a 3% (by weight) toluene solution of a styrene-ethylene-butylene copolymer is added so that the amount of this resin is 4 to 5 parts based on the nickel hydroxide to form a paste. This paste has a thickness of 0.17mm and a hole diameter of 1.8mrrx.
It was applied to a nickel-plated punched metal plate made of iron with an aperture of 53% and smoothed through a 155 mm slit, then dried at 120°C for 1 hour.
The lead plate was cut to a length of 210 mm and attached by spot welding.Meanwhile, it was treated with concentrated sulfuric acid to make it lyophilic.
A 2 mm polypropylene non-woven fabric is distributed on both sides of the nickel electrode, and is integrated into a sandwich shape through a roller press machine heated to 160 t' to form a sealed nickel-cadmium battery using a sintered cadmium electrode known as a nine-part electrode. The electrolyte used was 20 g/l of lithium hydroxide dissolved in a caustic potassium aqueous solution with a specific gravity of 1.25.

つぎに比較のためにセパレータと一体化せずに他はAと
同じ製法で得られた電池をBとして加えμ まず初期の放電電圧と容量を比較し九 電池は10セル
ずつ用い5時間率で容量の130%定電流充電−1,O
Aで0.9Vまでの定電流放電を行なっk その結果平
均電圧はいずれも1.20〜1.21Vで差はなかっ九
 放電容量はAが2゜60〜2.71Ahであり、Bは
2.45〜2゜56Ahであっ九 つぎに両電池をやはりIOセルずつ用1.%  この充
放電の条件で寿命特性を比較し九 その結果放電容量が
初期の60%にまで劣化するサイクル数は Aが880
〜930サイクルでBは480〜560サイクルであり
Aが優れてい九 これらの結果からAは初期性能に優れ
その持続性には極めて優れていることがわかっ九 発明の効果 二次元的構造の導電性多孔体に水酸化ニッケルに導電剤
と熱可塑性結着剤を加えて塗着後シート状にしてニッケ
ル極とし これとセパレータとを加熱下で加圧一体化す
ることにより、活物質の利用率の低下が少なく初期特性
に優れ長寿命のアルカリ蓄電池が得られも
Next, for comparison, a battery obtained by the same manufacturing method as A without being integrated with a separator was added as B. First, the initial discharge voltage and capacity were compared. 130% constant current charging of capacity -1,O
Constant current discharge was carried out up to 0.9V with A.As a result, the average voltage was 1.20 to 1.21V in both cases, with no difference9.The discharge capacity was 2.60 to 2.71Ah for A, and 2.60Ah for B. .45~2゜56Ah.Next, both batteries are used for each IO cell.1. % Comparing the life characteristics under these charging and discharging conditions9 As a result, the number of cycles at which the discharge capacity deteriorates to 60% of the initial value is 880 for A.
~930 cycles, B has 480 to 560 cycles, and A is superior.9 From these results, it is clear that A has excellent initial performance and extremely excellent durability.9 Effects of the invention: Electrical conductivity of two-dimensional structure A conductive agent and a thermoplastic binder are added to nickel hydroxide on a porous body, and after coating it, it is formed into a sheet to form a nickel electrode.By integrating this and a separator under pressure and heat, the utilization rate of the active material can be increased. Alkaline storage batteries with low deterioration and excellent initial characteristics and long life can be obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)二次元的構造の導電性多孔体を支持体としこれに
水酸化ニッケルに導電剤と熱可塑性結着剤を加えてペー
スト状にして塗着後シート化して後セパレータと加熱下
で加圧一体化したニッケル極を備えたアルカリ蓄電池の
製造法。
(1) A conductive porous material with a two-dimensional structure is used as a support, and a conductive agent and a thermoplastic binder are added to nickel hydroxide to form a paste. After coating, it is formed into a sheet, and then heated with a separator. A method for manufacturing an alkaline storage battery with pressure-integrated nickel electrodes.
(2)二次元的構造の導電性多孔体がスクリーン状、エ
キスパンド状、パンチングメタル状のいずれかであるこ
とを特徴とする請求項1記載のニッケル極を備えたアル
カリ蓄電池の製造法。
(2) The method for manufacturing an alkaline storage battery with a nickel electrode according to claim 1, wherein the conductive porous body having a two-dimensional structure has a screen shape, an expanded shape, or a punched metal shape.
(3)熱可塑性結着剤がスチレン共重合体ゴム系樹脂、
セパレータがポリアミドか親液処理したポリオレフィン
であることを特徴とする請求項1記載のニッケル極を備
えたアルカリ蓄電池の製造法。
(3) The thermoplastic binder is a styrene copolymer rubber resin,
2. The method for producing an alkaline storage battery with nickel electrodes according to claim 1, wherein the separator is made of polyamide or lyophilically treated polyolefin.
(4)導電剤としてコバルトおよびニッケルと炭素の少
なくともいずれかを含むことを特徴とする請求項1記載
のニッケル極を備えたアルカリ蓄電池の製造法。
(4) The method for manufacturing an alkaline storage battery equipped with a nickel electrode according to claim 1, characterized in that the conductive agent contains at least one of cobalt, nickel, and carbon.
JP1305460A 1989-11-24 1989-11-24 Manufacture of alkaline storage battery having nickel electrode Pending JPH03165469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305460A JPH03165469A (en) 1989-11-24 1989-11-24 Manufacture of alkaline storage battery having nickel electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305460A JPH03165469A (en) 1989-11-24 1989-11-24 Manufacture of alkaline storage battery having nickel electrode

Publications (1)

Publication Number Publication Date
JPH03165469A true JPH03165469A (en) 1991-07-17

Family

ID=17945413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305460A Pending JPH03165469A (en) 1989-11-24 1989-11-24 Manufacture of alkaline storage battery having nickel electrode

Country Status (1)

Country Link
JP (1) JPH03165469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030192A1 (en) * 1998-11-13 2000-05-25 Moltech Power Systems, Inc. Pasted positive electrode and process for its production
EP1435673A1 (en) * 2001-09-19 2004-07-07 Kawasaki Jukogyo Kabushiki Kaisha Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell
EP2254179A1 (en) 2009-05-19 2010-11-24 Saft Groupe S.A. Plastic-coated electrode for alkaline storage battery
US8062790B2 (en) 2006-03-21 2011-11-22 Saft Plasticized electrode for an alkaline battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000030192A1 (en) * 1998-11-13 2000-05-25 Moltech Power Systems, Inc. Pasted positive electrode and process for its production
US6436575B1 (en) 1998-11-13 2002-08-20 Moltech Power Systems, Inc. Pasted positive electrode and process for its production
US6489058B1 (en) 1998-11-13 2002-12-03 Moltech Power Systems Pasted positive electrode and process for its production
EP1435673A1 (en) * 2001-09-19 2004-07-07 Kawasaki Jukogyo Kabushiki Kaisha Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell
EP1435673A4 (en) * 2001-09-19 2006-04-05 Kawasaki Heavy Ind Ltd Threedimensional cell, its electrode structure, and method for manufacturing electrode material of threedimensional cell
US8062790B2 (en) 2006-03-21 2011-11-22 Saft Plasticized electrode for an alkaline battery
EP2254179A1 (en) 2009-05-19 2010-11-24 Saft Groupe S.A. Plastic-coated electrode for alkaline storage battery

Similar Documents

Publication Publication Date Title
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
JP3387158B2 (en) Zinc plate
JPH03165469A (en) Manufacture of alkaline storage battery having nickel electrode
JP2020087554A (en) Electrolyte solution for zinc battery and zinc battery
US6150056A (en) Alkaline storage battery and method for producing an electrode used therefor
JPS61163569A (en) Metal oxide-hydrogen secondary cell
JP3460509B2 (en) Manufacturing method of alkaline storage battery and its electrode
JP3006371B2 (en) Battery
JP7431072B2 (en) Square batteries and electrode groups for square batteries
JPH0758614B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JP4411388B2 (en) Manufacturing method of negative electrode for secondary battery
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JPS6048868B2 (en) Manufacturing method of electrode substrate
JPH01211857A (en) Nickel electrode for alkaline storage battery
JPS63264863A (en) Sealed nickel-cadmium storage battery and its manufacture
JPH04269454A (en) Nickel electrode for alkaline battery
JP2021197285A (en) Manufacturing method of zinc secondary battery
JPH03165461A (en) Manufacture of nickel electrode for alkaline battery
JPH05251081A (en) Hydrogen storage electrode current collector, its manufacture, hidrogen storage electrode using it and nickel-hydrogen storage battery
JPH10334893A (en) Manufacture of alkaline storage battery and its electrode
JP3446539B2 (en) Manufacturing method of alkaline storage battery and its electrode
JPH10334898A (en) Alkaline storage battery, its electrode and manufacture thereof
JPH06275261A (en) Alkaline storage battery
JPH10334894A (en) Manufacture of alkaline storage battery and its electrode