JPH03165348A - Stm memory device and its recording and reproducing method - Google Patents

Stm memory device and its recording and reproducing method

Info

Publication number
JPH03165348A
JPH03165348A JP30458089A JP30458089A JPH03165348A JP H03165348 A JPH03165348 A JP H03165348A JP 30458089 A JP30458089 A JP 30458089A JP 30458089 A JP30458089 A JP 30458089A JP H03165348 A JPH03165348 A JP H03165348A
Authority
JP
Japan
Prior art keywords
recording
probe
reproducing
recording medium
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30458089A
Other languages
Japanese (ja)
Other versions
JP2961172B2 (en
Inventor
Toshibumi Okubo
俊文 大久保
Junichi Kishigami
順一 岸上
Norihiro Funakoshi
宣博 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30458089A priority Critical patent/JP2961172B2/en
Publication of JPH03165348A publication Critical patent/JPH03165348A/en
Application granted granted Critical
Publication of JP2961172B2 publication Critical patent/JP2961172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1418Disposition or mounting of heads or record carriers
    • G11B9/1427Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement
    • G11B9/1436Disposition or mounting of heads or record carriers with provision for moving the heads or record carriers relatively to each other or for access to indexed parts without effectively imparting a relative movement with provision for moving the heads or record carriers relatively to each other
    • G11B9/1454Positioning the head or record carrier into or out of operative position or across information tracks; Alignment of the head relative to the surface of the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1463Record carriers for recording or reproduction involving the use of microscopic probe means
    • G11B9/1472Record carriers for recording or reproduction involving the use of microscopic probe means characterised by the form

Abstract

PURPOSE:To obtain a small-sized mass storage recording device with good portability by relatively rotating a layer structure cylindrical recording body of one-dimensionally arrayed atoms and a probe, recording data on the inner peripheral surface of the recording body by one-dimensional servo control in a required direction, and reproducing the data. CONSTITUTION:The metallic probe 2 made of tungsten is put in xy-directional scanning operation and while a fine tunneling current which flows between the probe 2 and a sample is observed, its value is used for Z-directional servocontrol. In the above short-period storage(STM) technique, the recording cylinder 1 in layer structure of alternate different kinds of metal where atoms are arrayed linearly and the probe 2 are rotated relatively to apply pulses to the layer on the inner peripheral surface of the cylinder from the probe 2, and the layer material changes to record data. The tunnel current corresponding to the recording is brought under linear servocontrol only in a Z direction through a tunnel control and recording current piezoelectric element 5, a piezoelectric element 4 for track-directional accurate positioning, and a track-directional sliding mechanism 3 to perform reproduction by the probe 2 which is brought under xy-directional fine movement control. This constitution shorten the length of recording bits and the small-sized mass storage recording and reproducing device with good-portability is obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は異種原子層が交互に操り返される円筒状の内周
面を記録トラックとするSTMメモリ装置およびその記
録再生方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention provides an STM memory device whose recording track is a cylindrical inner peripheral surface in which different atomic layers are alternately manipulated, and a recording/reproducing method thereof. Regarding.

近年、情報化社会の進展に伴って使用される情報量が著
しく増大しつつある。情報を蓄える必要があるのは単に
大規模で中央集権的な情報装置のセンタ装置のみではな
く、最近の傾向としては各個人毎、またはユーザ毎にデ
ータベースを持つ、いわゆる分散情報保持の割合が高く
なっている。
In recent years, the amount of information used has been increasing significantly as the information society progresses. It is not only the central equipment of large-scale, centralized information systems that needs to store information; the recent trend is toward a high proportion of so-called distributed information storage, where each individual or user has a database. It has become.

このため、大容量記録を可能とするもので、従来使用さ
れていた磁気ディスク、光ディスクよりも遥かに大容量
でしかも小型、軽量で携帯可能な情報記録装置が望まれ
ている。
Therefore, there is a need for an information recording device that is capable of large-capacity recording, has a much larger capacity than conventionally used magnetic disks and optical disks, and is small, lightweight, and portable.

(従来の技術) 従来、情報の記憶装置として使用されてきたものには、
磁気ディスク(ハードディスク)、光ディスク、磁気テ
ープ、バブルメモリ、フロッピーディスク等がある。こ
れらの装置の記録密度は最高のものであっても! 06
mm”程度である。原理的な面から考えると、磁気関連
技術において0.1μm程度が反磁界の作用等の理由に
よって記録密度の限界となる。また、光を利用する記録
方式は光の回折限界から短い波長の光を使用する必要が
あるが、このことが記録密度を制限し、10’mm2程
度の記録密度が限界である。
(Prior art) Conventionally, devices used as information storage devices include:
There are magnetic disks (hard disks), optical disks, magnetic tapes, bubble memories, floppy disks, etc. Even though the recording density of these devices is the highest! 06
mm". From a theoretical perspective, in magnetic technology, the recording density reaches a limit of about 0.1 μm due to the effect of demagnetizing fields. Also, recording methods that use light are based on light diffraction. Due to the limitations, it is necessary to use light with a short wavelength, but this limits the recording density, and the recording density is about 10'mm2.

ところで、材料表面の微細構造を研究する手段としてS
TM技術がある。この技術は機械的にピッチを定め、探
針をxy力方向走査することによって表面の原子像が観
察できることで知られている。測定プローブとして使用
されるのは単純な金属針であり、試料と針の間に流れる
微小なトンネル電流を観察しながらこの値をZ方向サー
ボとして用いる技術がSTM技術である。
By the way, as a means to study the microstructure of material surfaces, S
There is TM technology. This technique is known for its ability to observe atomic images on the surface by mechanically determining the pitch and scanning the probe in the x and y force directions. A simple metal needle is used as a measurement probe, and STM technology is a technology that uses this value as a Z-direction servo while observing a minute tunnel current flowing between the sample and the needle.

(発明が解決しようとする課題) しかしながら、この従来のSTM技術においては、xy
力方向はサーボが行えず、単なる表面状態観察手段とし
ての用いられ方しかされていない。
(Problem to be solved by the invention) However, in this conventional STM technology, xy
Servo cannot be performed in the direction of force, and it is only used as a means for observing surface conditions.

そこで、この探針に電圧パルスを印加し、材料に非結晶
材料を使用した場合に、10nm程度のバンブ(***)
が形成されるので、これが記録方式として使用できると
する提案があるが、基本的にはxy力方向サーボの方法
については提案されていないのが現状である。そして、
従来方法を使用する限りにおいては、いかにSTM技術
でもその記録密度に限界があり、これを突き崩すことは
できない。
Therefore, when a voltage pulse is applied to this probe and a non-crystalline material is used, a bump of about 10 nm is generated.
There is a proposal that this method can be used as a recording method because of the formation of . and,
As long as conventional methods are used, no matter how STM technology is used, there is a limit to its recording density, which cannot be overcome.

本発明は前記従来の課題を解消し、記録ピットを小さく
し、STM技術を応用して記録・再生を行おうとするも
のであり、層構造を持つ材料系においてこの層構造を記
録トラックとすることによって、探針の操作性を付与す
ることにより、超大容量の情報記憶が可能で、かつ小型
で軽量の優れたSTMメモリ装置およびその記録再生方
法を提供することを目的とするものである。
The present invention aims to solve the above-mentioned conventional problems, make recording pits smaller, and perform recording/reproduction by applying STM technology.In a material system having a layered structure, this layered structure is used as a recording track. The object of the present invention is to provide an excellent STM memory device that is small and lightweight, capable of storing an extremely large amount of information by providing operability of a probe, and a recording and reproducing method thereof.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 前記目的を達成する本発明のSTMメモリ装置は、異種
原子層が交互に繰り返される層状化合物や、2種の元素
を交互に1原子層以上堆積させて形成した多層構成の材
料に、円筒状の穴を層に直交方向に形成した記録媒体と
、この記録媒体の円筒状の内周面に情報を書き込み、あ
るいは内周面に書かれた情報を読み出す記録・再生用プ
ローブと、この記録・再生用プローブを前記内周面に垂
直な方向に移動させる第1の移動手段と、前記記録・再
生用プローブを前記円筒状の穴の軸線方向に移動させる
第2の移動手段と、前記記録・再生用プローブと前記内
周面とを、相対的に円周方向に移動させる第3の移動手
段とを備えていることを特徴としている。
(Means for Solving the Problems) The STM memory device of the present invention that achieves the above object is formed by forming a layered compound in which different atomic layers are alternately repeated, or by depositing one or more atomic layers of two types of elements alternately. A recording medium in which cylindrical holes are formed in a multilayered material in a direction perpendicular to the layers, and a recording medium in which information is written on the cylindrical inner circumferential surface of this recording medium, or information written on the inner circumferential surface is read. a reproducing probe, a first moving means for moving the recording/reproducing probe in a direction perpendicular to the inner peripheral surface, and a second moving means for moving the recording/reproducing probe in the axial direction of the cylindrical hole. and a third moving means for relatively moving the recording/reproducing probe and the inner circumferential surface in the circumferential direction.

また、前記目的を達成する本発明のSTMメモリ装置の
記録再生方法は、@述のように構成されたSTMメモリ
装置において、記録・再生用プローブを半固定させ、円
筒状の記録媒体を回転させるか、または、円筒状の記録
媒体を固定させ、記録・再生用プローブを円筒内で回転
させることによりトラックサーチ、位置決めを行ない、
記録・再生用プローブにより前記記録媒体の円周方向に
記録・再生を行うことを特徴としている。
Further, the recording/reproducing method for an STM memory device of the present invention which achieves the above object is to semi-fix the recording/reproducing probe and rotate the cylindrical recording medium in the STM memory device configured as described above. Alternatively, track search and positioning are performed by fixing a cylindrical recording medium and rotating a recording/reproducing probe within the cylinder.
The recording/reproducing probe performs recording/reproducing in the circumferential direction of the recording medium.

(作用) 本発明によれば、層状化合物単結晶等の層構造を持つ材
料系において、層に対して直交する方向に円筒状の穴を
形成し、その穴の軸線方向の内周面に異種原子層が交互
に露出するものを記録媒体とし、先端を細くしたタング
ステンチップを記録・再生用プローブとして、記録媒体
か記録・再生用プローブかの何方かを固定、他方を回転
させて両者を相対的に移動させ、記録・再生用プローブ
を用いて記録媒体の円周方向に記録・再生するので、こ
の層構成が記録トラックとなって記録ピットが小さくな
ると共に、探針の操作性も良くなる。
(Function) According to the present invention, in a material system having a layered structure such as a layered compound single crystal, a cylindrical hole is formed in a direction perpendicular to the layer, and different types of A recording medium in which atomic layers are exposed alternately is used, and a tungsten tip with a tapered tip is used as a recording/reproducing probe. Either the recording medium or the recording/reproducing probe is fixed, and the other is rotated to make the two relative to each other. Since the recording/reproducing probe is used to record/reproduce in the circumferential direction of the recording medium, this layer structure becomes the recording track, which reduces the recording pit size and improves the operability of the probe. .

この結果、大容量記憶が可能となり、小型で携帯性の良
い情報記録装置が実現できる。
As a result, large capacity storage becomes possible, and a compact and highly portable information recording device can be realized.

(実施例) 以下添付図面を用いて本発明の詳細な説明するが、本発
明の装置構成を説明する前に、本発明におけるSTM技
術について説明する。
(Example) The present invention will be described in detail below using the accompanying drawings, but before explaining the device configuration of the present invention, the STM technology in the present invention will be explained.

探針が特定の原子に近接した場合に、その原子特有の電
流電圧特性が得られる。電流値、即ち、電子の伝搬する
数は金属探針の電子の波動関数と被検査原子上の電子の
波動関数の重なりによるホッピング確率で決定されるも
のであり、これによって得られる微小な電流はいわゆる
トンネル電流と呼ばれるものである。この電流値は探針
と基板材料との原子間距離dに依存することになり、は
ぼexp (−αd)の式で記述できる。この定数αは
原子の種類あるいは結合状態に関する依存性を持ってい
るので、探針が観測している原子が何であるかを特定す
ることができる。このようなSTM技術は公知であり、
この技術を用いたG a A s (111)面の観測
例もすでに公表されている。
When the probe approaches a specific atom, current-voltage characteristics unique to that atom are obtained. The current value, that is, the number of propagating electrons, is determined by the hopping probability due to the overlap between the wave function of the electrons on the metal probe and the wave function of the electrons on the atom being tested, and the minute current obtained by this is This is what is called a tunnel current. This current value depends on the interatomic distance d between the probe and the substrate material, and can be described by the equation exp (−αd). Since this constant α has dependence on the type of atom or the bonding state, it is possible to specify the type of atom that the probe is observing. Such STM technology is publicly known,
Examples of observations of the G a As (111) plane using this technique have already been published.

本発明はこのSTM技術を記録技術に応用してなされた
ものであり、この観測可能な原子が一次元に配列してい
るならば、この配列は記録技術においては記録トラック
と考えることができることを利用している。従って、−
次元の配列を持った結晶構造、もしくは人工構造を有す
る材料を用いれば、原子列トラックに沿ったサーボが実
現でき、短パルス印加によって材料表面に何らかの変化
、例えば異種原子の付着、あるいは部分的な配列の破壊
によってピット状に点列を書き込むことができ、メモリ
装置を構成できることになる。この方法を用いることに
よってトラックと直交した方向にのみサーボをかけるこ
とになり、従来のSTM技術のような二次元位置決めの
サーボを必要としないので、機構自体を簡略化できる長
所を持っている。
The present invention was made by applying this STM technology to recording technology, and it is understood that if the observable atoms are arranged in one dimension, this arrangement can be considered as a recording track in recording technology. We are using. Therefore, −
By using a material with a dimensional array crystal structure or an artificial structure, it is possible to realize servo along the atomic column track, and by applying a short pulse, some kind of change on the material surface, such as the attachment of foreign atoms or partial By destroying the array, a series of points can be written in the form of pits, and a memory device can be constructed. By using this method, the servo is applied only in the direction orthogonal to the track, and there is no need for a two-dimensional positioning servo like in the conventional STM technology, so it has the advantage of simplifying the mechanism itself.

このサーボの方法としては、前述のαを常時検出する必
要があるので、探針を上下に細かく移動させなければな
らない。また、異種原子に近づいて時のこの値が変化す
ることを検出し、正しくトラック上に深針が位置するよ
うに横方向に移動可能でなくてはならない。
This servo method requires constant detection of the above-mentioned α, so the probe must be finely moved up and down. It must also be able to detect changes in this value as it approaches foreign atoms, and be able to move laterally so that the depth needle is positioned correctly on the track.

第1図は本発明のSTMメモリ装置の一実施例の装置構
成を模式的に示すものである。図において、1は記録円
筒であり、異種原子層が交互に繰り返される層状化合物
単結晶や、2種の元素を交互に1原子層以上堆積するこ
とによって形成された多層構成の材料から形成されてい
る。そして、この記録円筒lにはその異種原子層に対し
て垂直な方向に円柱状の穴1aが設けられており、その
内周の表面には前述の異種原子層が交互に露出している
。2は穴1aの内周面(記録面)に記録・再生を行う探
針であり、先端を細くしたタングステンチップからなる
タングステン探針が一般に使用される。そして、この探
針2は記録面に存在する原子列に垂直方向に強制振動を
加えるものである。
FIG. 1 schematically shows the device configuration of an embodiment of the STM memory device of the present invention. In the figure, reference numeral 1 denotes a recording cylinder, which is made of a layered compound single crystal in which different atomic layers are alternately repeated, or a multilayered material formed by alternately depositing one or more atomic layers of two types of elements. There is. The recording cylinder l is provided with cylindrical holes 1a in a direction perpendicular to the different atomic layers, and the above-mentioned different atomic layers are alternately exposed on the inner circumferential surface of the holes 1a. Reference numeral 2 designates a probe for recording and reproducing information on the inner peripheral surface (recording surface) of the hole 1a, and a tungsten probe consisting of a tungsten tip with a tapered tip is generally used. The probe 2 applies forced vibration in the perpendicular direction to the atomic rows existing on the recording surface.

この探針2は記録面に垂直に移動可能なピエゾ素子5の
先端部に突設されており、このピエゾ素子5は記録面へ
の垂直移動によりトンネル電流制御及び記録信号再生を
行う。また、このピエゾ素子5はピエゾ素子4を介して
ベース6に取り付けられている。そして、ベース6は粗
移動機構3によって穴1aの軸線方向(トランク方向)
に粗く移動できるようになっており、ピエゾ素子4はト
ラック方向に僅かに移動できるようになっている。
The probe 2 is provided protruding from the tip of a piezo element 5 that is movable perpendicularly to the recording surface, and this piezo element 5 performs tunnel current control and recording signal reproduction by moving perpendicularly to the recording surface. Further, this piezo element 5 is attached to a base 6 via the piezo element 4. Then, the base 6 is moved in the axial direction of the hole 1a (trunk direction) by the coarse movement mechanism 3.
The piezo element 4 can be moved slightly in the track direction.

従って、記録・再生用プローブ2は、ベース6の移動に
より粗位置決めされ、ピエゾ素子4の移動により精密位
置決めされて記録面の所定トランクの上に到り、ピエゾ
素子5により記録面に達することができる。
Therefore, the recording/reproducing probe 2 is roughly positioned by the movement of the base 6, precisely positioned by the movement of the piezo element 4, and reaches a predetermined trunk on the recording surface, and is prevented from reaching the recording surface by the piezo element 5. can.

以上のような構成の装置において、第1の実施例として
記録円筒lにMob、の単結晶を使用し、屡の面と直交
する方向を中心軸とする直径10mmの穴1aを形成し
た。このM o S 2は層状の化合物単結晶であり、
MOの層とSの層が順次重なった構造を持っている。機
械加工によって穴1aを形成した後、ケミカル研磨法を
用いて表面処理を行い、清浄面とした。タングステンの
探針2を用いてMob、の表面に近接させ、穴1aの中
心軸方向に走査した。この際に、探針2とM o S 
zの間に加える電圧にACバイアスをかけながら走査す
ることによって電流値を観測したところ、第2図のよう
な波形が得られた。この図から分かるように、波形の振
幅の違いによりMo層と8層とが区別できる。この振幅
の相違はMOとSとの波動関数の広が−りに起因するも
のであって、他の物質においても同様の結果が得られる
。この振幅が先に述べたαを反映するものであって、こ
の値を用いてサーボを行うことができる。
In the apparatus configured as described above, as a first example, a single crystal of Mob was used for the recording cylinder 1, and a hole 1a having a diameter of 10 mm was formed with the central axis in a direction perpendicular to the plane. This M o S 2 is a layered compound single crystal,
It has a structure in which MO layers and S layers are sequentially overlapped. After forming the hole 1a by machining, surface treatment was performed using a chemical polishing method to obtain a clean surface. A tungsten probe 2 was brought close to the surface of the mob and scanned in the direction of the central axis of the hole 1a. At this time, probe 2 and M o S
When the current value was observed by scanning while applying an AC bias to the voltage applied during z, a waveform as shown in FIG. 2 was obtained. As can be seen from this figure, the Mo layer and the 8th layer can be distinguished by the difference in waveform amplitude. This difference in amplitude is due to the spread of the wave functions of MO and S, and similar results can be obtained with other materials. This amplitude reflects the above-mentioned α, and servo can be performed using this value.

次に、記録円筒1にMoS2の単結晶を使用した上述の
装置において、記録円筒1であるM o S zを回転
させた。そして、探針2がMo層に位置決めされるよう
にサーボをかけ、実際にサーボがかかることを確認した
。この場合、振幅が最大となる部位に位置決めすること
になるが、前もって定めた値よりも小さな振幅が得られ
た場合には、ピエゾど子4によって探針2を前後に僅か
に位置を変化させ、それぞれの位置で振幅を測定した。
Next, in the above-described apparatus in which the recording cylinder 1 was made of a single crystal of MoS2, the recording cylinder 1, M o S z, was rotated. Then, servo was applied so that the probe 2 was positioned on the Mo layer, and it was confirmed that servo was actually applied. In this case, the probe 2 is positioned at the location where the amplitude is maximum, but if an amplitude smaller than the predetermined value is obtained, the position of the probe 2 is slightly changed back and forth by the piezo element 4. , the amplitude was measured at each position.

そして、測定して得られた最大値とその前後の値の3値
の、最大値の部位に探針2の位置を移動する方法を用い
た。これにより、Mo層を記録トランクとして選択でき
、このMo層に探針2を用いてトラッキングを行えるこ
とが分かった。
Then, a method was used in which the position of the probe 2 was moved to the position of the maximum value of the three values of the maximum value obtained by measurement and the values before and after the maximum value. As a result, it was found that the Mo layer could be selected as a recording trunk and tracking could be performed using the probe 2 on this Mo layer.

更に、以上のような状態で、Mo層に短いパルス状の2
0Vの電界をかけたところ、Mo層が局所的な構造変化
を発生し、その部位を再生したところ、振幅に変化が見
られた。この変化は探針を駆動するピエゾ素子5のサー
ボ信号に現れ、このことは現在探針2が位置しているM
o層が局所的にその形状が変化していることを示してい
る。このようにしてピエゾ素子5により検出された再生
信号の波形例を第3図に示す。この図から分かるように
、再生波形にはACバイアス印加に伴うノイズ成分が発
生するが、これは周期が一定の信号であり、容易に取り
除くことができる。
Furthermore, in the above state, a short pulse of 2 is applied to the Mo layer.
When an electric field of 0 V was applied, a local structural change occurred in the Mo layer, and when that region was regenerated, a change in amplitude was observed. This change appears in the servo signal of the piezo element 5 that drives the probe, and this means that the M
This shows that the shape of the o layer is locally changing. FIG. 3 shows an example of the waveform of the reproduced signal detected by the piezo element 5 in this manner. As can be seen from this figure, a noise component is generated in the reproduced waveform due to the application of AC bias, but this is a signal with a constant period and can be easily removed.

従って、以上のように構成されたSTM装置により、穴
1aに露出するMo層の各層に情報を記録し、かつMo
層に記録された情報を再生することができることが分か
る。
Therefore, with the STM device configured as described above, information can be recorded in each layer of the Mo layer exposed in the hole 1a, and
It can be seen that the information recorded on the layer can be reproduced.

前述の実施例では記録円筒lを回転させてM。In the embodiment described above, the recording cylinder l is rotated M.

層に記録、再生を行ったが、以下に述べる第2の実施例
では、タングステンの探針2を具備したピエゾ素子5を
回転する構造とし、前述の実施例と同じ操作を行ったと
ころ、第2図、第3図に示した波形と同じ結果が得られ
、動作することがi! 認できた。この場合、電界印加
は回転ブラシを介することによって実現した。
In the second embodiment described below, the piezo element 5 equipped with the tungsten probe 2 was constructed to rotate, and when the same operation as in the previous embodiment was performed, The same results as the waveforms shown in Figures 2 and 3 are obtained, and i! I recognized it. In this case, electric field application was achieved via a rotating brush.

なお、以上説明した実施例ではM o S 2の層状化
合物単結晶を層状物質として記録円筒1に使用したが、
この層状物質としては、人工多層膜であるW−C多層膜
でも良い。また、GaP、GaN。
In the embodiments described above, a single crystal of a layered compound of M o S 2 was used as the layered material in the recording cylinder 1.
This layered material may be a W-C multilayer film, which is an artificial multilayer film. Also, GaP, GaN.

GaAs、rnP、InSe、InSb、ZnS。GaAs, rnP, InSe, InSb, ZnS.

ZnSe、ZnTeのズィンクブレンド、あるいはウル
ツァイト構造を有するIII−V族、n−IV族上半導
体化合物単結晶記録円筒1として使用し、その(111
)方向を中心軸とする円筒状の穴1aを形成し、その内
壁に出現する原子列を記録トラックとしても良い。この
場合、Ga系ではGa。
A Zinc blend of ZnSe, ZnTe, or a III-V group or n-IV group semiconductor compound having a wurtzite structure is used as the single crystal recording cylinder 1, and its (111
) A cylindrical hole 1a having its center axis in the direction 1a may be formed, and the atomic array appearing on the inner wall of the hole 1a may be used as a recording track. In this case, Ga in the Ga system.

In系ではin、またZn系ではZnの原子列を記録ト
ラックとし、この記録トラックにパルス電界を印加する
ことによって表面構造変化を発生させ、記録ピットとす
ることによって記録、再生が可能であることを確認した
Recording and reproduction are possible by using an atomic array of in for In-based materials and Zn for Zn-based materials as a recording track, and applying a pulsed electric field to this recording track to generate a change in surface structure to form recording pits. It was confirmed.

〔発明の効果] 以上説明したように本発明におけるSTM技術をベース
とした記憶装置は、超大容量の情報記憶が可能であり、
小型かつ軽量の記憶装置が実現できるという効果がある
[Effects of the Invention] As explained above, the storage device based on the STM technology of the present invention is capable of storing extremely large amounts of information.
This has the effect of realizing a small and lightweight storage device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のSTMメモリ装置の一実施例の構成を
模式的に示した斜視図、第2図は探針とMoS、の間に
ACバイアスをかけた電圧を印加して探針を走査した時
に得られる電流の観測波形を示す波形図、第3図はMO
層に短いパルス状の20Vの電界をかけた時の記録ピッ
トの再生信号の検出例の波形図である。 1・・・記録円筒、2・・・記録・再生用のタングステ
ン探針、3・・・トラック方向粗動機構、4・・・トラ
ック方向精密位置決め用ピエゾ素子、5・・・トンネル
電流制御及び記録信号再生用のピエゾ素子、6・・・ベ
ース。
Fig. 1 is a perspective view schematically showing the configuration of an embodiment of the STM memory device of the present invention, and Fig. 2 shows the probe tip by applying an AC bias voltage between the probe tip and MoS. A waveform diagram showing the observed waveform of the current obtained when scanning, Figure 3 is MO
FIG. 4 is a waveform diagram of an example of a detected reproduction signal of a recording pit when a short pulse-like electric field of 20 V is applied to the layer. DESCRIPTION OF SYMBOLS 1... Recording cylinder, 2... Tungsten probe for recording and reproduction, 3... Track direction coarse movement mechanism, 4... Piezo element for track direction precise positioning, 5... Tunnel current control and Piezo element for reproducing recorded signals, 6...Base.

Claims (1)

【特許請求の範囲】 1、異種原子層が交互に繰り返される層状化合物や、2
種の元素を交互に1原子層以上堆積させて形成した多層
構成の材料に、円筒状の穴を層に直交方向に形成した記
録媒体と、この記録媒体の円筒状の内周面に情報を書き
込み、あるいは内周面に書かれた情報を読み出す記録・
再生用プローブと、 この記録・再生用プローブを前記内周面に垂直な方向に
移動させる第1の移動手段と、 前記記録・再生用プローブを前記円筒状の穴の軸線方向
に移動させる第2の移動手段と、前記記録・再生用プロ
ーブと前記内周面とを、相対的に円周方向に移動させる
第3の移動手段と、を備えたSTMメモリ装置。 2、前記記録媒体としてMoS_2の層状化合物、Ga
P、GaN、GaAs、InP、InSe、InSb、
ZnS、ZnSe、ZnTeのズィンクブレンド、ある
いはウルツァイト構造を有するIII−V族、II−IV族半
導体化合物のいずれかを使用し、その単結晶において(
111)方向を中心軸とする円筒状の穴を形成し、前記
記録・再生用プローブとして先端を細くしたタングステ
ンチップを使用した特許請求の範囲第1項に記載のST
Mメモリ装置。 3、特許請求の範囲第1項または第2項に記載の装置に
おいて、前記記録・再生用プローブを半固定させ、前記
円筒状の記録媒体を回転させてトラックサーチ、位置決
めを行うことにより、前記プローブにより前記記録媒体
に記録・再生することを特徴とするSTMメモリ装置の
記録・再生方法。 4、特許請求の範囲第1項または第2項に記載の装置に
おいて、前記円筒状の記録媒体を固定させ、前記記録・
再生用プローブを円筒内で回転させてトラックサーチ、
位置決めを行うことにより、前記プローブにより前記記
録媒体に記録・再生することを特徴とするSTMメモリ
装置の記録再生 方法。
[Claims] 1. A layered compound in which different atomic layers are alternately repeated, 2.
A recording medium in which cylindrical holes are formed perpendicularly to the layers in a multilayered material formed by alternately depositing one or more atomic layers of seed elements, and information is stored on the cylindrical inner peripheral surface of this recording medium. Records for writing or reading information written on the inner circumferential surface.
a reproducing probe; a first moving means for moving the recording/reproducing probe in a direction perpendicular to the inner peripheral surface; and a second moving means for moving the recording/reproducing probe in the axial direction of the cylindrical hole. and a third moving means for relatively moving the recording/reproducing probe and the inner circumferential surface in a circumferential direction. 2. The recording medium is a layered compound of MoS_2, Ga
P, GaN, GaAs, InP, InSe, InSb,
Zink blends of ZnS, ZnSe, and ZnTe, or III-V or II-IV semiconductor compounds having a wurtzite structure are used, and in the single crystal (
The ST according to claim 1, wherein a cylindrical hole is formed with the central axis in the 111) direction, and a tungsten tip with a tapered tip is used as the recording/reproducing probe.
M memory device. 3. In the apparatus according to claim 1 or 2, the recording/reproducing probe is semi-fixed and the cylindrical recording medium is rotated to perform track search and positioning. A recording/reproducing method for an STM memory device, characterized in that recording/reproducing on the recording medium is performed using a probe. 4. In the apparatus according to claim 1 or 2, the cylindrical recording medium is fixed, and the recording medium is fixed.
Track search by rotating the playback probe inside the cylinder,
A recording and reproducing method for an STM memory device, characterized in that the probe performs positioning to perform recording and reproduction on the recording medium.
JP30458089A 1989-11-24 1989-11-24 STM memory device and its recording / reproducing method Expired - Fee Related JP2961172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30458089A JP2961172B2 (en) 1989-11-24 1989-11-24 STM memory device and its recording / reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30458089A JP2961172B2 (en) 1989-11-24 1989-11-24 STM memory device and its recording / reproducing method

Publications (2)

Publication Number Publication Date
JPH03165348A true JPH03165348A (en) 1991-07-17
JP2961172B2 JP2961172B2 (en) 1999-10-12

Family

ID=17934703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30458089A Expired - Fee Related JP2961172B2 (en) 1989-11-24 1989-11-24 STM memory device and its recording / reproducing method

Country Status (1)

Country Link
JP (1) JP2961172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665541A2 (en) * 1994-01-31 1995-08-02 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665541A2 (en) * 1994-01-31 1995-08-02 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing device
EP0665541A3 (en) * 1994-01-31 1996-11-20 Matsushita Electric Ind Co Ltd Information recording and reproducing device.
US6101164A (en) * 1994-01-31 2000-08-08 Matsushita Electric Industrial Co., Ltd. High density recording by a conductive probe contact with phase change recording layer

Also Published As

Publication number Publication date
JP2961172B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US5299184A (en) Information processing apparatus with held distance control on track edge detection
US5481527A (en) Information processing apparatus with ferroelectric rewritable recording medium
EP0416920B1 (en) Information processing method and information processing device
US5796706A (en) Information recording apparatus
JP3073616B2 (en) Information processing device with multiple probes
CA2007618C (en) Reproducing apparatus
JPH04271036A (en) Information processor
JP2783646B2 (en) Information recording / reproducing device
JP3029143B2 (en) Information playback method
JPH10334525A (en) Recording and/or reproducing method, recording and/or reproducing device
JPH03165348A (en) Stm memory device and its recording and reproducing method
US5255259A (en) Method of access to recording medium, and apparatus and method for processing information
JP3135753B2 (en) Recording / reproducing method and apparatus using probe
KR100606667B1 (en) data memory system
JP3280509B2 (en) Optical memory and its recording method and reproducing method
JP3236423B2 (en) Optical memory device and its recording method and reproducing method
JP3118654B2 (en) Information processing device and scanning tunneling electron microscope
JP2920915B2 (en) Memory playback device
JP2872659B2 (en) Information recording / reproducing device
JPH04115103A (en) Cantilever type probe, scanning type tunnel microscope using the probe, precise positioning apparatus and information processing apparatus
JP3056901B2 (en) Recording and playback device
JP2936291B2 (en) Recording medium, information processing apparatus using the same, and recording medium cassette
JPH04129044A (en) Information read and/or input device
JPH09153235A (en) Recording and reproducing device
JP2995126B2 (en) Information processing device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees