JPH03164367A - Air spring electronic control method for railroad vehicle - Google Patents

Air spring electronic control method for railroad vehicle

Info

Publication number
JPH03164367A
JPH03164367A JP30447789A JP30447789A JPH03164367A JP H03164367 A JPH03164367 A JP H03164367A JP 30447789 A JP30447789 A JP 30447789A JP 30447789 A JP30447789 A JP 30447789A JP H03164367 A JPH03164367 A JP H03164367A
Authority
JP
Japan
Prior art keywords
air springs
air spring
valve
controller
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30447789A
Other languages
Japanese (ja)
Inventor
Tomoshi Koizumi
小泉 智志
Ryutaro Ishikawa
龍太郎 石川
Koichiro Ishihara
広一郎 石原
Mitsusachi Yamamoto
三幸 山本
Shuji Hamamoto
浜本 修二
Osamu Torii
鳥居 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30447789A priority Critical patent/JPH03164367A/en
Publication of JPH03164367A publication Critical patent/JPH03164367A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PURPOSE:To prevent fluctuation of the wheel weight by controlling the pressure difference between the right and left air springs within the preset pressure difference and the pressure difference between air springs located on diagonal lines of the front and rear bogies within the preset pressure difference respectively when a railroad vehicle is in a cant gradual-decrease segment. CONSTITUTION:When opposite moments are applied to a front bogie and a rear bogie in a cant gradual-decrease segment, P1 and P4 are low and P3 and P4 are high, where P1-P4 are inner pressures of air springs 1 and 2 of the front bogie and air springs 3 and 4 of the rear bogie respectively. The inner pressure fluctuations are detected by individual sensors 15 and inputted to a controller 10, the allowable preset pressure difference P1 between inner pressures of the right and left air springs and the allowable preset pressure difference value (absolute value) P2 between inner pressures of air springs located on diagonal lines of the front and rear bogies are inputted to the controller 10, and detected signals of inner pressures and the preset pressure differences are compared by the controller 10. If ¦P1-P2¦> P1, a solenoid valve 5-1 is opened, if ¦P3-P4¦> P1, a solenoid valve 5-2 is opened respectively, if ¦(P1+P 4)-(P2+P3)¦> P2, valves are closed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、空気ばね付き台車を有する鉄道車両が緩和
曲線で発生する輪重変動を防止するための空気ばね電子
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to an air spring electronic control method for preventing wheel load fluctuations occurring on a transition curve of a railway vehicle having an air spring bogie.

従来技術 空気ばねを有する鉄道車両は、その時々の荷重に対応し
て圧縮空気量を自動的に調整して、車体の高さを一定に
保つためにリンクとレベリングバルプを組合せた自動高
さ調整機構を備えている。
Conventional technology Railway vehicles with air springs use automatic height adjustment that combines links and leveling valves to automatically adjust the amount of compressed air according to the load at the time and maintain a constant height of the car body. Equipped with a mechanism.

また、左右の空気ばね内圧に大幅の差が生じた際に、左
右空気ばねの内圧を均等に保つための差圧調整弁が、左
右空気ばねの間に設けられている。
Moreover, a differential pressure regulating valve is provided between the left and right air springs to maintain the internal pressures of the left and right air springs equal when a large difference occurs between the internal pressures of the left and right air springs.

しかし、鉄道車両が曲線路の緩和曲線、すなわち力冫ト
逓減区間で停車した場合は、自動高さ調g18!構の機
能により、空気ばね高さを一定に保持しようとする。
However, if the railway vehicle stops on a transition curve of a curved road, that is, in a section where the force decreases, automatic height adjustment G18! The mechanism attempts to maintain a constant air spring height.

このとき、第10図に示すように、車体(17)の前部
はカント小の位置にいる後台車(12)の影響を受けて
時計方向のモーメントが生じる。また、車体の後部は、
カント大の位置にいる前台車(11)の影響を受けて反
時計方向のモーメントが生じる。このように、前後の台
車は、車体を逆方向に回転させようとするが、車体のね
じり剛性が大きいため、前後台車で発生するモーメント
のつり合う位置で車体は停止する。
At this time, as shown in FIG. 10, the front portion of the vehicle body (17) is influenced by the rear truck (12) in the small cant position, and a clockwise moment is generated. In addition, the rear of the vehicle is
A counterclockwise moment is generated under the influence of the front truck (11) located at the cant position. In this way, the front and rear bogies try to rotate the car body in opposite directions, but because the torsional rigidity of the car body is large, the car body stops at a position where the moments generated by the front and rear bogies are balanced.

この状態では、前台車と後台車の空気ばね高さは、いず
れも制御目標値からずれているため、自動高さ調整機構
の弁の給排気は続いており、それによって車体の対角線
上にある空気ばねの内圧に差が生じる。
In this state, the air spring heights of the front bogie and the rear bogie both deviate from the control target values, so the valve of the automatic height adjustment mechanism continues to supply and exhaust air, which causes the height of the air springs on the diagonal of the vehicle body to A difference occurs in the internal pressure of the air spring.

この対角線上にある空気ばね内圧の差により、各車輪が
負担する荷重が不均一となる。その結果一方の対角線上
にある空気ばねの内圧は高く、他方の対角線上にある空
気ばねの内圧は低くなる。
Due to this difference in the internal pressures of the air springs on the diagonal lines, the load borne by each wheel becomes uneven. As a result, the internal pressure of the air springs on one diagonal line is high, and the internal pressure of the air springs on the other diagonal line is low.

そのため、輪重変動が発生し、内圧の低い空気ばね側に
ある車輪には、輪重抜け現象が起こる。この輪重変動が
大きいと、車両の再起動時に脱線する恐れがある。
As a result, wheel load fluctuations occur, and wheel weight loss occurs in the wheels on the air spring side where the internal pressure is lower. If this wheel load fluctuation is large, there is a risk of derailment when the vehicle is restarted.

発明が解決しようとする課題 上記のごとく、従来の空気ばね付き台車を有する鉄道車
両は、台車に自動高さ調整機構と左右空気ばねの内圧を
均等に保つ差圧調整弁を有しており、各台車個別に左右
空気ばねの内圧を調整することはできるが、前後台車間
での内圧は調整できず、緩和曲線では車体の対角線上の
内圧差が発生するため、輪重変動を防止することはでき
なかった。
Problems to be Solved by the Invention As mentioned above, a conventional railway vehicle having a bogie with air springs has an automatic height adjustment mechanism and a differential pressure regulating valve that keeps the internal pressure of the left and right air springs equal. Although it is possible to adjust the internal pressure of the left and right air springs for each bogie individually, it is not possible to adjust the internal pressure between the front and rear bogies, and in a transition curve, a difference in internal pressure occurs on the diagonal of the car body, so wheel load fluctuations can be prevented. I couldn't.

この発明は、緩和曲線における輪重変動を防止し、緩和
曲線に停車した車両が再起動する際の脱線防止を目的と
した鉄道車両の空気ばね電子制御方法を提供するもので
ある。
The present invention provides an air spring electronic control method for a railway vehicle, which aims to prevent wheel load fluctuations on a transition curve and prevent derailment when a vehicle stopped on a transition curve restarts.

課題を解決するための手段 上記目的を達戒するため、この発明の鉄道車両の空気ば
ね電子制御方法は、前後台車の左右空気ばねの間を、制
御器からの信号により開閉する制御弁を有する配管で接
続し、各空気ばねに設けた圧力センサが検出した内圧を
上記制御器に入力し、あらかじめ入力された左右空気ば
ねの設定差圧および前後台車の対角線上にある空気ばね
内圧の和の差の設定差圧と比較演算し、左右空気ばね内
圧の差の絶対値および前後台車の対角線上にある空気ば
ね内圧の和の差の絶対値が設定差圧より高いとき、制御
弁を開いて前後台車それぞれの左右空気ばね内圧差を解
消するのである。
Means for Solving the Problems In order to achieve the above object, the electronic air spring control method for a railway vehicle of the present invention includes a control valve that opens and closes between the left and right air springs of the front and rear bogies in response to a signal from a controller. Connected by piping, the internal pressure detected by the pressure sensor installed on each air spring is input to the above controller, and the sum of the set differential pressure of the left and right air springs input in advance and the internal pressure of the air springs on the diagonal of the front and rear bogies is calculated. The difference is compared with the set differential pressure, and when the absolute value of the difference between the left and right air spring internal pressures and the sum of the diagonally opposite air spring internal pressures of the front and rear bogies is higher than the set differential pressure, the control valve is opened. This eliminates the difference in internal pressure between the left and right air springs between the front and rear bogies.

そして、上記制御弁には、1lC磁弁を使用するか、ま
たは流量調整弁を使用する。なお、電磁弁を使用すると
きは、絞りを併用して配管中を流通する圧力空気の流量
を調整することが望ましい。電磁弁を使った他の手段と
して、電磁弁と逆止弁および絞りを設けた配管の2組を
逆止弁の向きを互いに逆向きにして並列して左右空気ば
ねの間を接続することができる。
As the control valve, a 11C magnetic valve or a flow rate adjustment valve is used. Note that when using a solenoid valve, it is desirable to use a throttle in combination to adjust the flow rate of pressurized air flowing through the piping. Another method using a solenoid valve is to connect two sets of piping equipped with a solenoid valve, a check valve, and a throttle in parallel between the left and right air springs with the check valves facing in opposite directions. can.

作  用 この発明による空気ばね電子制御装置を設けた鉄道車両
は、緩和曲線に停車して、車体の前部と後部に逆向きの
モーメントが働き、左右空気ばねの一方の内圧および前
後台車の一方の対角線上にある空気ばね内圧が高い場合
には、制御器からの制御信号により制御弁が開き、左右
空気ばね間が連通し内圧の高い空気ばね側がら内圧の低
い空気ばね側へ圧縮空気が流れ、左右空気ばね間の内圧
差が解消する。その結果、前後台車の各空気ばねの内圧
は均等となり、輪重変動は防止される。
Operation When a railway vehicle equipped with the air spring electronic control device according to the present invention is stopped on a transition curve, opposite moments act on the front and rear parts of the vehicle body, and the internal pressure of one of the left and right air springs and one of the front and rear bogies is reduced. When the internal pressure of the air springs located on the diagonal of flow, the internal pressure difference between the left and right air springs is eliminated. As a result, the internal pressures of the air springs of the front and rear bogies become equal, and wheel load fluctuations are prevented.

実施例 この発明の実施例を図面に基いて説明する。Example Embodiments of this invention will be described based on the drawings.

第1図〜第3図は、この発明の実施による空気ばね電子
制御装置を装備した前後台車の空気ばね装置を示したも
ので、第1図は制御弁として、前後台車それぞれにl個
の電磁弁を設けた場合、第2図は前後台車それぞれに2
個の電磁弁を設けた場合、第3図は制御弁として、流量
調整弁を用いた場合である。
Figures 1 to 3 show air spring devices for front and rear trucks equipped with air spring electronic control devices according to the present invention. If valves are provided, Figure 2 shows two valves on each of the front and rear bogies.
In the case where two electromagnetic valves are provided, FIG. 3 shows a case where a flow rate adjustment valve is used as the control valve.

なお、前台車(11)の空気ばね(1) (2)および
後台車(12)の空気ばね(3)(4)は、いずれも元
空気溜に配管で接続された給気弁(図面省略)と、他に
排気管に設けた排気弁(図面省略)および高さ調整装置
(14)と内圧を測定する圧力センサ(15)が設けら
れている。
In addition, the air springs (1) (2) of the front bogie (11) and the air springs (3) (4) of the rear bogie (12) are both connected to the air supply valve (not shown in the drawing) connected to the source air reservoir by piping. ), an exhaust valve (not shown) provided on the exhaust pipe, a height adjustment device (14), and a pressure sensor (15) for measuring internal pressure.

そして、第1図の実施例は、左右空気ばね(1)(2)
と(3)(4)を、それぞれ絞り(l3)を付設した電
磁弁(5−1) (5−2)を有する配管(8−1) 
<8−2)で接続する。また、各空気ばねの圧力センサ
(15)からの検出信号を制御器(10)に入力するよ
うに配線し、電磁弁(5−1) (5−2)を開閉する
制御器(10)からの出力.(t圧または電流)を伝え
るための配線をする。
In the embodiment shown in FIG. 1, the left and right air springs (1) and (2)
and (3) and (4), respectively, are pipes (8-1) having solenoid valves (5-1) and (5-2) each equipped with a throttle (l3).
<8-2) Connect. In addition, wiring is provided so that the detection signal from the pressure sensor (15) of each air spring is input to the controller (10), and the controller (10) that opens and closes the solenoid valves (5-1) (5-2) is connected to the controller (10). The output of Wire to transmit (t pressure or current).

第2図の実施例は、空気ばね(2)から空気ばね(1)
へ向けて開く逆止弁(18)と絞り(13)および電磁
弁(6−1)を有する配管(9−1)と、上記とは逆に
空気ばね(2)へ向けて開く逆止弁(18)と絞り(1
3)および電磁弁(6−2)を有する配管(9−2)を
並設して空気ばね(1)と(2)の間を接続し、また上
記と同様に互いに逆向きに開く逆止弁(18〉と絞り(
13)および電磁弁(6−3) (6−4)を有する配
管(9−3) (9−4)を並設して空気ばね(3)と
(4)の間を接続してなる。
The embodiment of FIG.
A check valve (18) that opens toward the piping (9-1), a throttle (13), and a solenoid valve (6-1), and a check valve that opens toward the air spring (2) in the opposite direction to the above. (18) and aperture (1
3) and a piping (9-2) having a solenoid valve (6-2) are installed in parallel to connect between the air springs (1) and (2), and also a non-return check that opens in opposite directions to each other in the same way as above. Valve (18) and throttle (
13) and piping (9-3) (9-4) having solenoid valves (6-3) (6-4) are arranged in parallel to connect between air springs (3) and (4).

上記第1図、第2図に示す実施例のように制御弁に電磁
弁を使用した場合、操作による電磁弁の開きは全開のみ
であるから、流量を調整する必要のあるときは配管中に
絞りを設ける。
When a solenoid valve is used as the control valve as in the embodiments shown in Figures 1 and 2 above, the solenoid valve can only be opened fully by operation, so when the flow rate needs to be adjusted, Provide an aperture.

第3図の実施例は、制御弁として流量調整弁(7−1)
を有する配管(8−3)で空気ばね(1)と(2)の間
を接続し、同じく流量調整弁(7−2)を有する配管(
8−4)で空気ばね(3)と(4)の間を接続してなる
The embodiment shown in Fig. 3 uses a flow rate adjustment valve (7-1) as a control valve.
The air springs (1) and (2) are connected by a pipe (8-3) having a flow rate regulating valve (7-2).
8-4) connects air springs (3) and (4).

流量調整弁は、例えば第9図に示すような特性があり、
電圧に対し開口面積がほぼ比例する領域がある。この比
例する領域を利用して制御器から弁への出力を、内圧の
制御目標値からのずれの大きさに応じて調整する。
The flow rate regulating valve has characteristics as shown in Fig. 9, for example.
There is a region where the aperture area is approximately proportional to the voltage. Using this proportional area, the output from the controller to the valve is adjusted depending on the magnitude of the deviation of the internal pressure from the control target value.

なお、図には、左右空気ばねの間を従来装置に用いられ
ている差圧調整弁(16)で接続した場合を示している
が、この弁は省略しても、この発明の作用、効果には影
響がない。
The figure shows a case where the left and right air springs are connected by a differential pressure regulating valve (16) used in conventional devices, but even if this valve is omitted, the operation and effects of the present invention will still be maintained. has no effect.

第7図に示すように、前台車(l1〉の空気ばね(1)
 (2)と後台車(12)の空気ばね(3)(4)のそ
れぞれの内圧をP+,P意、P3、P4としたとき、第
10図に示すように、カント逓減区間において、前台車
(11)と後台車(12)に互いに逆向きのモーメント
が働けば、その際の各空気ばねの内圧は、例えば第8図
に示すように、P1 とP4が低く、P.とps が高
い。
As shown in Figure 7, the air spring (1) of the front bogie (l1)
When the internal pressures of air springs (3) and (4) of (2) and rear bogie (12) are respectively P+, P2, P3, and P4, as shown in Figure 10, in the cant decreasing section, the front bogie (11) and the rear bogie (12), the internal pressure of each air spring at that time will be low, for example, as shown in FIG. 8, with P1 and P4 being low and P. and ps is high.

この内圧変動は、各圧力センサ〈15)により検出され
制御器(10)に入力されている。制御器(10)には
、左右空気ばね内圧の差の許容される設定差圧ΔP1と
、前後台車の対角線上にある空気ばね内圧の和の差(絶
対値)として許容される設定差圧の値ΔP富が入力され
ており、内圧の検出信号と設定差圧とが制御器(10)
で比較演算され、lP+  P霊1〉ΔPtのとき電磁
弁(5−1) 、流量調整弁(7−1)を開く。また、
PI P2>△P+のとき電磁弁(6−1)か(6−2
)を開き、IP.−P.I>ΔP.のとき電磁弁(5−
2)、流量調整弁(7−2)を開く。また、Ps  P
4>ΔP.のとき電磁弁(6−3)か(6−4)を開い
て、左右空気ばねの差圧を設定差圧内に納めるように調
整する。
This internal pressure fluctuation is detected by each pressure sensor (15) and input to the controller (10). The controller (10) has a set differential pressure ΔP1 that is allowed as the difference between the left and right air spring internal pressures, and a set differential pressure that is allowed as the difference (absolute value) between the sum of the air spring internal pressures on the diagonal of the front and rear bogies. The value ΔP is input, and the detection signal of the internal pressure and the set differential pressure are sent to the controller (10).
When lP+P=1>ΔPt, the solenoid valve (5-1) and flow rate adjustment valve (7-1) are opened. Also,
When PI P2>△P+, solenoid valve (6-1) or (6-2
) and select IP. -P. I>ΔP. When the solenoid valve (5-
2) Open the flow rate adjustment valve (7-2). Also, Ps P
4>ΔP. At this time, open the solenoid valve (6-3) or (6-4) and adjust the differential pressure between the left and right air springs to within the set differential pressure.

ついで、 (P++P−)   (Pt+Ps)l>Δpiとなっ
たとき、制御器(10〉からの出力により各制御弁が開
き左右空気ばねの間の差圧が小さくなるよう押えられ、
設定差圧ΔP,内に納まったとき弁は閉じる。
Then, when (P++P-) (Pt+Ps)l>Δpi, each control valve is opened by the output from the controller (10) and is held down so that the differential pressure between the left and right air springs becomes small.
The valve closes when the differential pressure falls within the set differential pressure ΔP.

なお、第3図に示す流量調整弁を使用した場合は、弁へ
の出力yは、 左右空気ばね内圧の差の絶対値がΔPr を超えている
とき、 yI=αl  ((IPI−P雪1)一ΔP,)十β五
戸=ffi  ( (I Ps−Pal)一Δp+)+
βI対角線上にある空気ばねの内圧の和の差の絶対値が
ΔP1を超えているとき、 yI雪y!=α茸 (1  (P++P4)−(P!+
P!)I−ΔP1〕+β冨 (ただし、1.、α,は係数、β1、β2はオフセット
量) 上記のごとく第1〜3図の各実施例で行なわれる制御の
フローシ一トを第4〜6図に示す。
Furthermore, when the flow rate adjustment valve shown in Fig. 3 is used, the output y to the valve is as follows: yI = αl ((IPI-P snow 1 )1 ΔP,) 10 β five doors = ffi ((IPs−Pal)−Δp+)+
When the absolute value of the difference in the sum of the internal pressures of the air springs on the diagonal line βI exceeds ΔP1, yI snow y! =α mushroom (1 (P++P4)-(P!+
P! ) I - ΔP1] + β value (1., α, are coefficients, β1, β2 are offset amounts) As mentioned above, the control flowcharts performed in each of the embodiments shown in Figures 1 to 3 are shown in Figures 4 to 6. As shown in the figure.

発明の効果 この発明は、鉄道車両の各空気ばねの内圧を連続的に検
出し電気信号化して制御器に入力し、鉄道車両がカント
逓減区間にあるとき、左右空気ばねの差圧が設定差圧内
に納まるように制御するとともに、前後台車の対角線上
にある空気ばねの差圧が設定差圧内に納まるように制御
し、前後台車の各空気ばねの内圧を均一に保つことがで
きるから、輪重変動を防止することができる。
Effects of the Invention This invention continuously detects the internal pressure of each air spring of a railway vehicle, converts it into an electrical signal, and inputs it to a controller.When the railway vehicle is in a cant decreasing section, the differential pressure between the left and right air springs is set to In addition to controlling the pressure so that the air springs on the diagonal lines of the front and rear bogies are within the set differential pressure, the internal pressure of each air spring on the front and rear bogies can be maintained uniformly. , it is possible to prevent wheel load fluctuations.

そのため、緩和曲線上に停車した鉄道車両が再起動する
際に脱線する恐れはない。
Therefore, there is no risk that a railway vehicle stopped on a transition curve will derail when restarting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明の電子制御方法を実施するた
めの装置を設けた鉄道車両用空気ばね装置を示す説明図
、第4図〜第6図はこの発明の実施による制御手順を示
すフローシ一トで、第4図は第1図の実施例の場合、第
5図は第2図の実施例の場合、第6・図は第3図の実施
例の場合である、第7図は鉄道車両の前後台車の各空気
ばねの内圧(P+−P◆)および高さ (ht−h4)
を示した説明図、第8図は鉄道車両がカント逓減区間に
ある際の空気ばね内圧の高低を示す説明図、第9図は流
量調整弁の開口面積と印加する電圧との関係を示すグラ
フ、第10図は鉄道車両がカント逓減区間内にーある際
、車体の前部と後部に発生するモーメントを示す説明図
であり、a図はカント逓減区間と車体との関係を、b図
は車体前部のモーメントを、C図は車体後部のモーメン
トを、それぞれ示す。 1、2、3、4・・・空気ばね 5−1、5−2・・・電磁弁 6−1、6−2、6−3、6−4・・・電磁弁7−1、
7−2・・・流量調整弁 8−1,  8−2、8−3、8−4・・・配管9−1
、9−2、9−3、9−4・・・配管10・・・制御器 11・・・前台車      12・・・後台車13・
・・絞り        14・・・高さ調整装置15
・・・圧力センサ    16・・・差圧調整弁17・
・・車体       18・・・逆止弁第10図 覇 (gw)真皿口圓
1 to 3 are explanatory diagrams showing an air spring device for a railway vehicle equipped with a device for implementing the electronic control method of the present invention, and FIGS. 4 to 6 are explanatory diagrams showing a control procedure according to the implementation of the present invention. In the flowchart shown, FIG. 4 is for the embodiment shown in FIG. 1, FIG. 5 is for the embodiment shown in FIG. 2, FIG. 6 is for the embodiment shown in FIG. 3, and FIG. 7 is for the embodiment shown in FIG. The figure shows the internal pressure (P+-P◆) and height (ht-h4) of each air spring in the front and rear bogies of a railway vehicle.
FIG. 8 is an explanatory diagram showing the height of the air spring internal pressure when the railway vehicle is in the cant decreasing section. FIG. 9 is a graph showing the relationship between the opening area of the flow rate regulating valve and the applied voltage. , Fig. 10 is an explanatory diagram showing the moments generated in the front and rear parts of the car body when the railway vehicle is in the decreasing cant section. Figure C shows the moment at the front of the vehicle body, and Figure C shows the moment at the rear of the vehicle body. 1, 2, 3, 4... Air spring 5-1, 5-2... Solenoid valve 6-1, 6-2, 6-3, 6-4... Solenoid valve 7-1,
7-2...Flow rate adjustment valve 8-1, 8-2, 8-3, 8-4...Piping 9-1
, 9-2, 9-3, 9-4... Piping 10... Controller 11... Front truck 12... Rear truck 13.
... Aperture 14 ... Height adjustment device 15
...Pressure sensor 16...Differential pressure regulating valve 17.
...Car body 18...Check valve No. 10 Ha (gw) Masaraguchien

Claims (1)

【特許請求の範囲】 1 前後台車の左右空気ばねの間を制御器からの信号に
より開閉する制御弁を有する配管で接続し、各空気ばね
に設けた圧力センサが検出した内圧を上記制御器に入力
して、あらかじめ入力された左右空気ばねの設定差圧お
よび前後台車の対角線上にある空気ばね内圧の和の差の
設定差圧と比較演算し、左右空気ばね内圧の差の絶対値
および前後台車の対角線上にある空気ばね内圧の和の差
の絶対値が設定差圧より高いとき、制御器からの出力に
より制御弁を開いて、前後台車それぞれの左右空気ばね
の内圧差を解消する鉄道車両の空気ばね電子制御方法。 2 電磁弁からなる制御弁と絞りを配管に設置してなる
請求項1記載の鉄道車両の空気ばね電子制御方法。 3 制御弁が、電磁弁と逆止弁および絞りを設けた配管
の2組を逆止弁の向きを互いに逆向きにして並列して左
右空気ばねの間を接続してなる請求項1記載の鉄道車両
の空気ばね電子制御方法。 4 制御弁が流量調整弁からなる請求項1記載の鉄道車
両の空気ばね電子制御方法。
[Claims] 1. The left and right air springs of the front and rear bogies are connected by a pipe having a control valve that opens and closes according to a signal from a controller, and the internal pressure detected by a pressure sensor provided on each air spring is sent to the controller. The difference between the set differential pressure of the left and right air springs entered in advance and the difference between the sum of the internal pressures of the air springs on the diagonal line of the front and rear bogies is compared with the set differential pressure, and the absolute value of the difference between the internal pressures of the left and right air springs is calculated. When the absolute value of the difference in the sum of the internal pressures of the air springs on the diagonal line of the bogie is higher than the set differential pressure, the control valve is opened by the output from the controller to eliminate the internal pressure difference between the left and right air springs of the front and rear bogies. Vehicle air spring electronic control method. 2. The electronic air spring control method for a railway vehicle according to claim 1, wherein a control valve consisting of a solenoid valve and a throttle are installed in the piping. 3. The control valve according to claim 1, wherein the control valve is formed by connecting two sets of a solenoid valve, a check valve, and a pipe provided with a throttle in parallel with each other with the check valves facing oppositely to each other and connecting the left and right air springs. Air spring electronic control method for railway vehicles. 4. The electronic air spring control method for a railway vehicle according to claim 1, wherein the control valve comprises a flow rate regulating valve.
JP30447789A 1989-11-21 1989-11-21 Air spring electronic control method for railroad vehicle Pending JPH03164367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30447789A JPH03164367A (en) 1989-11-21 1989-11-21 Air spring electronic control method for railroad vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30447789A JPH03164367A (en) 1989-11-21 1989-11-21 Air spring electronic control method for railroad vehicle

Publications (1)

Publication Number Publication Date
JPH03164367A true JPH03164367A (en) 1991-07-16

Family

ID=17933494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30447789A Pending JPH03164367A (en) 1989-11-21 1989-11-21 Air spring electronic control method for railroad vehicle

Country Status (1)

Country Link
JP (1) JPH03164367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043721A (en) * 1998-07-29 2000-02-15 Toshiba Corp Air spring device for locomotive
JP4559644B2 (en) * 2001-02-06 2010-10-13 新潟トランシス株式会社 Car body tilting device
JP2016159643A (en) * 2015-02-26 2016-09-05 東日本旅客鉄道株式会社 Air spring abnormality detection system, railway vehicle, and air spring abnormality detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043721A (en) * 1998-07-29 2000-02-15 Toshiba Corp Air spring device for locomotive
JP4559644B2 (en) * 2001-02-06 2010-10-13 新潟トランシス株式会社 Car body tilting device
JP2016159643A (en) * 2015-02-26 2016-09-05 東日本旅客鉄道株式会社 Air spring abnormality detection system, railway vehicle, and air spring abnormality detection method

Similar Documents

Publication Publication Date Title
JPS6349664B2 (en)
KR100732566B1 (en) A train brake system
JPH03164367A (en) Air spring electronic control method for railroad vehicle
JPS5940667B2 (en) rocking suspension system
JP2681157B2 (en) Suspension device
US6883875B2 (en) Controlling pressure in brake actuation outputs
JPH03164366A (en) Air spring electronic control method for railroad vehicle
JPH03178862A (en) Wheel load fluctuation preventing method for rolling stock
JP2827255B2 (en) Method and apparatus for preventing wheel load fluctuation of railway vehicle
JP2827254B2 (en) Method and apparatus for preventing wheel load fluctuation of railway vehicle
JPH03167070A (en) Electronic control method of air spring for rolling stock
JPH09222146A (en) Damping force adjusting type hydraulic buffer
JP3513974B2 (en) Fail-safe mechanism of bogie for railway vehicle with control device
CA2202938C (en) Penalty brake scheme for straight air pipe brake control equipment
JPS6343127Y2 (en)
JPH0440967Y2 (en)
TWI700205B (en) Active braking device for fluid braking system
JPH03186472A (en) Wheel weight fluctuation preventing method for railway vehicle and device thereof
JPH0382665A (en) Air spring control method for railroad vehicle
JP2596081Y2 (en) Hydraulic suspension device
JPH07257339A (en) Braking force control device
JPH03148370A (en) Air spring control method for rolling stock
JPH0717231A (en) Suspension controller
JPH04176773A (en) Electronic control method of air spring for rolling stock
JPH03167069A (en) Electronic control method of air spring for railway vehicle